
PHYSICAL REVIEW 8 VOLUME 34, NUMBER 7 1 OCTOBER 1986

Mean-field theory of structural phase transitions in the A 'A "BX4-type compounds
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The class of compounds with crystallographic structures incorporating slight distortions from the

prototype a-K2SO4 structure is studied. Various experimentally reported ferroelectric and ferroelas-

tic phase transitions are considered as resulting from the ordering of the orientations of the BX4

groups accompanied by ionic displacements. The four-state Hamiltonian, with no dynamics, of the

orientational interactions is formulated and the possible modes of displacement are identified. The

thermodynamics of a four-sublattice model is examined in the molecular-field approximation. In

this model 25 different phases are possible. The three-dimensional phase diagram obtained allows a

variety of sequences of successive temperature transitions. A classification of experimentally stud-

ied compounds is proposed.

I. INTRODUCTION II. ORIENTATIONAL STATES OF BX4 TETRAHEDRA

We study a class of 2'2 "BX4-type compounds with
crystallographic structures that can be considered as slight
distortions of the prototype a-KzSO4 structure of
P6s/mmc symmetry' (Fig. 1). Examples are ionic
compounds with cations A ', A "=Li+,Na+, K+,Rb+,
Cs+, NHg+, N2H5+, N(CH3)4 and doubly charged an-

ions BX4 SO4 -,——Se04z Mv'0 z MnF 2 MaC1&z
MuBr4~ (M and Mi' represent hexavalent and bivalent
metals, respectively) with the exception of several crystals
with extremely small cations. In the nondistorted and
nonpolar tz-K2SO4 structure the orientation of the BX4
tetrahedra is random. The variety of ferroelectric and fer-
roelastic phase transitions reported in a multitude of ex-
perimental papers is due to partial or total ordering of
orientations of the BX4 groups, accompanied by ionic dis-
placements. '

To our knowledge, there have been only two papers '

published so far dealing with the statistical theory of the
class of compounds considerai here. Both papers treat
rather special compounds, however, and neither discusses
the physics of the phenomena in depth. It is the aim of
this paper to propose a simple but sufficiently general

theory of structural phase transitions for the entire class.
Because of the complexity of the system, we begin with
the molecular-field approximation using a model with no
dynamics. It follows that the picture obtained should be
treated as a qualitative rather than a quantitative one.
The paper is addressed to experimentalists. %e hope it
will facilitate classification of a large number of known

experimental facts as well as help in planning for further
research.

In the present paper we define a nondynamical model
of the orientational subsystem and examine the effects of
the interaction between orientations of neighboring BX4
tetrahedra that he in the same c plane. Effects of short-
and long-range orientational interactions between tetrahe-
dra along the c direction will be the subject of a succeed-

ing paper.

Like all molecular crystals, the system under study has
translational, rotational, and intramolecular degrees of
freedom. We treat the translational motions in the ionic
lattice in the harmonic approximation and neglect the in-

tramolecular degrees of freedom because they are not ex-
cited in the experimental range of temperatures. We con-
sider only the rotational degrees of freedom of BX4
groups, the problem of ordering of cationic molecular
groups like NH4+ or N(CH3)4+ requires a separate treat-
ment.

In the prototype structure, BX4 anions form a hexago-
nal close-packed (hcp) lattice, expanded (c/a ~1.63) or
contracted (c/a ~ 1.63) along the c axis. Each BX~ anion
is surrounded by five A' and six A" cations. The local

FIG. 1. High-temperature nonpolar and nondistorted
a-K2SO4 structure of P63/rnmc symmetry. Hexagonal (Z=2)
and orthorhombic (Z=4) unit cells are shown. Notation of
axes is used throughout the paper. It is assumed that smaller
cations occupy A' positions, although this is not a general rule.
Relative magnitudes of ions apply approximately to 3'=Li+,
A"=K+, and BX4——SG4 . Note impossibility of free rotation
of BX4 tetrahedra. The projection of four different sterically al-
lowed orientations of the tetrahedra is shown.
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rotational potential is dominated by steric repulsion —no
free rotation of tetrahedra is possible in the nondistorted
static lattice (Fig. 1). The only sterically allowed configu-
ration of the BX4 tetrahedron has one of the apices above
and the remainder below the plane of A' cations, or the
reverse. The three basal apices of the tetrahedron have to
be contained somewhere between the A' and the A"

