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Anisotropic Heisenberg chain with composite spin
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A family of one-dimensional magnetic Hamiltonians is introduced, where at each site there are
n spin-S operators. It is sho~n that, for special couplings between spins and for S 2, the model

contains the complete spectrum of the Heisenberg chain with spins 2, 1, 2, etc., and the ground

state is that of the corresponding Heisenberg chain. By the varying of a single parameter the
model allows continuous transitions between chains with different spin. We map the spin-(S+S)
model onto the nonlinear o model and discuss the possibility of a finite gap in the spin-( —,

' +—,
' )

model.

The spin- —,
' Heisenberg chain admits of an exact solu-

tion via the Bethe ansatz' or the quantum inverse method. 2

The latter method can be generalized to solve exactly spin
systems of higher spin length with specific nonlinear in-
teractions. All of these solvable (integrable) spin systems
have2 a similar ground state and a spectrum which is gap-
less around the isotropic antiferromagnetic point. It is ex-
pected also from 1/S-expansion results3 or from variation-
al calculations~ that increasing spin length does not give
rise to any drastic changes in the behavior of the system.

However, by mapping a nonintegrable spin Hamiltonian
onto the O(3) nonlinear tr model, Haldane argueds that
integer and half-integer spin systems may have a different
ground state at the isotropic antiferromagnetic point, such
that the excitation spectrum has a gap in the integer-spin
case, but not in the half-integer case. Much computer
time has since been devoteds to this question, resulting in
considerable numerical evidence for the existence of the
gap in the spectrum of the S 1 antiferromagnet, but
definite answers are still lacking.

In this Rapid Communication we propose a new kind of
spin system with variable spin length, which thus provides
a totally new way of looking for effects of spin length: We
consider a system of n spin-S operators at each lattice site.
Note that in earlier work, where the spin-1 operator was
approximated by two spin- —,

' operators in the continuum
limit, the philosophy was very different. A special case of
the spin-(S+S) model to be introduced below has been
considered in Ref. 8.

In fact, we have a whole family of models depending on
the number n of spina, the spin length S, and the kind of
interactions we assume. In this Rapid Communication we
only consider the cases n 2 and 3 with nearest-neighbor
exchange interactions, and we study the model by two
methods, finite-size scaling and mapping to the nonlinear
cr model. In a general form the Hamiltonian can be writ-
ten as

H-QH, p, a,P-a, p, (r), (1)
a„P

where o, p, and r are spin-S operators, and by (r) we
mean that r spins are included only in the n 3 case.

Each term H, p in Eq. (1) is of the form

H -——'J'Pg(a. 'P,.+,+a,.-P,++ )-J .Pga'. P.' (2)
l l

and J„'p, J;p, respectively, are the transverse and longitu-
dinal exchange coupling of a and P spins. We allow for
different coupling for each pair of spins, and therefore the
phase space is very large: d 7 for n 2 and d 17 for
n 3. We shall show below that the (local) spin length of
the system (1) with (2) takes different values in different
regions of the phase space.

For simplicity we consider here only two-dimensional
(2D) surfaces in the phase space and use in particular the
parametrization

JaP~ J a~P
&p (j xy,z), (3)

where a and P take the values indicated in Eq. (1), and A, is
a free parameter. The Hamiltonian (1) now contains
terms like

Hpp 2 Jzy g(a,.+a,.+,+a,. a,.+, ) —J,g a,'. a,'. +,, (4a)

Hlp ——J„yg(a,+P, +, +.a,. . P, +,) —
A,J, +a,'Pt'+, , (4b).

with asap in (4b). We now restrict ourselves to S —,' and
will consider more general cases in a subsequent paper In.
what follows we call the n 2 case the spin-(&+ 2)
model and the n 3 case the spin-(3X —,

' ) model. Note
that A, provides an extra degree of freedom such that, by
varying X,, we can have a continuous transition between
chains with different spin, as we shall show below. At the
same time )I, provides another means of controlling the
N ' behavior of energy levels.

