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%'e present extensive results from a computer-simulation study of a kinetic growth model for
radical-initiated irreversible gelation. Lattices as large as 100X100X100 were used to examine
polymerization of a system of tetrafunctional and bifunctional monomers with initiator concentra-
tions cl, ranging from 3&10 ~ to 3)(10 . The cluster-size distribution shows unexpected oscilla-
tions which become increasingly pronounced as el~0. The scaling properties of the cluster-size
distribution cannot be described by simple droplet scaling theory, and we propose a generalized form
for the scaling. The bulk properties show critical exponents which are independent of cl and identi-
cal to percolation values within the errors. The amplitude ratio C /C+ is not independent of cl.
The backbone of the largest cluster at the gel transition is also investigated and its fractal dimension
is found to be distinctly larger than that of a random percolation cluster at p, .

I. INTRODUCTION

The formation of an infinite macromolecule (gelatian)
has been investigated theoretically for many years now.
The earliest description of this sol-gel transition was pro-
vided by Flory' and Stockmayer who used a very simple
yet effective model involving percolation on a Cayley tree.
de Gennes3 and Stauffer4 later drew the analogy between
gelation and critical-point behavior and suggested that
percolation on a real lattice might provide a more realistic
description of the sol-gel transition. The qualitative
behavior of these models is similar but the critical-point
exponents are quite different. More recently, Herrxxiann,
Landau, and Stauffer (HLS) found that a realistic model
for addition polymerization (a specific kind of gelation)
introduced by Manneville and de Seze seemed to be in a
different universality class than percolation. This new
universality class, characterized by the same exponents y
and P as percolation but by a different ratio of critical
amplitudes, seems to be due to the kinetic nature of this
problem as compared to the static description of standard
percolation. The relevance of the kinetic aspect for this
problem of gelation puts the work that we want to report
here into the general context of growth models —a subject
of high current interest.

Addition polymerization is the mechanism by which
maeromolecules are formed through the cross-linking of
linearly growing polymers. At some time in the growth
process a network of cross-linked chains that spans the
whole system might appear. This appearance of an infin-
ite macromolecule (gel) is the phase transition that we
want to study in some detail by computer simulations us-
ing a model on a lattice.

The individua1 linearly growing polymer or walk al-
ready has interesting kinetic properties that are discussed
in recent publications. ' Growing walks and diffusion-
limited aggregation" (DLA) are the two most-studied

one-cluster growth mechanisms and the best easy-to-
define models showing the essential nontrivial features of
growth. The study of the attaching of many clusters ag-
gregating after diffusion, ' ' i.e., the many-cluster ver-
sion of DLA, yields interesting behaviar in the cluster-size
distribution' and seems to explain some caagulation phe-
nomena of the type of palycondensation but shows an in-
finite gel time. ' In a similar spirit, addition polymeriza-
tion as described in this paper is the many-cluster version
of some kinetic growth walks.

In the next section we shall describe the model and
simulation method as well as the theoretical foundation
for the analyses used. Section III contains results and dis-
cussions and in Sec. IV we present our conclusions.

II. BACKGROUND

A. Model

The model which we have studied is almost identical to
that used by HLS and was described in Ref. 5. Monomers
are placed randomly on the sites of an L XL XL simple-
cubic lattice whose opposite faces are connected by
periodic boundary conditions. These monomers may be
tetrafunctional with concentration c„bifunctional with
concentration cb, or zero functional (solvent) with concen-
tration e, . The concentrations must obey the constraint

Ct +Cb +Cs

A number nt of initiators are also placed randomly on the
lattice. Historically, the concentrations of iriitiators ct
has been given in terms of the number of possible bonds
in the system, and hence nI ——3cII. . These initiators bind
to a monomer thus reducing the monomer functionality
by one. The initiators saturate, opening up a double bond
within the monomer on that site, 1eaving a radical. Sites
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having a radical are called active centers and they can
then bond to a nearest neighbor.

8. Simulation method

%e have used a technique which begins by randomly
choosing an active center. %'e then pick a nearest-
neighbor site to this active center and attempt to form a
bond between them. If this nearest-neighbor site is al-
ready fully bonded, we choose another active center and
repeat the process. If the nearest-neighbor site is not al-
ready fully bonded, the active center jumps to this site
forming a bond in the process. If two active centers bond
together, they annihilate; when all of the nearest neighbors
(of an active center) are fully bonded the active center is
"trapped. "'6 Growth is described schematically in Fig. 1.