— cations so that each of the two sterically allowed configu-
rations sphts further into two subconfigurations. Assum-
ing the distinguished apex to be approximately directed
along the hexagonal c axis, one can imagine these subcon-
figurations as a result of small turns of the tetrahedron to
the right or to the left from an average but sterically
prohibited position when the basal apices point to the A'

or the A" cation (Fig. 1). The average position is deter-
mined by electrostatic interactions, mainly attraction of
opposite charges located on the atoms X and A. The at-
traction of A' cations dominates if the ratio c/a is large
enough, whereas in the case of c/a small the attraction of
A" cations is stronger.

Thus, there are four different subsets of sterically al-
lowed orientations of the BX4 tetrahedron and no transi-
tions between these subsets are sterically possible in the'
nondistorted static lattice (the corresponding energy bar-
riers are of infinite height). We will label these four
discrete orientational states with the help of two Ising
variables: =a+1 (position with the apex up and down,
respectively} and v =+1 (turn to the right and to the left,
respectively). However, the local symmetry of cationic
environment is described by the group 6m2 (D3i, ) of 12
elements so that there are, in general, 12 different
equivalent orientations of the BX4 tetrahedron of
minimum potential energy. It follows that there are three
orientations of minimum energy within each of the four
sterically allowed subsets labeled by the pair (o,~). One
can imagine these three orientations as corresponding to
slight tiltings of the trigonal axis of the tetrahedron in
three distinct vertical planes rotated mutually by 120'
around the e axis.

The energy barrier that has to be overcome while
changing the direction of tilting is not of steric nature and
presumably low. For this reason we propose to describe
the orientational states in the orientational isomerism ap-
proximation in tex~xis of the four discrete states (o,~} and
anharmonic librations, rather than in terms of 12 posi-
tions of minimum energy and the harmonic hbrations.
This point of view seems to be justified by experiment.
Indeed, the assumption of statistical disorder, both with
respect to the up-and-down orientations and the right-
and-left orientations, enabled earlier investigators to refine
perfectly the a-KzSO4 structure from the scattering data. '

On the other hand, an attempt to refine the structure in-
corporating statistical disorder in the tiltings failed. Also
strong anharmonicity of librations has been confirmed ex-
perimentally.

Until now we have considered rotational states of BX4
tetrahedra for the nondistorted static lattice. It is obvious
that a translation of cations relative to the centers of the
anions may provide additional decreases of the rotational
energy. Moreover, only such a translation allows transi-
tions between different discrete orientational states {cr,r)

For an adequate description of the system under discus-
sion it is thus necessary to consider the rotation-
translation coupling. Further on, we take into account
only the coupling of translations to the discrete states
(o,r) and not to the librations. This allows us to neglect
the librational subsystem as independent of the remaining
degrees of freedom. Because we are not studying the
dynamics of structural phase transitions here, we consider
the rotational-translational Hamiltonian to be expressed
only in terms of operators diagonal in the orientational
states (cT,7.).

In the four-dimensional space spanned by the states
(o,r) there are four diagonal operators I, o, r, and err that
transform according to one-dimensional representations
I i(A i ), I &(A z' ), I z(A z ), and I z(A", ) of the local symme-
try group 6m 2 (D3& ), respectively. Consistent with a har-
monic approximation of the lattice vibrations, we consider
only their linear coupling to local modes of translation of
the cationic environment. As the coupling Hamiltonian
has to be invariant under local symmetry operations, we
are interested only in normal modes of I p I 3 and I 4
symmetry (fully symmetrical I i normal modes couple
identically to all the four orientational states). Using
standard group-theoretical methods we found that there
are one I z, one I 3, and four I q normal modes of transla-
tion of the hexagonal environment under consideration
composed of five A' and six A" cations. We denote these
normal modes as q2, q3, and q4", . . . , q4 ', respectively.
All of them are shown in Fig. 2. Thus, the most general
rotational-translational Hamiltonian under the assumed
restrictions is of the form

Expressing the local normal modes in terms of collec-
tive normal modes (phonons} and performing canonical
displacement transformation, the Hamiltonian (1}, to-
gether with the harmonic lattice Hamiltonian, gives an ef-
fective indirect orientation-orientation interaction of the
form

Ig Ii payat
a,a' l, l'

(2)

Obviously, besides indirect orientational coupling, there is

where a,a'=o, ~,or, and indices l, l' label all anion sites
in the prototype lattice. Due to the commutation of
operators o, r, and car, i.e., the neglect of dynamical as-
pects, the displacement transformation is exact.

