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Phase transitions in a disordered granular superconductor near percolation
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The properties of a disordered granular superconductor consisting of superconducting grains of
size comparable to the zero-temperature bulk superconducting coherence length embedded in a non-

superconducting host are studied by means of a randomly diluted Josephson tunnel junction model
near a percolation threshold p, . A replicated (n~0) continuum Landau-Ginzburg field theory
describing the macroscopic properties of this material is derived from first principles. The mean-

field phase diagram as a function of temperature T, applied magnetic field H, and grain concentra-
tion p exhibits a Meissner phase, an Abrikosov vortex lattice, and a spin-glass phase all arising from
the low-temperature phase coherence of the condensate wave function among the grains. For
H =0, in the superconducting phase, the macroscopic superfluid density p, -(p —p, )' as p~p,
where t =3 in mean-field theory. The spin-glass phase arises from frustration among loops of the
percolating network in the presence of an applied magnetic field. Here p, =0, leading to complete
Aux penetration on average but with a frozen-in distribution of randomly oriented tunneling super-
currents leading to power-law decaying -x ' 2' local fluctuations in the 8 field. In the low-

temperature limit, vortices are shown to consist of spin-glass cores in a superconducting back-
ground.

I. mTRODUCTION

In some recent papers' it has been suggested that su-
perconductivity in a granular material or otherwise suit-
ably disordered superconducting-nonsgperconducting
composite may exhibit novel properties including the ana-
log of a spin-glass phase in the presence of an externally
applied magnetic field. Using a randomly diluted Joseph-
son tunnel junction model for this system, we demonstrat-
ed' the occurrence of a phase transition from a state of
macroscopic superconductivity to a state of spin-glass-like
order for a disordered system near percolation. The
thermally and configurationally averaged condensate wave
function [(g)r], is zero whereas the Edwards-Anderson
average [ ~

(tt )r ~ ], is nonzero. This possibility has also
been suggested by Shih, Ebner, and Stroud based on nu-
merical simulations. In this paper we present a detailed
derivation of the mean-field phase diagram for the disor-
dered granular superconductor exhibiting a Meissner
phase, an Abrikosov vortex phase, and a spin-glass phase
(Fig. 1). This is done from first principles by means of an
n ~0 replica field theory. The macroscopic properties of
these phases are derived by considering solutions to the
associated j'.andau-Ginzburg equations in replica space.
The qualitative equilibrium properties of the glass phase
are well described by considering replica-symmetric solu-
tions to these saddle-point equations. In a forthcoming
publication the results of this mean-field theory will be
supplemented by an e expansion about six dimensions
describing the critical behavior near the percolation mul-
ticritical point and by a more detailed treatment of di-
amagnetic properties of finite clusters.

The effects of disorder on superconductivity have been
discussed by a variety of authors ' in various regimes of
interest, and it is important to distinguish the different

(~'~c }

FIG. 1. (a} Mean-field phase diagram as a function of tem-
perature T=kgT/E (where K is a typical Josephson coupling
energy), applied magnetic field H, and Josephson bond occupa-
tion probability p near percolation threshold p, exhibiting nor-
mal (Ã), Meissner, spin-glass (SG) and Abrikosov (A) vortex lat-
tice phases. Dashed lines depict a slice of this phase diagram in
the ( T,p) plane for fixed H ~ 0. (b) Slice of phase diagram in the
( T,H) plane for a fixed concentration of superconducting grains
above percolation threshold. Sho~n are the normal (Ã), super-
conducting (SC), and spin glass (SG) phases and the multicritical
point where they meet.
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physical effects pertaining to these regimes. The macro-
scopic superconducting properties of interest in this paper
arise from the low-temperature phase coherence of the
condensate wave function among superconducting grains
coupled by Josephson tunneling through an insulating
host, by superconducting microbridges, or by proximity
effect in a normal-metal host [Fig. 2(a)]. When the inter-
grain coupling energy is small compared to the Bardeen-
Cooper-Schrieffer (BCS) gap energy of the grains, long-
range superconducting order due to phase coherence is
manifest at a transition temperature T, lower than the
bulk transition temperature Tacs of the individual grains.

In a randomly diluted network of Josephson weak links
of this type, the transition temperature for long-range
phase coherence decreases continuously to zero as the per-
colation threshold p, is approached from above. This is il-
lustrated in Fig. 1(a). In the opposite limit of Josephson

u-(toad g-1+m)

Og

coupling comparable to ksTBcs, it is difficult to distin-
guish the phase coherence transition from the mean-field
superconducting transition of the infinite cluster. In such
a strongly coupled system the resistive transition of the
material is dominated by the first connected supercon-
ducting path (short circuit) which appears as the percola-
tion threshold p, is exceeded. "This leads to a very sharp
rise in the resistive transition temperature from zero to
Tacs in the vicinity of p, (see Fig. 3).