In the spin-( —,' + —,
' ) model the one-site Hilbert space of

states is Stt22)tt2 2)oSt, and thus it is useful to con-
sider at each site the states

I
»-=I t, t&, I

—»-=I l, l&,

Ia&=-(1/JX)(I f, J, &+ I j,f&),

Io'&—=(1/J2)(I f, &&
—

I &,f&).
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The first three states constitute the three components of a
spin-1 state, and

~

0') is a spin-0 state. At )t, 0 the length
of a„+p„ is not a good quantum number, and the system
describes two independent spin- —,' chains. For 0 & k & 1

the local spin length is not well defined either, and neigh-
boring spins that are in ) 1) and (

—1) states, respectively,
can flip to state [0&~0& or ~0'&~0'&. At X 1, however,
(cr„+p„) commutes with the Hamiltonian, and we can
assign a definite value to the spin at each site. Further-
more, all the matrix elements between the )0') state and
all the other states vamsh at this point, and hence the num-
ber and positions of spin-0 states in the chain are con-
served. The Hilbert space of the system is sectorized into
independent subspaces which include the complete spin-1
subspace, and all the other subspaces can be classified by a
number v, v I, . . . , N, which is the number of spin-0
states in the chain of N sites. The only effect of the immo-
bile spin-0 states is to break the spin-1 chain, and thus ap-
pear as nonmagnetic "impurities. " In principle, we could
describe the model equivalently as a nonmagnetic chain di-
luted by spin-1 impurities, but as we shall show below, the
ground state of the model is always in the spin-1 subspace.

If we increase k beyond A, 1, we find in the spin-
(—,

' +—,
' ) model a simple duality property: All energy lev-

els F. (k) of the model satisfy

This duality condition results from the decoupling of the
system into two independent spin- —,' chains, both at X 0
and at A, ~. For k &0, the model includes both ferro-
magnetic and antiferromagnetic couplings and the ground
state differs from that in the positive X case. Consequent-
ly, Eq. (6) only holds for X&0. In any parametrization
there is an analogous duality relation which is satisfied be-
tween two decoupling points, provided they exist, in the
corresponding A, space.

To find the energy levels of the spin-( —,
' + —,

' ) model, we
have performed exact numerical calculations for periodic
chains containing 1V «8 sites. Figure 1 shows, at k I,
the first two excited levels and the lowest level which con-
tains spin-0 states. Close to the isotropic antiferromagnet-
ic point, J,/J„» —1, the first two excited levels are the
S;„1,k 0, and S;„0, k ir levels of the spin-1
Heisenberg chain; the ground state is the S;„0,k 0
state of the same subspace. The first impurity level is
much higher in energy, and the gap to this level remains
definitely finite for N~ ~. Therefore, the ground state
of the spin-( —,

' + —,') model is always in the spin-1 sub-
space.

Consider next the behavior of the lowest-lying levels as a
function of X, in particular at the isotropic antiferromag-
netic point. Note that by going from X 0 to A, 1 we in-
terpolate smoothly between 8 —,' and 5 1, respectively,
and return to S =

2 at A, =~. Figure 2 shows the primary
gap for periodic chains having up to 10 sites. A finite-size
scaling estimate for the infinite chain gap, satisfying the
self-duality condition (6), is also shown. Finite-size scal-
ing indicates that the gap scales to zero only at k 0,
which becomes a singular point: The gap behaves as ( k

~

'
with a&1 (X, &0), a=1 (X&0). A hnearly increasing

6-

L

FIG. 1. Energy difference of the ground state and the lowest
two excited states in the spin-( —,'+ —,') model. The difference
from the lowest impurity level including spin-0 states is also
shown. Figures attached to each line indicate the number of lat-
tice points used in the finite-size calculation.

gap close to the origin (spin i ) implies, through Eq. (6), a
finite gap at k oo (spin —, with infinite coupling).

From Fig. 2 we are tempted to conclude that Haldane's
conjectures is correct. Moreover, in our model the gap is
finite for any finite A, . For comparison we have done the
same calculations for the spin-(3x —,

' ) model. This model
has eight spin states per site, four of which constitute a
spin- —,

' multiplet and the other four two spin- —,
' multiplets.

