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Recently, it has been shown that the discrete nature of time in numerical simulations can bring
in features which are not encountered in the usual analytical studies using continuous time. This
was illustrated with the study of the discrete dynamics of simple magnetic systems with competing
interactions, where a complex behavior characterized by broken symmetries, oscillations, and
chaos was found. In this work it is shown that, in the case of Monte Carlo simulations with ran-
dom updating of spins, such an anomalous behavior can be viewed as a sort of finite-size effect,
which should not appear in actual simulations of systems large enough to be of interest.

Recently, Choi and Huberman! (CH) have pointed out
that the digital (discrete) character of time in numerical
simulations can have serious consequences on the dynami-
cal behavior of the system being simulated. These authors
showed that for simple magnetic systems with competing
interactions, whereas continuous dynamics as derived from
the usual master-equation (ME) approach yields asymp-
totic behavior which is time independent, dynamics in digi-
tal time can lead to complex behavior, characterized by
the existence of multiple basins of attraction, broken sym-
metries, oscillations, and chaos. They also suggest these
results might provide a dynamical explanation for the
breakdown of ergodicity reported in Monte Carlo (MC)
studies of spin glasses.>> Later, this suggestion was sup-
ported by the study of the effective dynamics associated
with MC simulations with sequential updating of spins.*

However, in most relevant MC studies (especially on
spin glasses), a random updating of spins is considered.
Then, it is worthwhile to see if the results of Ref. 1 also ap-
ply in this case.

In order to do so, two main points which these results
rely on must be discussed further. First, the ME con-
sidered by CH is the discrete-time version of the true con-
tinuous ME, with a basic time step At of fixed length 7,
equal to the bare relaxation time. This is not a good ap-
proximation to the effective discrete-time dynamics in MC
simulations with random updating, because in this case the
larger the system size NN, the smaller is the time Az in
which a single spin flip occurs (At ~1/N).?

The second point referred to above concerns the approx-
imation implied by the use, in Ref. 1, of the mean field
with local corrections approach to obtain explicit recursion
relations for the magnetization and susceptibility. Al-
though one can argue that this must be a good approxima-
tion, at least far enough from critical lines, inside the
disordered phase, a subtle point related to the discrete na-
ture of time must be carefully taken into account in defin-
i(ng)]the local susceptibility [see the discussion following Eq.

9)}.

In this work I discuss the effects of the discreteness of
time in MC simulations with random spin updating. To
this purpose I use a ME which has been previously shown®
to reproduce faithfully the effective digital dynamics asso-

34

ciated to these simulations. From this more appropriate
ME—and essentially with the same procedure followed in
Ref. 1—it is shown that the anomalous behavior reported
there can be viewed, in this case, as a sort of (extreme)
finite-size effect, which manifests itself for parameter
values beyond their range of validity. Then, it should not
appear in actual simulations of systems large enough to be
of interest.

Consider a spin system whose dynamical evolution is
described by the following ME:

4

dtP(o”,t)=§ lrw(—crk)P(ol,. .. —Ok,...ONt)

—Lrw(ck)P(cl,...o'k,...cN;t) oW

where P (o;t) is the probability of finding the system in the

configuration o=(oy,07,...,05) and w(oy) is the

Glauber® transition probability:
w(or) =+[1 —tanh(BE,)] , (2a)
(2b)

Ek =Z-ij0'j+hk .
J

In Eq. (1), 7 sets the bare time scale for the relaxation
process. As in Ref. 1, the coupling constants J;; are given
by

g = J for p neighbors 3)
i~ = J, for r =z — p neighbors.

In the course of a MC simulation of Eq. (1) with transi-
tion probability given by (2), for random updating of spins
the czynamics is effectively governed by the discrete-time
ME:

Pat1(0) = Pa(0) =~ Flw(=00)Py(o1. .. —oy... o)
k

—w(o)P,(o1...0k...0N)] .

@

This equation with P,(c)=P(o;t =nAt) and At =1/N
approaches (1) up to terms of order 1/N2. From it, one
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gets the following equations of motion for the magnetiza-
tion,

<ck;t =(n+l)%>5mk(n)

= [l - —#]mk(n)+71/—(tanh(ﬁEk);n)

(5)
and the susceptibility
9 T
Xij(n+1) an, <O’j, (n+1)N>L_O
[ ]Z,J(n)+ N o, ——(tanh(BE; )n)h-o
6)

Following Ref. 1 and according to the scheme proposed
by Brout and Thomas,’ the statistical average of
tanh(BE} ) can be approximated by

(tanh(BEy);n)=tanh[Bhrf(n)] , @)
where the effective local field 2§ is given by
h/?"(n)E<Ek;t =n#>

=Y Jijm;(n) =X T (m)my (n) + by . (8)
J J

In this equation X represents the response of spin k to the
average magnetization at site j (#k ):
am(n+1)
8[kam,- (n)]

om(n+1)

AhgT(n) ©

Zu(n+1)=N

In the definition of X it has been assumed that the ef-
fective local field A£™ is felt by the kth spin one MC mi-
crostep after it was produced. Note also that with respect
to the usual definition of Zkk an extra factor IV has been in-
cluded in (9). The need for this factor can be explained in
the following manner: Consider the time evolution of the
magnetization as given by the continuous ME (1) with the

approximation (7):
d |ti—-_1 1 off
dtm[r] L M tanh{ﬁh [TH .