For present considerations the grains ideally have a size
of the order of the mean separation of electrons in a
Cooper pair or the zero-temperature bulk coherence
length g„typically a few thousand angstroms. For grains
which are significantly smaller than this scale, the inter-
grain coupling is dominated by quantum fiuctuations
which tend to destroy phase coherence' . Quantum
mechanically, the phase 8 of the condensate wave func-
tion is conjugate to the number N of Cooper pairs which
have condensed in a given grain, and fluctuations in these
quantities are related by the Heisenberg uncertainty prin-
ciple ((58) )((b,Ã) ) &1. Fluctuations in the number
density correspond to charge fluctuations b,Q and the
description of macroscopic superconductivity in terms of
classical phase coherence (XI'spins) among grains is only
valid when the charging energy ((EQ) )/2C is small
compared to the typical Josephson coupling energy be-
tween nearest-neighbor grains. Here, C is the intergrain
capacitance. The small grain limit (-100 A) has been dis-
cussed by Deutscher et al. and Alexander. Here elec-
tronic transport is dominated by diffusion among clusters
of grains which leads to a decrease of the effective super-
conducting coherence length g, in Landau Ginzburg
theory. When p&p, and this coherence length is large
compared to the percolation coherence length g~, the sys-
tem is suitably described as a "dirty" superconductor in
which the diffusion coefficient is given by its macroscopic
value regarding the medium as a homogeneous composite.
Closer to the percolation threshold, g~ becomes large com-
pared to g, and the inhomogeneous nature of the network,
in particular the loop structure, becomes important as
shown by measurements of the critical magnetic field H, i

(p~pc)
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FIG. 2. (a) Granular material consisting of a percolating net-
0

work of 1000 A —1 pm superconducting grains in a nonsuper-

conducting background. The coupling energy E„between the
phases 8, of the condensate wave function on neighboring grains
arises from Josephson tunneling, proximity effect, or supercon-

ducting microbridges. In the presence of an applied field H, the

energy is minimized when the phase difference is A„„which
equals 2n /$0 times the line integral of the vector potential be-

tween adjacent grains. (b) Skal —Shklovskii —de Gennes node-

link picture of a percolating network. A superconducting to spin

glass transition occurs when approximately one quantum of ap-
plied flux penetrates the typical loop of linear dimension g~ of
this network.

FIG. 3. Resistive transition temperature T, in zero magnetic
field as a function of concentration of grains. For Josephson
coupling energy K comparable to k&T&&s of the individual
grains, the first percolating path shorts out the sample. For
E ~&kTB~, there is a more continuous rise of T, due to the
onset of long-range phase coherence to a maximum value of or-
der zK, where z is the coordination number of the network.
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for the destruction of long-range superconducting order.
For a single loop which is large compared to the coher-
ence length g, there are Little-Parks oscillations in the in-

duced supercurrent as a function of applied magnetic
field, and superconductivity is only destroyed at the criti-
cal field of the wire constituting the loop. ' In the per-
colation system of small strongly coupled grains con-
sidered by Deutscher, this critical field in turn depends on
the internal structure of these wires [links in the
Skal —Shklovskii —de Gennes picture' as shown in Fig.
2(b)] and in particular the nature of electron diffusion
along these links.

The effo:ts of diffusive electron transport on supercon-
ductivity have also been studied for bulk systems disor-
dered by impurities in which the elastic electron mean free
path becomes short compared to the bulk coherence
length (, for the pure system. ' The slow diffusive trans-

port of electrons leads to an enhancement of the effective
electron-electron repulsion in the Cooper pair leading to a
suppression of the superconducting transition tempera-
ture. The charging effects associated with small grain
granular systems may be thought of as an extreme case of
the impurity scattering effect. Recently, Jacobs et al. '

have suggested the possibility of a reentrant normal phase
in granular films dominated by such quantum fluctua-
tions.

Experiments on larger grain systems in which long-
range order inay be described by classical XY phase coher-
ence have focused largely on ordered two-dimensional ar-

rays '' In. thin granular films of this type, the London
penetration depth is long compared to the superconduct-
ing coherence length so that in the presence of an applied
field, the resistive behavior is dominated by phase slip in
the associated Abrikosov vortex lattice. Boysel et al. ,

'

however, have studied a disordered three dimensional
granular system consisting of micrometer-size Pb grains
immersed in a normal-metal host exhibiting-proximity-
effect induced superconductivity. Here fiux exclusion has
been observed to occur in their samples at temperatures
below that of the observed resistive transition and also
differences have been reported between field-cooled and
zero-field-cooled samples. It is the aim of this paper to
derive the superconducting properties of disordered
granular systems in such an intermediate regime consist-
ing of grains sufficiently large that charging effects may
be neglected yet sufficiently small that long-range phase
coherence is distinct f'rom the bulk superconducting tran-
sition of the individual grains.

The spin-glass phase which occurs in our model has a
physical interpretation in terms of the structure of loops
of the percolation network. At zero temperature, there is a
transition from an Abrikosov vortex lattice phase to the
glass phase when approximately one quantum of applied
magnetic flux penetrates an area gz. Near the percolation
threshold p„the effective coherence length j, is short
compared to the loop perimeter so that individual loops
respond to the applied field by generating tunneling super-
currents of magnitude inversely proportional to the loop
perimeter as in the Little-Parks experiments. ' Conse-
quently the large fluctuations in the sizes of contiguous
loops near percolation lead to a freezing in of the tunnel-

ing supercurrents along common links. There is complete
flux penetration on average but with strong local fluctua-
tions which decay as a power law with distance. Alterna-
tively, the glass phase may be thought of as the set of
frozen-in randomly oriented magnetic moments arising
from this random distribution of current loops. We now

describe how this picture emerges from a systematic
analysis.

dg„
iR = —h„P„—g K„„Q„.

dt
(2.1)

Here b,
„

is the BCS gap energy of the grain at site x andK„„is a hopping matrix element of the Cooper pair to a
nearest-neighbor grain at x'. Charging effects due to
quantum fluctuations are neglected by writing