The Hilbert space of the model, at X 1, is again sector-
ized into a complete spin- —', subspace and subspaces la-

FIG. 2. Primary gap of the spin-( —,
' + —,

' ) model at the isotro-
pic antiferromagnetic point for N 2, 4, 6, 8, and 10. The
dashed line is an estimate for the finite-size scaling result which
would satisfy the self-duality relation (6).
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beled by two "spin- —,'-impurity" numbers. There is no

decoupling at X,

We have made finite-size calculations for periodic
chains with W «6 sites, the maximum we could achieve
with our computer facilities. The first two excited (spin-
—,
' ) levels have the same quantum numbers as the corre-

sponding levels in the spin-( —,'+ —,
' ) model, and impurity

levels have a finite gap everywhere. In the planar phase,—J„»+e& J, & J„» (we do not specify the size of e here),
the impurity levels become degenerate, as they do in the
spin-( —,

' + —,
' ) model with a gap AFt n. We conclude that

the ground state of the spin-(3 x
& ) model is always in the

spin- —', subspace; at X 0 it describes three independent
spin- —,' chains.

We find that the primary gap of the spin-(3x —,
' ) model

behaves at J,/J„» —1 much as that of the spin-( —,
' ++)

model, except perhaps for X & 0. If Haldane's conjecture
was correct, we would expect that the gap in this case
remains zero for all A, ~O, in contrast with what seems to
be the result from finite-size scaling. Considering the
chain lengths we could handle, finite-size results do not yet
warrant definite conclusions. Notice, however, that we al-
ways get a vanishing gap at )i, 0, which is known to be
correct in the spin- —,

' limit.
Haldane's arguments are based on the mapping onto the

O(3) nonlinear e model, so we consider here the same
mapping for our spin-(S+S) model. Indeed, the Hilbert
space of the t» model rather resembles that of the spin-
(S+S) model, s and we find that the mapping becomes
exact in the scaling limit g, a 0 (a is the lattice spacing)
with the 0 model coupling constant g,

g-'-S(1-~)'" (7)

In the scaling limit the o model is known9 to have a dy-
namic generation of mass rn-a 'exp[-2trS(1 —

1i,)' ],
and for k 0 we recover the results of Ref. 8. Our spin-
(—,'+ —,

' ) lattice model at )i, 0 is certainly far from the
scaling limit, and finite-size scaling gives a vanishing mass
(gap) as expected. '2

The k 1 case is quite different, however. Then the

spin-(S+S) model maps onto a particular limit of the tr
model where the gradient of the field term vanishes, and in
the remaining time derivative term the coupling g' is in-
dependent of the spin S. This problem is equivalent to a
classical 1D Heisenberg chain at temperature T -g' and
has mass m -g'. We conclude that if S —,

' is not a singu-
lar point in the mapping, there is a finite mass even in the
spin-( —,'+ —,

' ) model, and thus in the spin-1 Heisenberg
chain.

In conclusion, we have introduced a family of Hamil-
tonians having n spin-S operators at each lattice site.
With an appropriate choice of interaction for S
n 2,3, the model includes the complete spectra of spin- —,',
-1, and -—', Heisenberg chains as special cases and allows
continuous transitions between different spin lengths.
Under "symmetric" parametrizations, the energy levels
are shown to satisfy a self-duality relation.

We have shown that the spin-( —,
' + —,

' ) and spin-(3 x —,' )
models display, in many respects, a similar behavior, al-
though for the latter model the results are not yet decisive.
In the spin-( —,'+ —,') model the self-duality relation (6)
provides an increased accuracy of the finite-size scaling re-
sults for the energy levels. The mapping of the spin-
(S+S) model onto the O(3) nonlinear o model suggests
that the gap at S —,', X 1, is indeed finite, as indicated
by finite-size scaling. We have also used parametrizations
different from Eq. (3), but the results are qualitatively the
same.

Other aspects of the model, for example, the possibility
of novel phases compared with those of the Heisenberg
model when extra interactions are included, will be treated
in a more detailed paper.
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