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We investigate the spectrum of the small oscillations about the 4z double-sine-Gordon kink.
Our method makes use of the supersymmetry which naturally arises in any one-dimensional
Schradinger equation for which the ground-state wave function is exactly known. We provide for
what we believe to be the first time analytical expressions for the unnormalized eigenfunctions of
the internal and continuum modes. Our result improves previous numerical investigations. Its
relevance for the dynamics and thermodynamics of kinks is discussed.

One of the most attractive ideas in modern physics is
that of supersymmetry.! Besides being a possible vehicle
for making realistic phenomenological models in particle
and condensed-matter physics, this symmetry has also
been exploited as a mathematical tool to solve double-
well Schrodinger potentials.? Supersymmetric quantum
mechanics,? in fact, provides, among other things, an intui-
tive and appealing version of the old factorization and
Darboux transform methods.*

In this Rapid Communication, we make use of super-
symmetry to find the unnormalized eigenfunctions of a
one-dimensional Schrodinger equation whose potential is
changed from a single-well to a double-well shape as a pa-
rameter R is varied between zero and infinity; namely, we
look for the solution of the eigenvalue problem defined by
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Equation (1) arises in the study of the small oscillations
about the 4z kink of the double sine-Gordon (DSG)
model.> This theory has been shown to be relevant in
the study of antiferromagnetic chains,® in describing
experimentally accessible systems such as CsNiF;,’
(CH3)4- NMnCl; (TMMC),? or CoBP,* and could reveal
very interesting features in the study of domain walls.’
Recently, it has been successfully applied to study the dif-
fraction satellites on the reconstructed Au(111) surfaces.'°
In all of the above applications the parameter R is obvious-
ly finite and depends upon the value of external parame-
ters such as pressure or applied and induced fields. In rel-
ativistic field theory, when coupled with fermions, the
DSG theory provides an extended hadron model'! which
somewhat unifies the views of the MIT and SLAC bag
theories.'>!? In this application, the value of the parameter
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R is self-consistently determined from the quark pressure.

The relevance of these applications prompted earlier!
investigations of Eq. (1). These studies showed the ex-
istence of a bound state whose eigenvalue depends upon
the parameter R and investigated the relevance of this
mode on the dynamics® and thermodynamics'> of the kink
sector of the DSG model. However, analytical expressions
for the eigenvalue and the eigenfunction of the bound state
are available only in the Wentzel-Kramers-Brillouin ap-
proximation which is valid for large values of R. Further-
more, no explicit form of the continuum eigenfunctions
— which are needed to describe the interaction of the radi-
ation field with the DSG kink— has been provided so far.
Knowledge of both continuum and bound modes is, howev-
er necessary for all values of R in order to achieve a proper
theoretical understanding of the remarkable dynamical
and thermodynamical properties of the DSG model.

It is the aim of this paper to help in bridging this gap by
providing for what we believe to be the first time approxi-
mate analytical expressions for the unnormalized eigen-
functions of Eq. (1) for all values of the parameter R.

Our method makes use of the ground-state wave-
function representation'® to associate with the double-well
Hamiltonian (1) a supersymmetric partner H+. Super-
symmetry then guarantees that the two Hamiltonians are
isospectral and induces an orthogonality preserving!’ one-
to-one mapping between their eigenfunctions. Although
H , describes a simple single-well Schrédinger problem, it
is not amenable to an easy exact solution. Consequently,
we have replaced H + by a symmetric Poschl-Teller Ham-
iltonian,'®!® Hpr, for which a complete set of eigenfunc-
tions is known. The area and the depth of the Pdschl-
Teller potential are chosen to be equal, for any value of R,
to the area and the depth of the potential in H 4. This re-
quirement determines the values of the parameters Uy and
a appearing in Eq. (10). The eigenfunctions of Eq. (1) are
then obtained—via supersymmetry— from the eigenfunc-
tions of the Poschl-Teller Hamiltonian. At this stage, the
only justification for the replacement lies in the remark-
able agreement between the output of our analytical com-
putation and the result of previous investigations>!* which
relied on the use of numerical methods to obtain the eigen-
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value spectrum and the eigenfunctions of Eq. (1), for all
values of R.