(2.2)

where the density of Cooper pairs on each grain is a fixed
constant p and only the phase degree of freedom 8„is al-
lowed to fluctuate. In the absence of voltage differences
between the identical grains (static equilibrium) it is con-
venient to choose the zero of energy by setting b,„=O.The
expectation value of the Hamiltonian operator [Eq. (2.1)]
with respect to the state vector [Eq. (2.2)] yields the well-

known Josephson tunneling model. In the presence of a
static applied magnetic field, the hopping matrix elements
are inultiplied by the phase factor exp(iA„„)involving
the line integral

I

A„„=— f Adl (2.3)
0o

of the vector potential A between nearest-neighbor grains
in units of the flux quantum Po=kc/2e. The resulting
Hamiltonian (quantum expectation value)

H~ = —g K„„cos5„„
&x, x'&

where

(2.4)

(2.5)

is similar to that of a classical XY spin system in which
the gauge field acts as a source of frustration to phase
alignment. Here, a replica index a=1, . . . , n has been
added to the phase angles to facilitate averaging over the
disorder. For convenience we place the grains on a d-
dimensional cubic lattice of lattice constant a and intro-
duce a bond percolation model for the disorder: each K„„
is independently equal to K with probability p and zero
with probability 1 —p. A further randomness in bond
lengths is then introduced to better simulate a granular
material (see Fig.4). In the infinite London penetration
depth limit (as might be realized in an infinitesimally thin
granular film) the vector potential entering Eq. (2.3) is
precisely that of the applied field. More generally„di-

II. THE MODEL

We consider a model for a granular superconductor in

which the Cooper pair wave function at site x is described

by the tight-binding Schrodinger equation
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amagnetic screening currents induced by the applied field
generate additional fields so that the true vector potential
must be determined self-consistently. Elementary quan-
tum mechanics yields

J„„=—A' 'K„„sin5„, (2.6)

for the tunneling supercurrent between adjacent grains.
The addition of a replica index to A„„expressesthe fact
that this may vary from one realization of the disorder to
another. We will refer to the models with and without
electromagnetic fluctuations as model I and model II.

The thermodynamic properties of model I are governed
by the configuration averaged Helmholtz free energy

kiiT—[lnZ„]„wherethe square brackets denote a
quenched average over all possible realizations of the in-
tergrain Josephson coupling. The configuration average

[ ], may be carried out using the replica procedure:

FIG. 4. Bond percolation model for the granular material.
Grains are placed on d-dimensional hypercubic grid with 1attice
constant a, and the Josephson coupling energy K„„is K or zero
with probabilities p and 1 —p, respectively. A further random-
ness in the lengths of occupied bonds is depicted by means of
arcs with random curvatures so as to remove any spurious
periodicities arising from the underlying lattice.

[lnZ„],= lim —ln[Z„"], .
n~0 7f

(2.7)

Physical quantities such as the expectation value of the
tunneling current (2.6) may then be obtained by differen-

I

tiating (2.7) with respect to one replica of the vector po-
tential and then setting A to be the same in each replica.
Taking derivatives in two different replicas yields the as-
sociatixl current correlation functions:

kgT 52 „E,
(2.8)

Here & ) T denotes a thermal average, and the condensa-
tion energy entering the replica diagonal term is

tor in replica space with integer components conjugate to
the replicated phase 8=(8',8, . . . , 8"):

F,:[&K„„cos(8—„—8„—A„„,) ) T ], .

III. FIELD THEORY

(2.9)

H;„,= g B~e *P i,(x)P~(x'),
k~0

(3.4)

The disorder average is readily performed to yield an
effective Hamiltonian

H, rr ——g H;„,(5„„)
(x,x')

(3.1)
(3.5)

involving interactions between phase variables in different
replicas. Here, 5„„is the replicated gauge-invariant phase
difference Eq. (2.5) between nearest-neighbor grains.
Then,

oo
( 1)l e

8 =g v'pe(k ),
1=1 a=1

(3.6)

Expanding the logarithm in Eq. (3.3) it is possible to reex-
press the Fourier amplitude Eq. (3.5) as

[Z„"],=constX fD+e (3.2)

where

n

H;„,(5 )= —ln 1+uexp T g cos5
a=1

Here, u=p/(1 —p) and T=kiiT/K.
Following the method introduced by Stephen ' to treat

the random resistor network, we decompose this interac-
tion Hamiltonian into its Fourier components pi, (x)

ik8—=e * where k=(ki, k2, . . . , k„)is an n-component vec-

dg ik 8+lcos8/T
e

2

oo
( 1)l

u exp
1=1 I

(3.8)

In the low temperature limit the above integral may be
evaluated by steepest descents. To leading order in T and
in the limit n ~0,
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is a function only of the rotationally invariant quantity
k~= g",k . As in the diluted XF model considered by

Harris and I.ubensky, this symmetry is broken by

higher-order terms in T involving cubic invariants of k
sllc11 as g ik~.