Here, the fact that t sets the time scale has been made ex-

plicit. The formal solution of this equation in terms of Af
is

mk[—t—] =" ""m, (0)+— f tanh[ﬁh"“[x”e("_’)'dx ,
T T

(10)

from which one obtained X« through the usual definition

,] dmy (t/7) B{ tanhz[ﬂhefr[r]”_ an

T ohe(t/ o)

Suppose one now takes the discrete form of (10) with
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t=(n+1)7/Nfor N>1:
n+1

my(n+1)= [1 —% my (0)

n—r
1 & 1
+— Bh(r)]|1——
N rgotanh[ hE (r)][ N] ,
which is also the formal solution of the recursion relation
(5) with the approximation (7). From this equation one
gets

mntl) B e
e (n) N{l tanh?[BrFT(n)1} .

The comparison of (11) and (12) justifies the inclusion of
the extra factor NV in the definition (9) of Xix.

Now, if all the spins of the system have the same
amount of ferromagnetic and antiferromagnetic couplings
[as given by (3)], all the physically relevant quantities
must be translational invariants. Then the Egs. (5) and
(6) together with the approximation (7) give the following
recursion relations for the magnetization,

m(n+1)=m(n+1)

(12)

=1L y+ L f
[l N]m(n)-i-Ntanh(ﬁhf,,S), (13)

and the susceptibility

Zkk(n+1)EZ(n+1)=[l —-]IV X(n)

+LH A DI =J3XWEW] . (14)
From the definitions (8) and (9) one also gets
RS =17 —J3 X ]Im () , (15a)

and

2
;Y(n)-ﬁ{l—Nz[m(n)—[I—TL—]m(n—l)] ] . (15b)
In the above equations it has been called J - =pJ,—rJ,
and J% ="'pJ 243 following CH it has been assumed
also that Y, JuXix <1 in deriving (14).

The recursion relations (13)-(15) have physical sense
only when

2
st 1->0
JE/r, J-<0,

or, forp_r_0(z), J3=2J% /2 VJ . The relative strength
n=J%/(zJ%) gives an idea of the amount of competition
present in the system. Whereas for n— 1 one has a
predominance of ferromagnetic or antiferromagnetic cou-
plings, for n— O the interactions are strongly competing.

At this point it is worth noting that for N — 1, Egs.
(13)-(15) reproduce the corresponding Eq. (3.3) of Ref.
1. This supports the idea that the anomalous behavior of
m and X found there corresponds to a sort of (extreme)
finite-size effect.

Before the numerical study of (13) it is interesting to
consider its linearized version for 7n(0)==0 in the disor-

(16)
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dered phase

n

m (n) = 1—-#(1+K1-—K-) m(©) amn

where K_=pJ_ and K} =p%J%. From this equation,
one can see that the system has a critical slowing down of
the magnetization at (K% ). =K - — 1, which coincides—
as it must be— with the critical line in the plane (J1,J3) of
the static model.® Equation (17) also provides an upper
bound for the meaningful values of K 1. In fact, for

Ki)max=K-+N-—1, (18)

after the first recursion m reaches its equilibrium value
m (1) =0, which can be interpreted as a too fast evolution
of the system to be followed by the finite time-step recur-
sion (13). Hence, the results this equation gives for K%
greater than (K% )nax have no physical sense, which is ac-
tually a nonserious restriction for those values of N of in-
terest.
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I have studied numerically the recursion relations
(13)-(15) for fixed arbitrary values of K — and K% rang-
ing, according to (16)-(18), from K2 /z (with z $10) to
(K-+N —1). Within this range,’ any initial magnetiza-
tion relaxes to a simple fixed point, which is (up to nearly
five digits) given by

m* =tanh[K - — (1 —m*?)K31m* .

This equation is obtained from (13)-(15) with m(n
+1)=m(n—1)=m*. Note m* is independent of N, as
usual when approximations of the mean-field type are con-
sidered.

In conclusion, I have shown that, for parameter values
within their range of validity, no anomalous behavior of
the type reported in Ref. 1 should be found in MC simula-
tions with random spin updating. Moreover, the restric-
tion posed on the meaningful values of the coupling con-
stants [Eq. (18)] is not important for systems of the size
usually considered in actual simulations.
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