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The pressure dependence of the superconducting transition temperature of aluminum is studied
by self-consistently calculating the phonon frequencies and the electron-phonon coupling as func-
tions of volume. The rapid change in 7. with pressure in aluminum is reproduced well by the cal-

culation.

The application of hydrostatic pressure rapidly depres-
ses the superconducting transition temperature 7, of
aluminum. It is reduced to 0.075 K at 62 kbar (corre-
sponding to a volume change of about 7%) from its zero-
pressure value of 1.18 K.! Furthermore, it appears that T,
varies linearly with volume at least in the pressure range
measured. There have been several theoretical models ad-
dressin_% the problem of superconductivity under pres-
sure,7 and for aluminum, more recently, using
rescreened pseudopotentials,® Whitmore® has calculated
the volume dependence of T.. In these models solutions of
the Eliashberg equation for 7, give an upwards deviation
from the measured relationship between 7, and the
change in volume. To explain their experimental data
Gubser and Webb! suggested a peculiar behavior for the
electron-phonon interaction which would go through a
maximum with pressure. However it appears unlikely that
such a dependence would occur in aluminum without a
structural change.

‘In the present work we use a recently developed method
to calculate the % dependence of the electron-phonon cou-
pling in metals.! This method does not use the rigid-ion
approximation and it has the advantage that both the pho-
non frequencies and the McMillan parameter A can be cal-
culated ab initio using only the atomic number and atomic
mass as inputs. By varying the volume of the unit cell, the
pressure dependence of these quantities can easily be stud-
ied. We find that as the pressure increases, A is suppressed
by the rapid increase in the phonon frequencies. The
suppression of A is only slightly counteracted by the
moderate increase in the electron-phonon matrix element.
Using McMillan’s!! equation, the rapid decrease of T, is
accounted for without assuming any peculiar behavior to
the electron-phonon interaction. But the linearlike be-
havior of the experimental data is not reproduced.

The g-dependent A, Aq, is defined for the monatomic
case in terms of the usual electron-phonon matrix ele-
ment, 2
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where N (Er) is the density of states (DOS) per atom and
per spin at the Fermi level Er, m is the atomic mass, @q, is
the phonon frequency for wave vector q and branch v, M is
the scattering matrix element, and the symbol (( )} denotes
a Fermi surface average over states k and k' and bands n
and n'.'°

To evaluate the matrix elements and the phonon fre-
quencies the electronic properties of the solid are needed.
This is achieved by using an ab initio pseudopotential
total-energy scheme.!® This scheme gives both the struc-
tural properties'* and the phonon frequencies by using two
calculations with identical supercells'> for the undistorted
and the distorted crystal and by taking the difference in
the total energies. In the harmonic approximation the
square root of this difference is proportional to the phonon
frequency,
1/2
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where (%?2) is the mean square of the atomic displacements
which depends on both q and v. For a monatomic crystal,
m is the atomic mass which also enters in Eq. (1).

Once the two potentials are self-consistently converged
for both the undistorted crystal and a crystal distorted by a
frozen phonon, the electron-phonon matrix element is cal-
culated using the finite-difference method to compute the
gradient of the potential with respect to the distortion.'®
The McMillan parameter A can then be obtained from Eq.
(1) by averaging the Ag’s in the Brillouin zone (BZ) as fol-
lows:

=1 3
=g S rad’ . (3)

where Qg7 is the volume of the Brillouin zone.

Since the most important contribution to A comes from
the zone edge phonon and since we are mostly interested in
the pressure dependence of the coupling, we have calculat-
ed only the phonons corresponding to a wave vector q at
the Brillouin zone boundaries in two crystallographic
directions, [100] and [111]. Six different volumes have
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been considered starting from the theoretical equilibrium
volume which is slightly smaller than the experimental
value'* (the equilibrium lattice constant ag is taken to be
4.013 instead of 4.02 A experimentally). The pressure is
then related to the volume through the Murnaghan’s equa-
tion of states'® using the calculated bulk modulus and its
derivative with respect to pressure. The highest pressure
considered here is 99.2 kbar which corresponds to a
volume change of 10%.

The pressure variation of the frequencies also give the
mode Griineisen parameter yg by —dInw/dInV. The
average of all these parameters over all the modes gives
the Griineisen parameter which is used to vary the Debye
temperature ©p with pressure in the McMillan equation,

_ 8 o[ —Losi+2)
1.45 A(1—0.62u*) — u*

T, 4)

This equation is then used to calculate 7, and the first
value of u* is fitted to reproduce the experimental T, at
zero pressure. The pressure variation of u* is taken from
the empirical relation of Bennemann and Garland'? with
the use of the DOS at Er and the pressure variation of this
quantity,

2N(Ep,P)[2N(EF,0)+1]
2N(Ep,0)2N(Ef,P)+1] °

where N (Eg,P) is the DOS at Er in states per eV and per
spin, for a pressure P and u* (P) is the pressure-dependent
u*. The pressure variation of u* is only about 1%, see
Table II. All the other quantities in Eq. (3) are computed
directly for different volumes.

In Fig. 1 the pressure variation of the scattering term

(| Mq(nk,n &) |2 = (yux | €g" VV | w30 | 2) )

p*(P)=p*(0) (5)

is plotted as a function of volume change for the longitudi-
nal and transverse mode in the [100] direction and it is
compared to the free-electron-gas results (FEG). The ma-
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FIG. 1. Pressure variation as a function of volume change of
the scattering term [Eq. (6)] for the free electron model (solid
line), for the longitudinal [100] mode (circles), and the trans-
verse [100] mode (triangles).
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trix elements increase with pressure more slowly than the
FEG result. They generally increase with pressure be-
cause there is an explicit dependence on 1/V. It should be
noted that only the longitudinal mode can be usefully com-
pared with the free-electron model results because the
transverse mode includes umklapp processes which are not
present in the FEG calculation.