It is convenient to regard the nearest-neighbor sum ap-

pearing in Eq. (3.1) to correspond to superconducting

grains placed at random near the lattice points of a d-

dimensional hypercubic grid of lattice constant a. If iden-

tical grains are placed at precisely such a set of points,
then the system possesses a fundamental periodicity as a
function of applied magnetic field even when the bonds of
the lattice are randomly removed. This occurs since all

closed loops in the percolating network (projected onto
one of the axes of the cubic lattice) have an area which is

an integer multiple of the fundamental area a2. It follows

that it is possible for an integer number of flux quanta of
applied field H to pierce all loops of the network whenev-

er Ha /$0 is an integer. This periodicity may be removed

by allowing the location of the grains to fluctuate ran-

domly about the actual lattice points of a periodic grid as
would be appropriate in a disordered granular material.
This periodicity is evident in the term exp(ik~A, , } ap-

pearing in the interaction Eq. (3A}. Setting VX A =H in

each replica, it follows that this interaction is invariant

whenever the flux fraction f=Ha i/0 is increased by an

integer. If on the other hand the link variable A„„is
given a small randomly fluctuating part and a further
average is performed, this periodicity is removed. This is
depicted in Fig. 4 by means of a diluted lattice of bonds
drawn with random curvature. It provides an interpreta-
tion of the continuum field theory limit which we now

proceed to consider.
In the continuum limit, the nearest-neighbor sum Eq.

(3.1) on the d-dimensional hypercubic lattice may be re-

placed by an integral. For lattice constant a, the leading
term in the gradient expansion for the interaction yields

Heff= k X 80p k X (3.9)

where we have used the notation:

f f d x

By introducing a source term it is straightfor-
ward to verify that the expectation value of the order-
parameter field Pi, is related to various moments of the
XF order parameter thermally and configurationally aver-
aged:

The second form follows from neglecting corrections as-
sociated with the gradient expansion of 8,~. Here, ()
denotes an expectation value with respect to the partition
function Eq. (3.2), whereas ()T and [ ], denote thermal
and configuration averages with respect to the original
unreplicated Hamiltonian. For example, (Pi o 0 o) is
the XF order parameter and (gi i 0 0) is the
Edwards-Anderson order parameter. » An expansion of
the rephcated free energy in terms of the fields fi, follows
by integration over the replicated variables P'(x). This is
facilitated by defining the Fourier transform

—gy eii(8
k

f y+
—it 8

(3.14)

(3.15)

where we have again used an abbreviated notation

f —= fd"Hl(2m)" The . summation in Eq. (3.14) is over

the entire n-dimensional hypercubic lattice in k space
with integer components and integration in Eq. (3.15) is
over the associated n-dimensional hypercubic "Brillouin
zone" defined by n&e &m—,

.a=i, . . . , n It fo. llows
that

(3.16)

where

(g„(x))=(8, P„(x))=d8„g(e ) . (3.13)
a=1

Here, the differential operator
H(fa)=ln f exp( —i)(a) . (3.17)

Q

2 0

'2

(3.11)
Here the absence of the k=0 term in the summation
yields the condition on the Fourier transform

A field theory may now be obtained by the Hubbard-
Stratonovitch transformation

eff D

(3.18)

The critical behavior in the vicinity of the percolation
multicritical point, as will be described shortly, is deter-
mined by expansion of Eq. (3.17). To fourth order in the
order-parameter fields this becomes

(3.12)

1 -4H'(Pe) = 4e We+ 4e+— —— —
2! 3! 4!

Since the operator 8,~ is Hermitian, the range of func-
tional integration here is the entire complex plane and

1 1-2
e i 4 + (3.19)
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+ —,
' y' f lp„,(x)y„,(x)y, ,(x)+ ' ' '

Here, the prime on the summation indicates that summa-
tion is only over fields with nonzero k: Pi, 0——0. The bare
mass of the field fb is given by ri, ——(2dBi, ) ' —1 and
ci ——a /4d. The instability to an ordered phase in the ab-
sence of an applied magnetic field is determined by the
locus of points for which ri, becomes negative. In the
low-temperature limit

rb ——(p, p)+b—Tk +O(T ) . (3.21)

In mean field theory the percolation threshold

p, = 1 —exp( —1/2d) and b is a positive constant which
depends on p and d.

Combining Eqs. (3.19), (3.16), and (3.12} yields the re-

quired continuum Landau-Ginzburg field theory for the
granular superconductor:

[Z."]=fD~" ', (3.20a)
'2

27'
H, = , g—'p„(x)rb c,—V — A k~

40

Current correlation functions may likewise be obtained by
differentiating the replicated partition function with
respect to different replicas of the vector potential and
afterward setting A = A, the physical value, in each re-
plica. Introducing the spatial Fourier transforms J; (q)
and A; (q) of the current and vector potential respectively,
we define a replicated wave-vector-dependent helicity
~odulus

, 5(J; (q)&

5AJ~( —q)
(3.23)

Comparison with the discrete version Eq. (2.8) yields

yij (q) =y'J '(q)5 p+y~j"(q), (3.24)

where

The tunneling supercurrent expressed by Eq. (2.6) for
the lattice model has a thermally- and configuration-
averaged expectation value [(J;(x)&T], in the continuum
version (model I) given by

(J; (x)&=— ln[Z„"]„c2= . (3.22)
2~0'

ci 5A, (x) $0

y,',"(q)=5JE,/1' (kb T} —'[(J,(q)J-J( —q) & T —(J~(q}&T(J, ( —q}& T], , (3.25)

y"'—=«T) 'I[&J(q)& &J, ( —q}& ],—[(J(q)& ],[(J,( —q)& ], I . (3.26)

Associated with each configuration of occupied bonds,
there is a physical helicity modulus:

5&J,(q)&,
y;, (q)= (3.27}

A —q

In the language of replicas, the average of y;i over bond
configurations measures the response of one replica of the
current to a replica-independent vector potential

5(J, (q) &

=c2 gyj ~ (3.28)
J

It follows that [y,j(iI)], is simply c2y';J '(q} since the con-
tributions from yI~ vanishes in the n~0 limit. The
response to a uniform vector potential Y~J.