After a predetermined number of bonds have been
formed, we calculate various properties; the chemical con-
version factor p, defined as the number of bonds grown
divided by the maximum possible number 3L', specifies
the degree of polymerization. We determine the normal-
ized number of clusters n, of size s (i.e., the number of
clusters of size s divided by the total number of sites in
the lattice), the "susceptibility" or average molecular
weight

X=gs'n, ,
S

G =L ~~"9'(x), (8)

where 9'(x) is a scaling function. For the susceptibility
the form which we use is

Xp =L "~"P(x) .

This scaling is valid asymptotically for large L. Thus by
making double logarithmic plots of GL~~" versus x and
XpL "~" versus x, we can vary p, and the critical ex-
ponents until the data collapse onto single curves (one
curve for p gp, and one for p pp, ) defining W(x) and
9(x). In addition, the behavior of Eqs. (8) and (9) must
correctly reproduce the infinite lattice critical behavior in
the limit that L~ oo. This restriction then requires that

9'(x)~x~, x~00, p ~p,

p(x)~x r, x~00
(loa)

(10b)

C. Finite-size scaling

Data obtained for finite lattices can be related to the
corresponding infinite lattice singularities through the use
of finite-size-scaling theory. This approach, first
developed for thermal phase transitions, ' expresses bulk
quantities of L XL XL systems in terms of homogeneous
scaling functions of a variable x =pL '~" or x =p'L '~".

For the gel fraction the appropriate form is

and the "gel fraction"

6=1— sn, , (3)

and the scaling plots must obey this restriction as a con-
sistency check. For a description of what happens to
9'(x) as x~ oo and p &p, see Ref. 18.

where the sums exclude the largest cluster. This entire
procedure is repeated many times using different random
numbers to produce different growth samples, and then
averages are calculated over all the samples. In an infinite
system G is zero for all p up to the gel point p„' for p pp,
the gel fraction grows as

p

G=a+ (4)
Pc

0 0 0 0 0 0
0 0 0 0 O O

o o o o o
o o o o o

0 0 0 0 0 0
0 0 0 0 0

Xp=C /i, p (p~, (5a)

(5b)

In the vicinity of p, the susceptibility also shows critical
behavior of the form

0
0 0

0 0
0 0 00~ 0

0 0 0
0 0 0
0 0

where /t =(p, —p)/p, /i'=(p —p, )/p„C is the critical
amplitude below p„and C+ is the amplitude above p, .
The correlation length g diverges at p, as

Pc

and at p, the infinite cluster is a fractal object. The frac-
tal dimension of the cluster may be determined from the
relation

where S is the mass of the largest cluster which is within
a radius 8 of a point on the cluster.

0
0 0

0 0
0 0

(c)

FIG. 1. Schematic view of growth within a single layer: (a)
initial lattice with two initiators shown by ( 0 ); (b) lattice show-
ing bonds formed after growth has taken place (including bonds
to one layer above and one layer below) with active centers
shown by ( P ); (c) lattice after growth has joined the clusters
produced by the two initiators.
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X=gszn, -C+
~
(1—P/P, )

~

(12)

and thus by substituting Eq. (11) into (12) one can show

3—t

The ratio of critical amplitudes C for P &p, and C+ for

p &p, is defined as R =C /C+.

E. Backbone

D. Droplet scaling theory

As bonds are formed in the system a distribution of
clusters results in which each cluster is composed of the
collection of sites which are connected to each other at
least once by an unbroken string of bonds. This situation
is similar to that which occurs for thermal transitions
where "droplets" of ordered material form. The bulk
properties for these transitions have bem described in
terms of a droplet theory proposed by Essam and Fisher'
and used by Stauffer to analyze random percolation. In
terms of our variables the cluster-size distribution n, (P),
which gives the number of clusters of size s, should have
the following behavior near p, :

B.V»=s 'f(IP-P. Is ).
The moments of this distribution can also be related to
bulk properties. For example, the second moment of
n, (P) yields the critical behavior of the susceptibility
through

scribes the internal structure of the cluster. In terms of
the voltage distribution over the cluster after application
of an external potential, df describes the scaling of the
zeroth moment (i.e., the mass of the backbone) and is the
first of a whole hierarchy of fractal dimensions.

