
PHYSICAL REVIEW 8 VOLUME 34, NUMBER 7

Percolation at a surface: The surface fractal dimension
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It is shown that the fractal dimension which characterizes the intersection of percolation clusters

with the lattice surface at the critical point may be expressed in terms of the bulk fractal dimension

and critical exponents y, v, and y& at the ordinary transition. Estimates of this quantity are ob-

tained from exact enumeration data for the triangular and fcc lattices.
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df here is defined by
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where S is the number of sites belonging to a dominant
cluster, contained in a box of side l. The equality (1) fol-
lows immediately if it is assumed that a renormalization-
group transformation which preserves the generating
function

6= ge '"P, (3)

The concept of a fractal dimensionality has, in recent
years, assumed considerable importance, in part because
of the large number of naturally occurring structures
which can be characterized by one or more fractal dimen-
sions. The importance of this concept in critical phe-
nomena and its relation to conventional critical exponents
was first pointed out by Stanley, who applied the concept
to percolation clusters. In the case of percolation the
fractal dimension df is equivalent to the field
renormalization-group exponent yI„

where P„ is the probability of a cluster with exactly s

sites, si of which are in the surface. hi may be interpret-
ed as an external field that couples only to the surface
sites. We assume that the way the number of surface sites
of a dominant cluster scale with the side of the box con-
taining them is determined by a surface fractal dimension
d, such that

SSl ccl * . (8)

Following the same argument used to obtain (1) and
evaluating the surface renormalization group exponent

yh =in(t)hi/t)hi)/lnb,

we obtain

The above argument is now extended to the case of per-
colation in a semi-infinite system. In this case the gen-
erating function is written

—a —a, $,
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for the probability that a cluster of exactly s sites occurs,
P„can be constructed (6 is the analog of the free energy
and h the analog of the external field in magnetic sys-
tems ). At their fixed-point values the parameters which
determine P, are invariant under the transformation and
the preservation of 6, then implies

h's'=hs

fh, = $ (10)
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To relate d, and df we note that yh and yh, are related to
the correlation-length exponent v, bulk gap exponent 6,
and surface gap exponent b, i at the ordinary transition
by4, 5

(where primed quantities are those obtained after the
transformation). If the length-rescaling factor of the
transformation is b, then (2) implies

s'=sos f .
d

(5)

3'h, =~1~& ~ (1 lb)

The two surface mean-cluster-size exponents y& and y»
are related to the gap exponents by

From (4) and the definition of yh,

yt, =in(t)h'/tlh)/lnb,

71 f11 ~ ~l

(6)
and to the bulk mean-cluster-size exponent y by

(12)

one obtains (1). [The derivatives in (6) are evaluated at the
fixed point with h =0.]

3'+&=2'V& —X~i .

Combining Eqs. (10)—(13) and Eq. (1) one obtains

(13)
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(14)

The significance of (14) is that it gives a direct geometri-
cal interpretation to the difference between the exponent

y, which characterizes the divergence of the mean size of
clusters attached to the surface as the critical point is ap-
proached and its bulk (clusters not in contact with the
surface) counterpart. We see from (14) that the difference
in these two exponents is a measure of the difference be-
tween the surface fractal dimension d, and df —1, two
geometric properties which would be equal if the percola-
tion clusters were compact structures with the Euclidean
dimensions of the space in which they are embedded.

If the bulk properties y, v, and d, are known, it
remains only to determine y&. Previously, estimates of y,
have been based on exact enumeration data for the tri-
angular and face-centered-cubic (fcc) lattices.

Here we give improved estimates for yi for bond per-
colation on the triangular and fcc lattices. The improve-
ments come from extensions of the low-density series for
the surface mean cluster size

X,= QC.p" (15)

by one term ( C» ——812 716) for the triangular lattice and
two terms (Cs ——36992550, C9 ——318 618041) for the fcc
lattice, and the use of the Baker-Hunter method of
analysis to allow for confluent singularities. [p in (15) is
the probability that a lattice bond is occupied. ]

g, is expected to diverge as p approaches its critical
value from below according to
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tion due to the uncertainty in p, .
In the case of the triangular lattice p, is known exact-

ly" to be

p, =2sin =0.3473 (triangular) .
18

FIG. 1. Estimates of 1/yl, for various trial values of p„
from [X/M] Pade approximants with 8&N+M &9. Arrows
indicate that a Pade approximant pole lies outside the range of
the diagram.

Xi-(p, —p) '(1+ ) . (16) Using this value of p, in the Baker-Hunter method, we es-
timate

In recent years several authors have demonstrated that
confluent singularities due to nonanalytic corrections
[contained in the ellipses of (16)] must be allowed for in
analyzing series of this type. The Baker-Hunter method
constructs an auxiliary function from I& which has a sim-
ple pole at 1/y& and in which the remaining confluent
singularities in Xl, only gives rise to poles further removed
from the origin. 1/y& may then be estimated from a Pade
approximant analysis of the auxiliary function.