—:lim ~[y,i(q)], is the quantity studied previously by
others in numerical simulations.

Fluctuations in the magnetic field associated with in-
duced currents (inodel II) may be incorporated by the ad-
dition of a magnetic energy term and an integration over
A (x):

[Z"],= f DA [Zz],exp —g f (VXA )

where g—:(8irpokiiT) ' and po is the bare magnetic per-
meability of the composite. In this model, y,j (q) becomes

ci '5(J; (q) &/5(A~( —q) &

and contains the usual local-field corrections to Eq. (3.23).

IV. MEAN-FIELD PHASE DIAGRAM

An approximate mean-field phase diagram as a func-
tion of temperature T, concentration of grains p, and ap-
plied magnetic field H may be obtained by considering
the locus of points for which the quadratic part of H„
develops zero eigenvalues. Setting Vg A =poH in each
replica, the spectrum consists of a set of Landau levels in
which the effective charge or gauge coupling is propor-
tional to

sb=— g k
a=1 (4.1)

At small finite temperature the lowest eigenvalue (Landau
level) for a given k is

—
z irpoHa i

e&=p~ p+bTk + —
I
s

2dpo
(4.2)

I

It determines the mass of the replicated photon field
(Hig g's mechanism):

DJ~= (5A; (q)5A,~( —q) &

=k~T[(4npo) 'q 5 i';J+czyj~(q)] ', (3.30)

where 5A; (q) =A; (q) —(A; (q) &and the right-hand side
is the inverse in both the Cartesian ij and replica aP in-
dices.
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p,oHsg~=2dgo/ir (p &p, ; T=O) . (4.3)

Here gz is the percolation correlation length which in
mean-field theory is given by g~/a= ~p

—p, ~

" with
v=1/2. However, the charge neutral fields (ss ——0) of
which the Edwards-Anderson pi, o o or
[(er' )z(e ' )T], dominates at finite temperature are
unaffected by the applied field H. This suggests the iden-
tification of Eq. (4.3) with a transition from macroscopic
superconductivity to spin-glass order. Higher order terms
in the Landau expansion Eq. (3.20), however, introduce
couplings between the glass (si, ——0} fields and fields for
which s~+0. These interaction terms all have the proper-
ty that the sum of the replica vectors k labeling the
order-parameter fields gi, is zero. It follows that in any in-

For T & 0 and finite applied field, the lowest eigenvalue is
associated with modes for which k and ~si ~

are least,
namely k=(1,0,0, . . . ,0} and k=(l, —1,0, . . . , 0) as
well as the associated replica permutations. At T=0,
ei, o, . . . , o is degenerate with all modes for which

~
sq

~

=1,
and ei, o o is degenerate with all modes for which

si, ——0. In this limit the XI'order parameter Pi o o ex-
hibits long range order for applied fields lower than a crit-
ical field Hs corresponding to the penetration of approxi-
mately one quantum of flux through the typical loop of
the percolating network:

teraction of order m, if m —1 fields have the property
si, ——0, then the remaining field must also satisfy this
property. Since there is no linear coupling of the glass
fields to a mode with nonzero s~, it follows that for H
larger than the critical field Hs, the existence of
Edwards-Anderson order does not induce order in modes
for which si,&0 but only those for which si, ——0. The in-
teraction terms affect only the precise location of the su-

perconducting to spin-glass phase phase boundary. More
generally, at finite temperature and fixed H &0, the sur-
faces ei o o=O aild ei i o o=O determine, respec-
tively, the transitions from the normal to the Abrikosov
and spin-glass phases, whereas the intersection of these
two surfaces defines a line of multicritical points where
the superconducting, spin-glass, and normal phases meet
[Figs. 1(a) and 1(b)].

V. LANDAU-GINZBURG EQUATIONS

The detailed properties of these phases may be obtained
in mean field theory by saddle-point evaluation of the
functional integral Eq. (3.29). Minimization of the action
with respect to 1t~(x) and A (x) leads to the analog of the
continuum Landau-Ginzburg equations in replica space
for the granular system:

2'
2&l

1'ir —c i V — Asg
4o

4,(x)+-,' g y„,(x)lt,(x}=O.
q+O, k

(5.1)

As a first aPProximation we consider solutions to Eq. (5.1) which preserve replica symmetry, i.e., A =A. This vector
potential is in turn determined self-consistently by

(4iruo} 'VX(V&&A)=(poc) 'J = —ic,—gs„1(„V—" ~~o 0o
(5.2)

Here, c is the speed of light, cq =ma idio, and gi, and
A are understood to represent equilibrium expectation
values of the respective fields. We have also made use of
Maxwell's equation to identify Eq. (5.2} with the macro-
scopic tunneling supercurrent J. We now discuss three
distinct types of solutions to these equations apart from
the trivial one gati,

——0, V X A =poH describing the normal
phase.