Another interesting notion that has been recently intro-
duced is the "elastic backbone. " It is based on the con-
cept that elasticity in the linear regime can be described
by small springs which sit only in the bonds of a cluster
and are free to pivot about connection points. In this
case, it is difficult to imagine that more than just the
shortest paths connecting the points P~ and P2, at which
the force is applied, should contribute to this elasticity,
because any strand longer than the shortest path will not
even be stretched out at infinitesimally small strain. So
the elastic backbone is defined as being all the sites of the
cluster that lie on the union of all the shortest paths be-
tween the points Pi and Pi. The elastic backbone is a
subset of the backbone and is marked in Fig. 2 as the
jagged lines. The elastic backbone is, in general, a fractal
with a fractal dimension d, and also in this case no re-
lation is known between df and other usual critical ex-
ponents.

Technically, the backbone and the elastic backbone are
obtained by the burning algorithm described in Ref. 25.
The points Pi and Pi are chosen to be the two closest
points to diagonally opposite corners of the cube in which
the simulation took place. Further'more, the sums of the
x, y, and z components of the displacements of Pi and P2
from their respective corners must each be smaller than
i.. If this is not the case, the backbone is discarded.

The backbone of a random structure is an important
concept to the understanding of its dynamical properties
such as the electrical conductivity ' or the elasticity.
The definition of the backbone depends on the end points
(or bars) between which it is chosen. Suppose we choose
two points Pi and Pi on the largest cluster separated by a
distance comparable to the correlation length g. If we put
an electrical potential drop from Pi to Pz and treat the
bonds as conductors, then the set of current-carrying
bonds is called the backbone and the remaining bonds are
called dangling ends. In Fig. 2 we show the backbone as
thick lines and the (haggling ends as thin lines. An
equivalent definition of the backbone is to consider it as
the intersection of all the self-avoiding walks between Pi
and I'2.

A random fractal object, like a percolation cluster at P„
has a backbone which is also a fractal and its fractal di-
mension df is defined through
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with SBB being the number of sites of the backbone inside
a box of length I.. d is, in general, smaller than
the fractal dimension d of the original cluster. The

BBexponent df has turned out to be universa1 like other
critical exponents, but up to now it has not been possible
to establish any relationship between d and any other

88 .
known critical exponent. Thus presently, df is con-
sidered to be a completely independent exponent that de-

FIG. 2. Schematic representation of the largest cluster
( ), backbone (~, and elastic backbone (~. End points are
P~ and P2 and active centers are shown by +.
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IO. RESULTS AND DISCUSSION

A. Su% properties

In earlier studies ' we reported results for models with
solvent and/or bifunctional units. In this paper we con-
centrate primarily on tetrafunctional units allowing a
wide variation of cr and, in addition, have obtained many
more growth samples than were used in this earlier work.

The susceptibility and gel fraction data show the same
qualitative behavior over the entire range of cq which was
investigated. In Fig 3 we show data for the susceptibility
for three values of cr. The maxima in all cases are
depressed strongly for the smaller lattices, and this finite-
size rounding becomes particularly important as el~0.
The critical behavior can be extracted using finite-size-
scaling theory described earlier in Sec. IIC. Finite-size-
scaling plots for the susceptibility for these data are
shown in Fig. 4. The critical exponents determined from
these (and similar plots for other values of ci) were essen-
tially identical in all cases: y =1.80+0.10 and
v=0.82+0.07 as compared with y =1.78+0.06 and
v=0.88+0.02 for percolation. 26 For very small lattices
the simple finite-size-scaling expressions were not ade-

quate since correction terms became important. Thus for
cI——3X10 we could not use data for L (20; the finite-
size effects become increasingly important with decreas-
ing lattice size so that for cr ——3X10 the correction

terms are significant even for L =60. (It is perhaps
worth remarking that substantially larger lattices are re-
quired than are needed to study finite-size behavior in
simple models with thermal phase transitions, such as Is-
ing or Potts models. One can understand this effect since
the typical distance between initiators is ~cr ', i.e., in-
creases with decreasing cr, which would suggest that one
needs an L some 20 times larger for cr ——3)& 10 than for
cq ——3 &(10 to have equivalent size effects.

Finite-size-scaling plots for the gel fraction are shown
in Fig. 5. Corrections to scaling are quite important in
the gel phase but are of less importance for p &p, . Our
best estimates for the critical exponents are P=0.40+0.05
and v=0.8+0.1, whereas p=0.44+0.01 for percolation. s6

This estimate for v agrees quite well with that obtained
from the analysis of X.

