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Eigenfunetions of the small oscillations about the double-sine-Gordon kink
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%e investigate the spectrum of the small oscillations about the 4x double-sine-Gordon kink.
Our method makes use of the supersymmetry which naturally arises in any one-dimensional
Schrodinger equation for which the ground-state wave function is exactly known. %e provide for
what we believe to be the first time analytical expressions for the unnormahzed eigenfunctions of
the internal and continuum modes. Our result improves previous numerical investigations. Its
relevance for the dynamics and thermodynamics of kinks is discussed.

One of the most attractive ideas in modern physics is
that of supersymmetry. ' Besides being a possible vehicle
for making realistic phenomenological models in particle
and condensed-matter physics, this symmetry has also
been exploited as a mathematical tool to solve double-
well Schrodinger potentials. z Supersymmetric quantum
mechanics, in fact, provides, among other things, an intui-
tive and appealing version of the old factorization and
Darboux transform methods. "

In this Rapid Communication, we make use of super-
symmetry to find the unnormalized eigenfunctions of a
one-dimensional Schrodinger equation whose potential is
changed from a single-well to a double-well shape as a pa-
rameter R is varied between zero and infinity; namely, we
look for the solution of the eigenvalue problem defined by

d
Hu =— —

2
+U(R,x) u co2u (ia)
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U(R ) hzR 2
cosh R slnh x2 . 2

cosh R+sinh x
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cosh2R —sinh2x—sech R
cosh2R + sinh2x
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Equation (1) arises in the study of the small oscillations
about the 4tr kink of the double sine-Gordon (DSG)
model. s This theory has been shown to be relevant in
the study of antiferromagnetic chains, in describing
experimentally accessible systems such as CsNiF3, 7

(CH3)4- NMnC13 (TMMC), or CoBP, and could reveal
very interesting features in the study of domain walls.
Recently, it has been successfully applied to study the dif-
fraction satellites on the reconstructed Au(111) surfaces. '

In all of the above applications the parameter R is obvious-
ly finite and depends upon the value of external parame-
ters such as pressure or applied and induced fields. In rel-
ativistic field theory, when coupled with fermions, the
DSG theory provides an extended hadron model" which
somewhat unifies the views of the MIT and SLAC bag
theories. ' ' In this application, the value of the parameter

R is self-consistently determined from the quark pressure.
The relevance of these applications prompted earlier'

investigations of Eq. (1). These studies showed the ex-
istence of a bound state whose eigenvalue depends upon
the parameter R and investigated the relevance of this
mode on the dynamics and thermodynamics' of the kink
sector of the DSG modeL However, analytical expressions
for the eigenvalue and the eigenfunction of the bound state
are available only in the Wentzel-Kramers-Brillouin ap-
proximation which is valid for large values of R. Further-
more, no explicit form of the continuum eigenfunctions—which are needed to describe the interaction of the radi-
ation field with the DSG kink —has been provided so far.
Knowledge of both continuum and bound modes is, howev-
er necessary for all values of R in order to achieve a proper
theoretical understanding of the remarkable dynamical
and thermodynamical properties of the DSG model.

It is the aim of this paper to help in bridging this gap by
providing for what we believe to be the first time approxi-
mate analytical expressions for the unnormalized eigen-
functions of Eq. (1) for all values of the parameter R.

Our method makes use of the ground-state wave-
function representation' to associate with the double-well
Hamiltonian (1) a supersymmetric partner H+. Super-
symmetry then guarantees that the two Hamiltonians are
isospectral and induces an orthogonality preserving' one-
to-one mapping between their eigenfunctions. Although
H+ describes a simple single-well Schrodinger problem, it
is not amenable to an easy exact solution. Consequently,
we have replaced 8+ by a symmetric Poschi-Teller Ham-
iltonian, ' '9 HpT, for which a complete set of eigenfunc-
tions is known. The area and the depth of the Posehl-
Teller potential are chosen to be equal, for any value of R,
to the area and the depth of the potential in H+. This re-
quirement determines the values of the parameters UD and
a appearing in Eq. (10). The eigenfunctions of Eq. (1) are
then obtained —via supersymmetry —from the eigenfunc-
tions of the Poschl-Teller Hamiltonian. At this stage, the
only justification for the replacement lies in the remark-
able agreement between the output of our analytical com-
putation and the result of previous investigations ' which
relied on the use of numerical methods to obtain the eigen-
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value spectrum and the eigenfunctions of Eq. (1), for all

values of R.
Our starting point is the observation that Eq. (1) ad-

mits for any finite R an exact nondegenerate nodeless
ground state whose unnormahzed eigenfunction is given by

d' ~, a's(s+1)
dx cosh (ax )