(i) For sufficiently weak applied fields (H & H, i) as will
be clarified shortly, the energetically favorable solution is
that for which A=O (Meissner effect in the London
gauge) and fi,(x) is spatially uniform and precisely that of
a randomly diluted XI' ferromagnet. As in usual super-
conductors, the magnetic field is screened from the interi-
or of the sample by surface supercurrents which decay ex-
ponentially from the sample boundary on the scale of the
London penetration depth A,. %riting

g„=
~ 1(i, ~

exp[isi, g(x)],
it follows that the superfluid velocity

In the London gauge (V A=O), the phase P remains uni-
form and from Eq. (5.2) it follows that the supercurrent is
given by

2
J= —p, A,'mc

where

(5.4)

(5.5)
T 2

ps =c4™po"so
Here c4 ——(da ) 2ma /A', and p, is the macroscopic su-

d —1 2 2

perfluid density. The penetration of the vector potential
on a scale I, leads to suppression of modes iti, for which
si&0 as may be seen from the London form of Eq. (5.1)
in which the quantity in square brackets becomes
[rq+ c i (2m Po

'
) s q A ]. In the absence of A, the solution

1(z is symmetric under reflections k ~—k . For small
A, the breaking of this symmetry may be treated in per-
turbation theory and so

(5.3) p, =c4polim —g k2
~

g„o
~

2 —O(gi) .
T

n +0 Pl ] 0
(5.6)
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The leading term here, involving the reflection symmetric
XI' ferromagnet solutions flap, describes the superfluid
density in the interior of the sample whereas higher-order
terms describe the suppression of p, near the boundary.
The critical current for the destruction of long-range su-

perconducting order may likewise be determined by max-
imizing Eq. (5.4) with respect to A using the expansion
(5.6}. In the weak field limit (A —+0), the implicit depen-

dence of pk on A may be neglected, and the divergence of
the London penetration depth A, -p, ' is governed by
the scaling behavior of the zero-field (H =0) solution:

4k'-9 p. ) f—(Tk'/(S p. ) —'» (5.7}

where the scaling function f(x) is of order unity for x & 1

and vanishes for larger x. In mean-field theory, the
thermal crossover exponent (('iT ——1, and the presence of a
cubic term in the Landau expansion [Eq. (3.20)] yields

P= l. For H=0, an e expansion about six dimensions

yields ((iT ——1+e/42. In the low-temperature limit ( T~0)
the sum in Eq. (S.6) may be replaced by an integral:

p, -c,(p —p, )2)'lim —I d"kTk f (Tk /(p —p, ) )
n-+0 Pl

(5 S)

A rescaling of the integral yields A, -(p —p, )' where

t =2P+PT 3 is ide——ntical to the mean-field conductivity

exponent for the random resistor network. Below the

upper critical dimension d, =6, c, —~p
—p, ~

""so that
I

the exponent for p, is (d —2)v+PT which reduces to 3 at
d =6. A more detailed treatment of this and other seal-
ing results will appear in a forthcoming paper. The effec-
tive superconducting coherence length g„determined by
the mass of the field l(& p p, is sliilPly g~ in the zero-
temperature limit. It follows that the ratio
A. /P- ~p

—p, ~

" "' diverges near threshold for d &3
(t =3 and v= 1/2 in mean field theory and t =1.S5 and
v=O. SS in three dimensions). Thus sufficiently close to
p„the granular medium behaves like a type-II supercon-
ductor. As in a usual superconductor there is a critical
field

H, i
——ink, /gz-p, ~p —p, ~

'
4irA,

(5.9)

above which the Meissner phase becomes unstable to the
formation of an Abrikosov flux lattice [Fig. 1(a)].

(ii) In the zero-temperature limit„ the structure of an
isolated vortex may be obtained by considering solutions
to the Landau-Ginzburg equations of the form:

4k=kp fk(&)e (5.10)

where r and 8 are cylindrical coordinates (d =3) mea-
sured from the vortex core and mk ——m k is an integer
winding number for a single-valued function l(k. As in a
usual vortex, we take A=A(r)8 with A (r)-rh(0}/2 for
small r and h(0) the peak magnetic field in the core.
Equation (5.1) then becomes

fk+ g~
— r2 1 d dfk

'2

p q~p, k
(5.1 1)

A necessary condition for a solution is clearly that
m k+q ——m k+ m q for all k and q. Defining
vf =—vip p i p p with "1"appearing in the ath en-

try, it follows that mk ——g",k~m . The only replica
symmetric solutions are of the form mk ——ms& where the
integer m corresponds to the number of flux quanta con-
tained in the vortex core. A straightforward power-series
solution for the radial function yields for small r:

( x)l i= (&,o, . . . ,o)
k

!
8

————(y„(m)I

f&(~)-» ' [I—(~/g„)'+ ],
where the healing length of the vortex core

2(2+st )

1 + I (0)y
—lg2 2 ~P

(5.12)

(5.13)

In obtaining Eq. (5.13) terms which vanish as n ~0 have
been neglected, and the latter form follows froin the fact
that h(0)-H, i —~p —p, ~'. It is also evident from (5.12)
that modes for which si, ——0 retain their bulk value for
small r, suggesting that vortex cores retain spin-glass type
order in the low temperature limit (Fig. 5).

(iii) For applied fields H & Hs, the energetically favor-
able solution to the Landau-Ginzburg equations is that in
which complete flux penetration occurs on average
(VX A=@,pH) and ((),=0 unless si, ——0. In the glass phase,

FIG. 5. Structure of an isolated vortex containing one flux
quantum in the low-temperature Abrikosov phase. Here r and 8
are cylindrical coordinates measured from the vortex core. The
magnitude of the XF order parameter Q, k=(1,0, . . . , 0} rises
continuously from zero to its bulk value

~
Q( ao )

~

over a heal-
ing length gi, . Inside this core region, there is a frozen-in distri-
bution of randomly oriented tunneling supercurrents charac-
teristic of the spin-glass phase. For r & pi, the magnetic field is
screened by circulating supercurrents determined by the macro-
scopic superfluid density p„and the magnetic field decays ex-
ponentially as in more familiar vortices.
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the equilibrium macroscopic superfluid density as defined

by the London equation [Eqs. (5.4) and (5.5)] is identically
zero. The mass tensor of the replicated photon field be-

comes

y;,P=5(; g kakp I fi I' ~ (5.14)