The indirect interaction parameters II I include also a
modification of a single-site reference energy (1=I',
a =a') and are determined by both the coupling parame-
ters V~J', Eq. (1), as well as the parameters describing the
lattice dynamics. Because of the complexity of the latter
(18 phonon branches) we do not quote the detailed expres-
sion. More important for further discussion is the rela-
tion between a lattice distortion described in the terms of
averaged displacements of local modes of translation and
an orientational ordering:

( (g)} (v(g)) —i yraa' (
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rn, —:(o &, = —tanh(A, /kT),

n, = (r &, =—tanh(8, /kT ) .
The minimization condition

kT/g

or kT/I('

leads, following one-to-one functional dependence (8), to
the relations

(10)

where N is the number of sites on each sublattice. Equa-
tions (10), together with Eqs. (8), compose a set of eight
self-consistent equations for eight variational parameters

A, and 8, or, equivalently, for eight order parameters m,
and n, T.he proper solution is the one that gives the
minimum free energy (5) at the point (10).

The solution of eight nonlinear coupled equations is
time-consuming, even with a computer. For that reason
we have assumed that there are no ferri-ordering-type
solutions of Eqs. (8) and (10) and set

-5-

-/5-

I
I
I
I

2 J'l2 Or K'/i)|'
I

m, =a,m, n, =b,n,
with a, =+1 and b, =+1. We verified this assumption to
be true for the ground state. Under assumption (11),there
are five possible orderings for each thermodynamical vari-
able rn=(o& or n=—(r& in the hcp lattice with four sub-
lattices:

FIG. 4. Phase diagram in the molecular-field approximation
of the anisotropic Ising model on an hcp lattice. Dashed and
solid lines correspond to phase transitions of the first and the
second kind, respectively. Note the mirror symmetry with
respect to the plane J'/J=O {I{'/I{ =0): the phase F inter-
changes with the phase A, and the phase 8 interchanges with
the phase C.

( &i ——( &2=( &3=( &4=o, para(P),

& &1=& &2=( &3 ( &4%0 ferro(F),

( &, =( &2= —( &3
———( &4~0, antiferro (A),

( & f
= ( &3= ( &3—( &4&0, antiferro (8)

( &, = —( &,=( &,= —( &,&0, antiferro(C) . (12)

m3, m4, J,L —+ —m3, —m4, —J,—L

n3, n4, E',L'-+ —n3, —n4, —E', —L' .
(13)

It should be pointed out that for the assumed structure of
sublattices both antisymmetrical terms in the Hamiltonian
(4) do not contribute to the free energy (5).

For L =L'=0 our model is reduced to two independent
anisotropic Ising systems with NN interactions. The
phase diagram of a single anisotropic Ising system on the
hcp lattice in the molecular-field approximation is given
in Fig. 4. It is seen that all the five phases P, F, A, 8, and
C, as specified by Eqs. (12) are realized. The complete
phase diagram is simply a Cartesian product of two phase

With these assumptions the problem of solving eight
equations for eight order parameters rn, and n, is reduced
to the problem of solving two equations for two order pa-
rameters m and n in 25 versions (5 for m times 5 for n),
and a comparison of the corresponding free energies. In
fact, we have to consider only 3)&3=9 versions, because
of the invariance of both the self-consistent equations (8)
and (10) and the free energy (5) with respect to "gauge"
symmetry operations

Zy

|l -y

-7 (I-y) 2(l -y)
I I I
I I I

I

FB(FC) I AB(AC)
I I

I I I
I I I

FF '; cF(cA) ,'BF(BAJ .-' AF

I /
l j2= x/2-(
I
I

FF (FA) + y y~ AF(44)
I I I
I I I

ce(cc) i ee(ecJ
I

-2 ((4y) 2((+y)

2y

" 2y

FIG. 5. Ground-state (x,z) phase diagram for K'=I.'=0
and arbitrary y & 0. Dashed and solid lines correspond to phase
transitions of the first and the second kind, respectively.

diagrams for (cr & and (r&, respectively. In general, there
are 25 phases possible PP,PF, . . . , BC,CC, where the first
and the second letter correspond to the variable (o & and
(r&, respectively.