In Table I (a) and (b), the DOS at Er, the phonon fre-
quency, and Aq, are shown as a function of pressure for the
[100] and [111] directions, respectively. In both cases the
increase in the phonon frequencies dominates the behavior
of A, and A decreases as the volume increases even though
the scattering term increases. These results depend on the
number of plane waves taken in the calculation of the po-
tential and the total energy. The largest plane-wave ener-
gy Epw chosen here is 10.0 Ry which corresponds to ap-
proximately 70 plane waves per atom. If a smaller Epw is
chosen the behavior with pressure is less pronounced both
for the increase of the scattering term and for the phonon
hardening. The mode Griineisen parameters for an energy
cutoff of 6.0 Ry are 1.7 and 2.9 for the longitudinal and
transverse mode, respectively, in the [100] direction and
1.8 and 1.5 in the [111] direction. A direct average gives
1.9 which is the same as Whitmore® but somewhat lower
than the experimental values which are about
2.2-2.6."18-20 For a cutoff of 10.0 Ry the values are,
respectively, 1.9, 3.0, 2.1, and 2.7 giving an average
Griineisen parameter of 2.4 which is closer to experiment
than the less converged one.

In Table II the variation of 7 is shown together with all
the quantities needed to compute T, in the McMillan
equation. The Coulomb repulsion u* at normal pressure is
adjusted to obtain the experimental value of the transition
temperature. Since the Ag’s are not calculated over the
whole BZ, the average A is not expected to give the experi-
mental T, without an adjusted y*. This average A is cal-
culated taking into account the sixfold symmetry of the

TABLE I. The computed quantities for the calculation of the
electron-phonon coupling in the (a) [100] and (b) [111] direc-
tions. The DOS is given in states per Rydberg per spin, and the
frequencies in 10'® rad/s.

P
"‘AV/V (kbar) N(EF) [ 8 A.L T lr lq

(a) [100] direction

0.00 coe 2.69 6.33 0.1284 3.60 0.1086 0.3456
0.02 15.2 2.65 6.55 0.1205 3.80 0.0971 0.3147
0.04 32.4 261 6.79 0.1132 4.01 0.0868 0.2868
0.06 51.9 2.57 7.04 0.1058 4.23 0.0781 0.2620
0.08 74.0 2.53 7.28 0.0995 4.46 0.0699 0.2393
0.10 99.2 249 7.54 0.0928 4.68 0.0634 0.2196
(b) [111] direction
0.00 s 272 6.09 0.1528 2.65 0.1070 0.3668
0.02 15.2 2.69 638 0.1428 2.78 0.0991 0.3410
0.04 32.4 266 668 0.1274 291 0.0922 0.3118
0.06 51.9 2.62 7.03 0.1155 3.03 0.0867 0.2889
0.08 74.0 2.59 7.30 0.1078 3.23 0.0785 0.2648
0.10 99.2 2,55 7.35 0.1055 3.43 0.0708 0.2471
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TABLE II. The computed quantities entering the McMillan
formula as functions of pressure.

P 8p T.

—AV/V  (kbar) (K) A u* K) T1./T.(0)
0.00 ce 428 0.3577 0.0836 1.18 1.00
0.02 15.2 449 0.3297 0.0834 0.74 0.63
0.04 324 472 0.3011 0.0833 0.40 0.34
0.06 51.9 497 0.2774 0.0831 0.21 0.18
0.08 74.0 523 0.2539 0.0828 0.09 0.08
0.10 99.2 551 0.2353 0.0826 0.04 0.03

[100] axis and the eightfold symmetry of the [111] axis.
In order to compare these results with experiment they are
plotted in Fig. 2 as a function of pressure where the
squares are the points calculated in our model and the line
represents the experimental results of Gubser and Webb.!
The rapid decrease of T, is well reproduced by the theory
without assuming any peculiar behavior of the electron-
phonon coupling. The main reason for the success of this
calculation relative to previous attempts is attributed to
the accurate calculation of the phonon frequencies under
pressure. This coincides with Witmore’s conclusion® about
the failure of his model to fully account for this rapid de-
crease of T,. The fact that this calculation is carried out
to self-consistency for each volume allows the variation of
the phonon frequencies with pressure to be closer to the ex-
perimental one.

On the other hand, the linear dependence of 7T, on the
volume change is not reproduced by this theory. Two pos-
sible sources of uncertainty in the theory can arise in the
treatment of y* and the equation for 7. For example, u*
and its presure dependence are treated only in an approxi-
mate way, and the coefficients used in the McMillan equa-
tion could be pressure dependent. However, all the theo-
retical models including this one predict a saturation of 7,
rather than the linear dependence. It would be interesting
to obtain measurements of 7, at high pressure to investi-
gate this difference.

These results and those obtained previously on primitive
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FIG. 2. The theoretical superconducting transition tempera-
ture (squares) as a function of pressure compared to the experi-
mental results of Gubser and Webb (Ref. 1) (solid line). The
dotted line between the calculated points is only a guide for the
eyes.

hexagonal silicon?! show that it is now possible to study
the pressure dependence of the superconducting transition
temperature to a high degree of accuracy from first princi-
ples. The electron-phonon couplings and the phonon fre-
quencies are well described by the total-energy frozen-
phonon method. One of the remaining challenges is to
compute the Coulomb repulsion u* from first principles.
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