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Order of phase transition for systems with multispin interactions: Monte Carlo simulations
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A family of two-dimensional spin models with n-spin interactions in one direction and two-spin

interactions in the other is studied by Monte Carlo simulations. Our results show that for the

case where the variab1es are of the Ising (q-state Potts, q-) 2) type the transition is of first order
for n & n, 3 (n & n, 2) in agreement with previous conjecture.

Lattice models with multispin interactions, although less
studied than those involving two-spin interactions, are
relevant in many physical situations. ' The phase diagram
of these systems may show a rich variety of critical
behavior, the classical example being the exactly soluble
eight-vertex model.

Recently, an interesting class of one-dimensional quan-
tum models involving multispin interactions has been in-
troduced. 3 The models are described by the reduced
Hamiltonian

~g &i~+ l tri+2~ i rri +n g rri

where k is a coupling constant and cr;",a,' are Pauli ma-
trices located at lattice site i. The case n 2 reduces to the
exactly soluble transverse Ising model. This model is self-
dual. Hence, the phase transition should occur at

1, for all n, provided that the transition is unique.
The invariance of the above Hamiltonian under the nonlo-
cal symmetry corresponding to reversing the spins in any
two of the n sublattices renders its ground state 2" ' de-
generate. The ground-state degeneracy and the structure
of the low-lying levels suggested that these models should
belong to the same universality class as the 2" '-state
Potts model. 34 This conjecture implies that the triplet
(n 3) model should have the same critical behavior as
the 4-state Potts model and the Baxter-Wu model, ' and
the transition should be first order6 for n & 3. Attempts to
test the conjecture for the triplet model have been made
essentially only by finite-size scaling. Although the first
calculations were inconclusive, more recent results
strongly support the conjectures.

The question of the order as a function of n of the phase
transitions was studied initially by mean-field theory
(MFT) ' and by finite-size scaling (FSS). The MFT re-
sults state that for n & n, 2 the transition is first order,
which is not a surprise if we remember that for the q-state
Potts model this type of calculation' also gives a first-
order phase transition for q &q, ~2, which is clearly
wrong. The FSS results suggest that n, 4; however, as
stated by these authors, their FSS results should not be
taken too seriously in the estimation of the order of the
phase transition. More recently, the authors of Ref. 11, by
improving the MFT and using a proposed criterion' to
distinguish between continuous and discontinuous phase
transitions, concluded that n, 3, in agreement with the
conjecture.

Motivated by the fact that Monte Carlo simulations
have been proved to be a powerful tool in the determina-
tion of the nature of phase transitions for gauge' and spin
systems' ' we decided to use this technique to analyze the
order of the phase transition for the models (1).

The quantum Hamiltonian (1) may be considered as the
time continuum limit' [J, 0, J, ~, X =J, exp(J, )] of
the classical model whose reduced Hamiltonian (action) is
given by

n—g J, g a(i+k,j )+J, cr(i,j )a(ij + I ), (2)
ij k 0

where a(i,j ) ~ 1 are classical Ising variables defined on
a square lattice and J„J,are the coupling constants in the
horizontal (space) and vertical (time) direction, respec-
tively. Because the long-distance properties are preserved
in the above limit we expect the classical model (2) and
quantum model (1) to belong to the same universality
class. The Hamiltonian (2) is also self-dual, which can be
seen as a consequence of the fact that we have two interac-
tions per lattice point. '7 The critical temperature, for the
isotropic case, under the assumption that it is unique, is
given by J, J, —,

' ln(%2+ I) for all n

Our Monte Carlo simulation is performed by employing
the heat-bath algorithm' ' for the isotropic case
J, J, J of the classical model (2). The nature of the
phase transitions for these models can be investigated'
by comparing, at critical temperature, long simulations of
an initially ordered state and an initially totally disordered
state. Figures 1(a)-1(c) show the evolution of the energy
per spin for those simulations in the cases n =2 (Ising
model), n 3, and n 4, where by iteration we mean one
Monte Carlo step per spin. We clearly see in Fig. 1(c)
that after a short relaxation time (of the order of 100
iterations) each one of the configurations reached the
equilibrium at two clearly distinct values of the average
energy. This implies the existence of a large latent heat,
proportional to the difference between the energy of those
final configurations, which render the transition first order
for the case n 4. In sharp contrast we show in Fig. 1(a)
the same simulation for the Ising model (n =2), and we
clearly see that the two final energies are equal, consistent
with a continuous phase transition. In Fig. 1(b) we show
such simulations for the triplet (n =3) case. In this case
the evolution of the two states is consistent with the ab-
sence of latent heat but with a large divergence in the
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FIG. 1. Evolution, at the critical temperature J —,ln(J2+ I) ~0.44, of an initially disordered state (triangles) and an initially
ordered state (circles). The lattice size is 132x 132 and the energy is normalized to be 1 (zero) for infinite (zero) temperature. These
simulations refer to the bing multispin system described by the Hamiltonian (2) for the cases (a) n -2, (b) n 3, and (c) n 4.
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FIG. 2. Same as Fig. 1 for the triplet 3-state Potts model [n 3, q 3 in Eq. (3)l at the critical temperature

J, J, ln(43+1) =1.005.

specific heat. This is exactly what we should expect if the
triplet model belongs to the same universality as the 4-
state Potts and Baxter-Wu models, where the specific-heat
divergence is peculiarly large (a —', ). The same type of
simulation in the Baxter-Wu models shows' similar re-
sults to those in Fig. 1(c).

We also investigate the order of the transition for the
q-state Potts version of the multispin Hamiltonian (2):

k 1

(3)

where n(ij ) 0, 1, . . . , q
—1 and 8v is a Kronecker 8

function, modulo q. Like the two-body Potts model the
above models are also self-dua17'7 with the critical cou-

pling expected to be J, =J, =In(vq +1). In Fig. 2 we
show the simulatiotts for the triplet (n -3) model, which
shows that the transition is already of first order (the
ground state is sixfold degenerate in this case). Similar
simulations reveal that the difference between the final
states increases with n and q.

In summary, by performing Monte Carlo simulations,
we have shown in this paper that the multispin models (1)
exhibit a first-order phase transition for n &n, 3 in
agreement with the conjecture that those models belong to
the same universality class as the 2" '-state Potts models.
The generalization (3) of these models has n, 2 for all q.
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