Simple geometrical considerations suggest that the in-
teraction in plane described by J should be of the antifer-
ro type (J~0) whereas that described by K should be the
ferro one (K&0). The sign of the interactions out of
plane, J' and K', depends on the ratio c/a. To examine
the effects of coupling between the o and the r subsystem,
we have assumed
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(the neglected interactions for out-of-plane pairs are
planned to be studied in a future paper together with
next-neighbor interactions).

In the following we use dimensionless quantities

x =J'/J, y =K/J, z:I /—J, t:kT—/J .

The ground-state phase diagram for y ~ 0 (J antiferro and
K ferro) is given in Fig. 5. In Fig. 6 we give finite-

temperature phase diagrams found numerically for the

physically reasonable value y = ——,
'

and various strengths
of coupling described by the parameter z. The ambiguity
in phase determinations (e.g., either BF or BA) results be-
cause we have neglected the It" interaction. This ambi-

guity can be removed by assuming an infinitesimally
small value for K'.

Comparing the diagram for z=0 in Fig. 6 with the
remaining diagrams, we find that the effects of the four-
spin coupling term are considerable indeed. They are
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FIG. 6. Cross sections of {t,x,z) phase diagram found numerically for E'=L'=0 and y= —2. Dashed and solid lines corre-

spond to phase transitions of the first and the second kind, respectively. Only half-planes x & 0 are shown; the results for x & 0 are
mirror images with respect to reflection in the plane x =0. For x &0 phases AX and BX {X—any of v orderings) should be inter-
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manifested as changes in the transition order, appearance
of triple as well as critical end points, and the possibility
of new sequences of successive temperature transitions.
I.et us note that the tetracritical point characteristic for
z=o exists in the range ——,

' &z& —,'. In general, we have

verified that the form of phase diagrams given in Fig. 6
remains qualitatively unaltered for a wide range of the pa-
rameter y ~0.

Identification of all 25 theoretically predicted phases is
given in Fig. 7, where average orientation of tetrahedra in
each sublattice enables one to determine the space symme-

try. In making Fig. 7, we have assumed the tetrahedra as
turned to the right or to the left from the position when

the basal apices point to the A' cation (Fig. 1), though
turning from the position with the basal apices pointing to
the A" cation is rather typical for most compounds
occurring in BXor AX phases (X=P,F,A, B,C).

The space symmetry thus found determines whether a
given phase is ferroelectric or ferroelastic. In the listing
given below we use the F-operation notation of Aizu. '

(i) Ferroelectric along the c axis (more correctly, py-
roeleetrie as it is quite impossible to change simultaneous-
ly the orientation of most tetrahedra from up to down po-
Sltloil):

!IW &I!

PP —P6~/mmc FP —P6 mc CP —Pmnn BP —Pmcn AP —R3m

Cp g
y)

PF —P6q/m FF —P6~ CF PZtln— BF —PZ]/n

PA —P6~c2 FA -R3c CA —P2nn BA —PZ&cn AA -R32

~4

e 4

r@ @~

(a~~ ~

CB —PZtln BB PZ2, Z,
-

4
(g 5 Q) ' fg o

gi

AB —P1

PC —Pbc& FC —P~Z CC —
PZZQ, BC —PZt/c AC —P2

FIG. 7. Patterns of orientational order for all 25 phases of the four-sublattice model. Main elements of symmetry are indicated.
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FP (6/mmm F6mm),

FF (6/rn F6),
FA (6m2F 3m ),
FB and FC (mmm Emm2, ) .

(ii) Ferroelectric along a axis:

BA and CA (mmm Fmm2„),
AC (3m F2„) .

ql'l8 ql'-all FX

V/'

PP,
q"'Z q"l-Qa BX

A4V'
0

g,"'S
q,
"' all -CX

9 9
gory

(iii) Ferroelastic orthorhombic:

PB, PC, PB, and CP (6/mmm Fmmm),

BA and CA (6m2Fmm2, ),
FB and FC (6mm F mm2, ) .

(iv) Ferroelastic monoclinic:

BF and CF (6/m I' 2, /m or mmm I' 2, /m ),
BC and CB (mmm F2„/m ) .