The value of p, is required as input in the Baker-
Hunter method. Since this is not known exactly for the
fcc lattice, we used a number of trial values in the range

p, = [0.1185,0.1205]. As for other series analyzed by this
method ' the higher-order approximants show an irn-
proved convergence for a relatively small range of p,
values (Fig. 1). Estimating p, from this region of best
convergence we obtain

0 l&965—0oooio (fcc)

in good agreement with the estimate p, =0.1196+00~~21

obtained from an analysis of the corresponding bulk series
for which one more term is available. '

The corresponding estimate of y& for the fcc lattice is

y&
——1.28+0.03 (fcc),

where the error bounds represent only the variation over
the approximants shown in Fig. 1 and include the varia-

Our present results for y& are consistent with these values
as are previous estimates of y (Ref. 10) and v (Ref. 13),
and we adopt them to calculate d, . It is well known that
using the above values of y and v, the scaling relation

b, =(dv+y)/2, (17)

y, =2.07+0.03 (triangular) .

In an attempt to test the method by which p, was deter-
mined for the fcc lattice, we varied the value of p, for the
triangular lattice around its exact value. However, there
is no significant change in the degree of convergence for
the trial values of p, in the range [0.3469,0.3476]. A
similar result was found for the bulk series for this lattice.
This may indicate that longer series for this lattice are re-
quired to obtain convergent results from the Baker-
Hunter method and, hence, the rather wide error bounds
on y, (which again reflect only the variation over the
higher-order approximants used) despite p, being known
exactly.

We now return to the calculation of d, . For two-
dimensional systems the exponents y, v, and y& have been
calculated by methods which assume invariance properties
of the model under a conformal transformation, but are
otherwise exact. ' These methods give
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where d is the dimension of the space in which the clus-
ters are embedded, and Eqs. (1) and (11), one obtains the
bulk fractal dimension for d=2

df ———„(d=2) .

Using this value of df and the above values of y, yi, and
v in Eq. (14) gives the surface fractal dimension for d=2

For the case 1=3 we use the estimate obtained from
our analysis for yi and previous estimates of y for the fcc
lattice

y = 1.74+0.03

and v for d=3 (Ref. 14),

v=0.88+0.02 .

From these values of y and v we obtain the bulk fractal
dimension

df=2. 49+oo4 (d =3),

Our estimate of yi and these values for the bulk quantities
gives

d, =0.97+0.11 (d =3) .

In conclusion, we have estimated the fractal dimen-
sionality d, which characterizes the intersection of per-
colation clusters close to criticality (at the ordinary transi-
tion) and the surface of the semi-infinite Euclidean space
in which they are embedded for d=2 and 3. In addition,
it is trivial to show that for 1=1, y~

——y=l and, hence,
d, =(df —1)=0. At d=6 we expect y, v, and yi to
achieve their mean field values' so that at d =6,
d, =(df —1)—1, and first-order corrections in e=(6—d)
to this mean-field result can be calculated from the e ex-
pansion for these exponents'6'

(df —1)—d, =1—e/7 .

These results, together with the above estimates for d=2
and 3, indicate the difference between df —1, and d, in-
creases with d for 1(d (6. In fact, this reduction in d,
below (df —1) is due purely to the reduction in the con-
nectivity when the space is cut by a surface which cannot
be penetrated by the percolation clusters. To see this con-
sider a (d —1)-dimensional plane which passes through
the bulk space. Such a plane passes through the clusters
but does not disconnect the parts of the bulk clusters it in-
tersects. This is the special plane problem of Ref. 5 (with

pi p) and in this case yi ——y. Thus the intersection of a
bulk cluster with a ( d —1)-dimensional plane (which does
not disconnect the two parts of the cluster which it passes
through) is (df —1) for any Euclidean dimension d (in the
special plane problem yi is the exponent for the mean size
of clusters which are in contact with the special plane).

Note added: Since submitting this manuscript for pub-
lication, the authors have learned of a paper by Christou
and Stinchcombe' in which they discuss the surface frac-
tal dimension for percolation. These authors express the
surface fractal dimension in terms of the high-density ex-
ponents P and Pi, and conclude that there is no numerical
work available to confirm their qualitative conclusions
about the importance of the surface as lattice dimen-
sionality increases. However, the relationship for the sur-
face fractal dimension given by these authors is easily
shown to be equivalent to our Eq. (14) by using the scaling
relations of Ref. 5. (The high-density surface exponent Pi
referred to in Ref. 18 has been estimated by Monte Carlo
methods in two dimensions. ' )
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