Our starting point is the observation® that Eq. (1) ad-
mits for any finite R an exact nondegenerate nodeless
ground state whose unnormalized eigenfunction is given by

— _4coshx coshR )
cosh?R +sinh?x
Following a standard procedure,'® we define
Inserting (3) into (1) we have (Eq=0 VR)
2
2
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This is basically another way to write the potential (1)
once the exact ground-state eigenfunction is known; this is
a very useful form of Eq. (1) since it allows the use of su-
persymmetry as a tool to reduce the complexity of the
original Schrodinger problem. Namely, we introduce two
Hamiltonians H + (H_-=H)
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which are supersymmetric partners.’ The eigenfunctions

of H _ are obtained by applying the supersymmetric *“rais-
ing operator”
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to the set of eigenfunctions of H 4.
In our case, use of Egs. (2) and (3) leads to
% =tanh(x + R)+tanh(x —R) —tanhx , @
which in turn implies that
d’ 2
Ho=—2" 41~
dx? cosh’(x —R)
2 2
- , (8a)
cosh®(x +R)  cosh?R +sinh?x
and
d? 2 2
Hy=— +1- . (8b)
* dx? cosh®’x  sinh®R +cosh?x

We now replace (8b) by a symmetric Poschl-Teller Ham-
iltonian of the form

d? Uo
Hpr=— +1- , )
P dx? cosh?(ax)
with
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and
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Then, we solve the eigenvalue problem

Hprvo =% .
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We find it most convenient to use Landau’s notation,?
which allows us to write the eigenvalue problem for Hpr in
the form

[;d_ﬂ_ﬁ 0=0, (v
where

s=%[—l+ 1+(4Uo/a2)], (12a)
and

TK2=0p’—1 (12b)

with the £ sign referring to continuum- and bound-state
solutions, respectively.

The spectrum of (11) consists of a continuum starting at
o’ =1 whose unnormalized eigenfunctions are'®
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a
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and ,F, are hypergeometric functions.'®?! The above
equations show explicitly the dependence of the continuum
eigenfunction on the parameter R. Turning our attention
to the discrete spectrum, we recall®® that the number of
bound states is determined by the conditions

K <o, (16a)

(16b)

where n is an integer. Since the function s (R) has values
in the range [0,1], only the bound state corresponding to
n =0 belongs to the spectrum for any value of R. Its
eigenvalue is given by

n<s,

wr=1—s2, an
and the unnormalized eigenfunction is
o= —1 | (18)
% | cosh(ax) | -

An orthogonal set of solutions of H _ is then given by
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The explicit form of the shape mode’ is 2
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and s @
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as R becomes large. This behavior agrees well with the "5 -10 -5 0 5 10 15
numerical computation of Ref. 5. X
In Fig. 1 we plot the frequency eigenvalue of the shape o
mode given by Eq. (17). In Figs. 2(a)-2(c) we plot the -
analytical expression of the shape-mode eigenfunction
(solid line) for several relevant values of R, together with
the corresponding results of the numerical computation of
Campbell, Peyrard, and Sodano® (open circles). Agree- §
ment with these results is excellent over a wide range of =
parameter R. In Fig. 3 we plot the analytical expression of %’
the lowest continuum eigenfunction (solid line) and com- 2
pare it with the result of the numerical integration (open o
circles) for the same eigenfunction. 5
Although not fully rigorous, our analysis provides for 3
the first time, and for all values of R, accurate and simple §
analytical expressions for the eigenfunctions of Eq. (1)
which will be useful in explicit computations of the
dynamics and thermodynamics of the DSG kink sec-
tor. 51522
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FIG. 2. The shape-mode eigenfunction for R = (a) 0.5, (b)
1.2, and (c) 2.4. The solid curves are the analytic expressions of
FIG. 1. Frequency of the shape mode as a function of the pa- the present paper, while the open circles correspond to the nu-
rameter R. The continuum starts at @ =1.0. merical computations of Campbell et al.
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FIG. 3. The lowest continuum odd eigenfunctions for R =3.0.
The solid curve is the analytic expression, while the open circles
correspond to the numerical results of Campbell e? al.
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Questions such as the normalization of the continuum
eigenfunctions and the explicit resolution of the complete-
ness condition for the set of eigenfunctions of Eq. (1)
remain untouched by this investigation. Perhaps, use of
the inverse scattering?’ method together with supersym-
metry could provide an answer to those questions as well
as the exact solution to this eigenvalue problem.
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