In obtaining the n ~0 limit above we have used the fact
that si, ——0 in the summation (5.13). It follows that
y;~p(q)=5;Jyg is independent of a and p and the glass
"stiffness" coefficient

In the Meissner phase, the reflection symmetry of fq
under k ~—k ensured that this tensor was diagonal in
the replica indices aP. As in the discussion of the super-
fluid density the penetration of A breaks this symmetry.
If, however, the solution ij)i, remains symmetric under re-

plica permutation, we may replace k kp in (5.14) by the
symmetrized form

'5 pk +(1 5~—p)[n(n —1)] '(si, —k ) ~ n 'k
n~0

(5.15)

randomly oriented distribution of frozen-in tunneling su-
percurrents as indicated by the nonzero value of y jn the
n~o hmit. These frozen supercurrents produce strong
local fluctuations in the equilibrium magnetic field despite
the fact that their random orientation prevents the oc-
currence of any global Meissner effect. The familiar
Higg's mechanism is modified by the glass condensate
which produces interactions between photons in different
replicas. The photon propagator Eq. (3.30) for the
replica-symmetric condensate becomes

(5A; (q)5AJP( —q)) =5~jkpTM p',

vrhere the matrix

M((p=(4rrpo) 'q 5((p+yg, yg =ygci

(5.17)

(5.18)

now acquires off-diagonal elements independent of a and
P. Clearly M~p has one eigenvector n '~ (1,1, . . . , 1)
with eigenvalue q /(4rrpo}+ n yg and a degenerate set of
( n —1) eigenvectors orthogonal to this direction in replica
space with eigenvalues q /(4m(uo). It follows that

po 1
M~p = 5~p+ —1

1+n (4n poyg )q

yg= „gk
I
|('

I

——[ I &J(q)&r I ] (5.16) (5.19)

The latter identification with the Edwards-Anderson ex-
pectation value of the tunneling supercurrent shows that

yg must be negative. This is most easily seen by consider-
ing the vicinity of the spin-glass to normal transition
where only the n(n —1) order parameters fi,
dominate the sum (5.16). Analytically continuing n-+0
yields the required physical result. As in the normal and
Meissner phases the net macroscopic supercurrent in
equilibrium [(J)r], is zero. However, unlike these more
familiar phases, the spin glass state is characterized by a

I

In the n~o limit, all replica photons become massless
and

(5A( (q)5AJp( —q)) = 5,J
n —+0 q

4'lTPp
X 5 p+, Iygl (5.20)

Here we have made use of the fact that yg is negative in
the n ~0 continuation. In terms of the fluctuating part of
the magnetic field 58(q) =iq)&5A(q), we obtain

&58 (q) 58P( —q) &
=—5.p[& ~

58(q) )'),],+(1-5.,)[
~
&58(q) &, ~

']. ,

=4nigok T[5 p+4m p i y i /q ] . (5.21)

Thus in the glass phase, there is flux penetration with a uniform nonzero [(8)r ], everywhere but with strong local fluc-
tuations of the amplitude proportional to

~ yg ~

leading to power-law (x ' ') decay in both [(58(x}58(0))r], and
[&58(x)&, (58(0)&,],.

VI. BEHAVIOR NEAR THE THERMAL TRANSITION

In the vicinity of the thermal transition, the expansion of the replica Hamiltonian H, [Eq. (3.20b)] may be truncated
by retaining only those modes gi, which have appreciable amplitude. From Eq. (4.2} it is evident that these are modes for
which Tk and

~
sq

~
(in the presence of an applied magnetic field) take on the smallest values. Using the notation

g~(x}=/~0 o i 0 0~ where 1 appears in the ath entry and Q~p=g~i 0,0 o~ where I and —1 appear in the
ath and Pth entries respectively, the replica Hamiltonian may be expanded to third order as

2&lH„=g P (x) p, —p+bT ci V — A (—x)
u=l 40

(}( '(x)

+ g f Q~p(x) p, —p+2bT ci V — [A—(x)—AP(x)]
~P

+ g f g (x)Q p(x)Pp(x)+ —,
' f TrQ3(x) +

a+P
(6.1)



SA3EEV JOHN AND T. C. I.UBENSKY

In the vicinity of the macroscopic superconducting to normal phase transition, cubic and higher-order terms in the spin-
glass fields Q ii ——Qp may be neglected. In this Gaussian approximation, explicit functional integration over the
n (n —1) massive Q p fields produces a quartic coupling among the fields g . In the long wavelength limit this becomes

H, Ig I =——ln JDQ pe

n

= I g 1( b(T T—(p)) —c, V — A
a=1 0

2 2

+ ~ ~ ~ (6.2)

Here T~(p)
—= (p —p, )/b is the mean-field transition tem-

perature in the absence of an applied field. This is precise-
ly the form of the free energy that would be obtained
from a replicated Landau-Ginzburg model for a disor-
dered bulk superconductor with a local T, which fluctu-
ates as a Gaussian random variable from point to point in
space. Averaging over the random transition tempera-
ture yields a term of the form —( g",

I g I

') . Addi-
tional terms of this type arise also from higher-order
terms in the expansion (3.19). It follows from (2.7} that
the physical free energy F (at the zero loop level) is related
to the replica Hamiltonian by

F= lim H„I(g~—}I,n-+0 n
(6.3)

where the field variable 1{ has been replaced by its equili-
brium expectation value. For a replica-symmetric solution
( A ) =A(x} and (tP }=f(x), this free energy takes pre-
cisely the form of a bulk Landau-Ginzburg superconduc-
tor since the last term in Eq. (6.2} is O(n ) and does not
contribute as n~O. Physically, such an identification
arises since near the thermal transition, the effective su-
perconducting coherence length g, is very long compared
to the scale of inhomogeneities gz of the granular materi-
al.