4coshx cosh'
go

cosh 8+sinh x

Following a standard procedure, '6 we define
s -—,' —i+JI+ (4Uo/a'),

(3)
and

(i2a)

We find it most convenient to use Landau's notation,
which allows us to write the eigenvalue problem for HpT in
the form

Inserting (3) into (1) we have (Eo 0 VR )
't 2

U(R,„) ev O'V

Bx
(4)

This is basically another way to write the potential (1)
once the exact ground-state eigenfunction is known; this is

a very useful form of Eq. (1) since it allows the use of su-

persymmetry as a tool to reduce the complexity of the
original Schrodinger problem. Namely, we introduce two
Hamiltonians H ~ (H =H)

d + 8V ~8V (5)
dx tlx 8x

+' EC co —1 (12b)

with

v. -~ y. +~go,

cosh'(ax ) 2F ~ (a,b, —,'; —sinh (ax )),

(i3)

(i4a)

cosh'(ax)sinh(ax )

with the + sign referring to continuum- and bound-state
solutions, respectively.

The spectrum of (11)consists of a continuum starting at
co2 1 whose unnormalized eigenfunctions are'

which are supersymmetric partners. 3 The eigenfunctions
of H are obtained by applying the supersymmetric "rais-
ing operator"

d +&V
dx 8x

to the set of eigenfunctions of H+. '
In our cise, use of Eqs. (2) and (3) leads to

&2F~(a+ &,b+ —,',—,'; —cosh (ax)) .

In Eqs. (14) a and b are defined as
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(15b)

V
tanh (x +R ) + tanh (x —R ) —tanhx,

which in turn implies that

2

cosh'(x —R )
2 + 2

cosh (x+R) cosh R+sinh x

+1-
dx2

and

2 + 2
cosh2x sinh2R +coshzx

We now replace (Sb) by a symmetric Poschl-Teller Ham-
iltonian of the form

and 2F~ are hypergeometric functions. 's" The above
equations show explicitly the dependence of the continuum
eigenfunction on the parameter R. Turning our attention
to the discrete spectrum, we recalls that the number of
bound states is determined by the conditions

(i6a)

(i6b)

where n is an integer. Since the function s (R) has values
in the range [0,1], only the bound state corresponding to
n 0 belongs to the spectrum for any value of R. Its
eigenvalue is given by

N 1 —S

With

d' Uo
HpT — +1-

dx' cosh'(ax) '
and the unnormalized eigenfunction is

9

U8 1gCs

cosh(ax )

and

sinh(2R )
slnh(2R ) 2R

(ioa)

(10b)

An orthogonal set of solutions of 0 is then given by

d 8V
&C + UC ~dx 8x

(19a)

Then, we solve the eigenvalue problem

HPTU 6) U
2

d 8V
Qg + Ug

dx Bx
(19b)
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The explicit form of the shape mode is

tanh(ax)
1

cosh(ax )

1h(+ )+ h(- ) h „(
(2O)

and smoothly interpolates between us tanhx at R 0
BIld
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o-
Q

1

cosh(x —R) cosh(x+&)

as R becomes arge. is1 Th' behavior agrees well with the
numerical computation of Ref.r 5

In Fig. 1 we plot the frequency eigenvalue of the shape
mode given by q.E (17). In Figs. 2(a)-2(c) we plot the

f the shape-mode eigenfunctionanalytical expression o e
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FIG. 1. Frequency of the shape mode ae as a function of the pa-
rameter R. The continuum starts at m 1.0.
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