(v) Ferroelastic triclinic:

AB (3m F 1 or mmm F 1) .

Five phases are hexagonal (PP,PF,PA, FP,FF), four are
trigonal (FA,AP, AF,AA), two phases are nonferroelastic
orthorhotnbic (BB and CC), and one nonferroelastic
monoclinic (AC). Let us note that in real compounds the
region of stability of the prototype phase may occur above
the melting or decomposition temperature, so all the fer-
roelectric and ferroelastic phases listed above should be
understood in theoretical rather than in practical terms.

The orientation itself is not directly related to the fer-
roelectric or the ferroelastic order parameter. Physically,
a quantity having more direct meaning is the lattice dis-
tortion. To determine displacements of ions correspond-
ing to the orientational ordering, we applied Eq. (3) with
an interaction form identical to that occurring in the
Hamiltonian (4). All possible modes of ionic displace-
ments accompanying particular orientational orderings
found in this manner are given in Fig. 8.

IV. CONCLUDING REMARKS

With a knowledge of the extensive experimental litera-
ture, although certainly not complete, we find that it is
possible to classify all compounds studied to date as be-
longing to three main groups. The first group, compris-
ing almost all com.pounds, is distinguished by a sequence
of transitions

PP~BP~BF (BA)

as the temperature is reduced (diagrams for —0.5
&z & 3.5 in Fig. 6). The second group, to which NaKSO4
belongs, "probably has the sequence

PP~AP~AF (AA}

q,"'-all FX q,
'~ -ail BX q, ail X-C q - BF, FB, AC; CA

(diagrams for z & 0.5 in Fig. 6). The third group,
comprising LiKSO4, is distinguished by the following se-
quence: ' '~'

PP~CP~FF (FA)

(diagrams for —1.5 & z & 0 and negative x in Fig. 6).
On referring to phase diagrams in Fig. 6 we find that

all these sequences are realized for y and z close to

(16)

and the crucial parameter that distinguishes between the
sequences is x —=J'/J. From a geometrical point of view
it is quite reasonable to assume that both the sign and
magnitude for J' depend mainly on the ratio c/a. Indeed,
c/a=1. 28 for NaKSO4 (Ref. 1) and 1.68 for LiKSO4
(Ref. 6); these values are rather extreme cases compared
with the remaining compounds. It is puzzling to note
that there appear to be no compounds with other se-
quences of transitions:

PP~CP~CF (CA),

PP~PF (PA)~CF (CA),

PP —+PF (PA)~BF (BA),

PP~BP~AF (AA),

for parameters satisfying Eq. (16) and intermediate values
of x. Experimental investigations are in progress, howev-
er, and one can expect the discovery of additional com-
pounds. %'e hope this simple introductory theory will be
helpful to encourage further research.

In view of the theory developed in the preceding section
we are forced to treat the joined symbol XF(XA)
(X=P,B,A, F, or C) in each of the schemes above as a no-
tation of a single superphase rather than two alternatives.
This follows, however, not only from the omission of a
detailed di,scussion of K' and I.' interactions. The mirror
symmetry described by Eqs. (13) does not allow transi-
tions XF~XA with only a temperature variation (also
temperature transitions XB==XC, FX~AX, and BX~CX
are not allowed}. This disagrees with the observation of a

FIG. 8. Possible modes of ionic displacements accompanying
particular orientational orderings. Letter X denotes any of or-
derings P, F, A, 8, or C.
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FF~FA transition in LiKSO4 (Ref. 12) and, in a sense,
of BA~BA-BF and BA-BF~BF transitions in
LiNH4SO4 (Ref. 14) and LiRbSO4 (Ref. 15), respectively
(BA-BF denotes a superstructure of the symmetry I'2ilc
made up of BF structures pointing in opposite directions
and alternating along the c axis' ). These transitions, as
well as the numerous commensurate-incommensurate
transitions observed, must originate in longer-range in-
teractions for pairs lying out of the c plane. These are
planned to be examined in a succeeding paper, together
with E' and L' interactions omitted in the present work.
Most important is that all transitions originating from in-

teractions of pairs out of the c plane may be considered as
transitions within a single XF(XA) or XB(XC) super-

phase in terms of the present theory. This justifies our de-
cision to divide our studies into two separate stages.
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