For sufficiently large applied magnetic field (and
replica-symmetric vector potential), it is the Q p field
which becomes critical at the thermal transition whereas
the f fields remain massive. In this case, the terms in-
volving g~ may be neglected in comparison to those in-
volving Q p, and the expansion (6.1) becomes

H„=g I Q~p(p, —p+2bT ciV )Qp-
a~P

+ —Tr 3+—Tr 2 ——Tr 4+ . . 6 4
X 8

describing the thermal transition from the normal to
XF—spin glass phase. Here the n )& n matrix order param-
eter Q ii is the analog of that identified by Parisi as
measuring the overlap between two states in different re-
plicas. For a replica symmetric solution this reduces to
the familiar Edwards-Anderson order parameter
[{e' }T{e ' }T],. The relevance of replica-symmetry
breaking solutions in the present context remains an open
question for future investigation. We note, however, that
the qualitative features of the spin-glass phase which we
have presented within the framework of the replica-
symmetric ansatz remain valid in general. Physically, the
replica-symmetric ansatz corresponds to the assumption
that all possible local miniina of the free energy in the

space of spin-glass states have the same macroscopic
properties. Broken replica symmetry in the present con-
text would correspond to the existence of a spectrum of
local minima with different values of the stiffness coeffi-
cient

I ys I
-[

I {J)T
I ], measuring the amplitude of

frozen-in tunneling supercurrents. Also, the fluctuating
part of the magnetic field is related to the induced tunnel-
ing current by

q X&B(q)=(4ir)/c J(q) .

It follows that

[I (58(q})TI'], =q '(4n/c)'[{J(q)) I'], (6.5)

leading as before to power-law-decaying spatial fluctua-
tions in the magnetic field with a spectrum of amplitudes
determined by the magnitude of frozen supercurrents in
the various spin-glass local minima.

VII. DISCUSSION

In summary, we have shown that a transition from
macroscopic superconducting to spin-glass order occurs in
a randomly diluted Josephson tunnel junction network by
the application of a magnetic field corresponding to ap-
proximately one quantum of flux per typical loop of the
system in the node-link picture of percolation. This may
be experimentally realizable in a granular material of in-
termediate grain sizes and coupling strengths: The grains
must be sufficiently large and strongly coupled that quan-
tum fluctuations may be neglected yet sufficiently small
and weakly coupled that the XF phase coherence between
grains is distinct from the BCS transition of the grains
themselves. The glass phase was obtained in an expansion
about the percolation threshold p, . As p~p, from above,
both the perimeter of the loops and the fluctuation in
their areas becomes very large. Consequently the glass
phase in our model occurs for applied fields sufficiently
weak that the gauge-invariant phase difference between
adjacent grains is very small. In this limit it is sufficient
to retain only the leading term in the gradient expansion
for the phase difference when passing to the continuum
limit. %'e conjecture, however, that the glass phase is
more fundamental in nature and that the percolation limit
simply provides an elementary mathematical realization
of a system of coupled loops of widely fluctuating areas.
Recently, Ebner and Stroud have suggested the possibili-
ty of spin-glass behavior in random clusters for which the
typical loop of the random network has an area compar-
able to a where a is the intergrain spacing. In this limit
a gradient expansion would be inappropriate. Neverthe-
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less, the condition for the onset of glassy behavior is that
Ha -Po at zero temperature. It should be emphasized,
however, that disorder plays an essential role in the for-
mation of the glass phase which is characterized by an
essentially white-noise spectrum of tunneling currents:

f I
&J(q) &r I ) —l7's I

independen«f q for ar»trariiy
small q leading to power-law decay of spatial fluctuations
in the magnetic field. This is distinct from recent studies
on ordered Josephson junction arrays in the presence of an
irrational or high-order rational number of applied fiux
quanta per fundamental plaquette which may appear
glasslike upon rapid quenching of small samples.

We have shown that in the glass phase the equilibrium
macroscopic superfiuid density which measures the
current response to a zero-frequency vector potential
(London gauge) is identically zero. As in more traditional
magnetic spin-glasses, as discussed by Sompolinski
et ttl. this may correspond to the existence of a finite
lifetime of spin-wave excitations due to scattering or tun-
neling into nearby local minima in the spin-glass configu-
ration space which are separated by small energy barriers.
Dynamical properties such as the ac conductivity in the
glass phase would provide a valuable probe of the nature
of barriers separating metastable states, the associated dis-

tribution of relaxation times, and the possible appearance
of macroscopic superconducting behavior on time scales
short compared to these relaxation times. It has recently
been suggested that such relaxation processes would fol-
low an Arhenius law with a thermal attempt frequency
—10' sec ' and the scale of typical barrier heights being
set by the Josephson coupling energy. The analog of
remanence in magnetic spin glasses is also likely to appear
for the spin-glass superconductors. For example, if the ap-
plied magnetic field is suddenly turned off the frozen-in
tunneling currents associated with the glass may decay
slowly with time at sufficiently low temperatures.
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