From these finite-size-scaling plots we can extract criti-
cal amplitudes as well as exponents, and these are plotted
in Fig. 6. Also of interest is the amplitude ratio
R=C /C+, which according to standard scaling as-
sumptions should be a universal quantity for percolation-
like critical behavior. This is strengthened for percolation
by the field-theoretical work of Aharony. In d =3 one
finds R =10, and in mean-field theory R =1, for percola-
tion. As we show in Fig. 6, the ratio C /C+ is not
universal but varies as -cI' over four decades in cr.
This relation implies that R~O as cq~O. This result
would seem rather unphysical and we have also explored
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(They did not see oscillations, of course, but their result
looked qualitatively like the envelope to the series of max-
ima seen in Fig. 9.) The cluster-size distributions shown
in Fig. 7 appear to have small maxima at s = I and then
to decrease before showing the first large peak at s'. This
is an effect due to annihilation and disappears, as shown
in Fig. 10, when we remove the mechanism which des-

troys active centers when they bond. If the concentration
of bifunctional units is greater than zero, the oscillations
in the cluster-size distribution are reduced as shown in

Fig. 11. According to the droplet scaling form that is
valid for percolation, described in Sec. IID, the cluster-
size distribution should fall off as s ' at the gel point. In
Fig. 12, we show a log-log plot of n, versus s at p, for
cr——3X 10 . On this scale, the oscillations at ms' are
clearly visible even for "large" m. The envelope of the
maxima decays approximately as s ' whereas the en-
velope of the minima does not show a simple power-law
decay. The variation of successive minima and maxima
suggests that the oscillations persist out to m = ce. The

10 x 10-'

s
n, = f(s/s') .

Since s'~p, we can equally well use f(s/p). Unfor-
tunately, this form, when combined with Eqs. (2) and (3),
does not yield the observed critical behavior since it has
no dependence on p, . If instead we modify the scaling ex-
pression to have the form

exp[&
I p —p. I

(s/p) +~
I p —p. I

]f(s/p)

(16)

30 x 10 5

variation of s' with p is linear (see Fig. 13) and the coeffi-
cient increases with el. Attempts to scale the cluster-size
distribution using the droplet form [Eq. (11)]were unsuc-
cessful. A typical such scaling plot is shown in Fig. 14(a).
Instead, we found that relatively good scaling very close
to p, [see Fig. 14(b)] could be obtained using (s/s') as the
scahng variable and a scaling equation
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FIG. 10. Cluster-size distribution at p, with annihilation re-
moved for cr ——3)&10,L =20.

FIG. 11. Cluster-size distribution at p, for c2 ——0.6, c4 ——0.4,
with cI ——3&10
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we not only improve the scaling but also reproduce the
correct critical behavior [see Fig. 14(c)]. r and o are
universal exponents, A and 8 nonuniversal constants.
The scaling form is valid for p &p, as well as for p gp„
only with different values for A and 8. In Fig. 15 we
show scaling plots, using the modified form of Eq. (16),
for ci ——3X10 . The same general features are observed
but with less-pronounced oscillations.

Experiments which could determine the cluster-size dis-
tribution in real gels are quite tedious and have thus been
performed only rarely. The only accurate study that we
are aware of was carried out by I.eibler and Schosseler,
who studied gelation of polystyrene chains in solution
cross-linked by y-ray irradiation. Unfortunately, this pro-
cess is not radical initiated growth and the results are not
relevant to the simulation data.

C. Backbone properties

ber of loops of the largest cluster Li c, the backbone LaB,
and of the elastic backbone LEB as the lattice increases in
size. z5 It was found for percolation that these quantities
have an exponent relation with an exponent which, within
the error bars, is equal to the fractal dimension of the cor-
responding object. This means that loops are relevant on
all length scales. The same analysis has been performed
here for kinetic gelation with cr ——3 X 10 and the same
result, shown in Fig. 16 and Table I, was found: for the
largest cluster, backbone, and elastic backbone the number
of loops is, within the error bars, proportional to the mass.

The burning times of the largest cluster Ttc and of the
backbone Tna are the maximum chemical distances one
can find between Pi and a point on the largest cluster or

TABLE I. Exponents showing the scaling of fundamental
cluster properties with system size.

For "small" ci finite-size effects are important for
small L, and for "large" ci the gel clusters are poorly
formed for large L so the statistics become poor. The
best results over the widest range of L were obtained for
ci ——3X10 . The results for a variety of cluster proper-
ties for ci ——3X10 are shown in Table I. The values
which we obtain for the fractal dimensionality of the larg-
est cluster df and of the elastic backbone df are essen-
tially the same as for random percolation in three dimen-
sions. The fractal dimension for the backbone is substan-
tially larger than for percolation and is only slightly
smaller tha dfLc.

An interesting question to ask about the structure of a
cluster is if it has many loops or if it is essentially treelike.
For percolation this has been done by studying the num-

Quantity

~LC
~aa
~KB

LLC
L' BB
I EB

TLC

Taa
IP
NLC

&aa

'Reference 26.
Reference 29.

'Reference 25.

Kinetic gelation

2.34+0. 12
2.22+0. 10
1.47 +0.08
2.42+0. 10
2.31+0.14
1.52+0. 15
1.40+0. 15
1.44+0. 15
1.44+0. 15
1.00+0. 10
1.05+0.10

Percolation

2.53+0.02'
1.74+0.04b

1.37+0.07'
2.44+0.08'
1.87+0.07'
1.42 +0.05'

1.33+0.07'



34 CRITICAL BEHAVIOR OF A THREE-DIMENSIONAL KINETIC. . .

imum number of sites having eIual chemical distances
from Pi for the largest cluster Pic and for the backbone
Naii scales with the box size I. with an exponent di of
the order 1. This allows us to propose that within the er-
ror bars the relation

) 05
LU

CO

U

UJ
LQx

l0 20 50 40 60
L

FIG. 16. Finite-size behavior at p, of the gel cluster {0),
backbone (), and ehstic backbone {4)for cl ——3 X 10 4.

df dmin+ d j. (17)

IV. CONCLUSIONS

rs valj, d.
In Fig. 17 we show the size dependence of the largest

cluster and the backbone for cI——3X10 and 3)&10
For the reasons mentioned earlier, these data are not as
complete or of as high quality as for cI ——3X10 . The
essential features are unchanged; however, df is the
same as for percolation, with our error estimates, and d
is 5—10 Wo smaller than df and substantially larger thanLC f
for percolation. 3 (There is a very small systematic varia-
tion with cl, but this is well within the limits of our errors
and we believe it is not significant. )

(a) (b)

3xl0

LC BB

30
I

60 30 60

FIG. 17. Finite-size behavior at p, of the gel cluster and the
backbone: (a) cl ——3y10-'; (b) cl ——3x 10-'.

the backbone, respectively. The length of the shortest
path /~ is the chemical distance between Pi and P2. All
these qu mtities scale with the satne exponent d „ if one
increases L as shown in Table I. This exponent d;„ is
slightly larger than that found for percolation, ' but by
an amount which is within the error bars. The fact that
Ttc, Taa, and l~ are proportional to each other shows
that the clusters are homogeneous in chemical metric. By
this, we mean that if one chooses all pairs of points on the
cluster of a given Euchdean distance r, their average
chemical distances will be a self-averaging quantity and
their distribution will become more peaked as larger r is
chosen. Finally, in Table I we also show that the max-

Our analysis of the critical behavior of the gel fraction
and the susceptibility strengthens the conclusions drawn

by HLS: within the errors of the data, the critical ex-
ponents P, v, and y for kinetic gelation are indistinguish-
able from those for percolation but the critical amplitude
ratio C /C+ is not universal, opposing the conclusion of
Aharony for percolation that this amplitude ratio is
universal. Comparison with experiment is not very con-
clusive at this time; the most recent measurements
indeed show good agreement with the critical exponents
of kinetic gelation and of three-dimensional percolation.
The relatively low observed value of the amplitude ratio,
R —1, may result from the kinetics of the radical initiated
growth, but here experimental results are too preliminary
to be conclusive. ' We also find that the gel point varies
as cI' as cr changes by 4 orders of magnitude. A simple
argument implies that this means that each walk which
grows from an initiator has a fractal dimension of 2. This
is the same exponent as found by Kremer and Lyklema
for kinetic growth walkss' (KGW) of "moderate" length.
This might be a coincidence since our walks are not mere-
ly isolated KG% but hinder each other and might be su-
btly correlated. If, however, our walks really have the
same properties as KGW, it is possible that for much
smaller values of cr the fractal dimensionality will cross
over to a value of —', . Our data for the backbone for
cl ——3&10 show a distinctly different value for the
fractal dimension than that calculated for percolation. It
seems, therefore, that the backbone exponent for kinetic
gelation behaves independently of the bulk property ex-
ponents. Another difference between kinetic gelation and
percolation is that the same cluster-size distribution scal-
ing form which works quite beautifully for percolation
does not seem to apply to our present results. %'e propose
a new, generalized scaling form in which an oscillatory
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function depending on a normalized variable s/s* is ex-

plicitly introduced. We conclude, therefore, that kinetic
gclation is apparently not in the same uoivcrsality class as
percolation. Furthermore, we see no clear evidence for
crossover to a new universality class for et~0, although
the possibility that such behavior could occur for very
small values of ct has been raised.
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