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Detailed measurements of the temperature and field dependence of the ac susceptibility X for the
spin glass Cu-Mn, reveal a new cusp transition whose locus is a line in the X- T plane, independent
of x. We have formulated a modified mean-field theory incorporating spin clusters whose parame-
ters are deduced from a fit to the data. We find a correlation length associated with the rotational
coherence of the local field and identify the cusp line as a physical feature corresponding to the
divergence of the correlation length at the transition temperature T,. We find that our data are well
represented by scaling relations both above and below T, and from these relations we evaluate the

critical exponents §, v, 8§, and y'.

I. INTRODUCTION

There have been numerous theoretical and experimental
studies of the physical properties of metallic spin glasses
in an attempt to identify features which might be the sig-
nature of a phase transition.! We believe that our extend-
ed data of the dc magnetic field and temperature depen-
dence of the parallel ac susceptibility, X(H,T), reveal a
new general feature, and we present a theoretical develop-
ment in which we find a correlation length associated
with the rotational coherence of the random local fields.
We identify a transition as occurring at the temperature at
which the correlation length diverges. Using model pa-
rameters fitted to our susceptibility data, we are able to
predict the temperature and field dependence of the tran-
sition. We find satisfactory agreement with the observed
feature, which leads us to suggest that although our model
is necessarily a simplification of the true spin glass, our
basic physical assumptions, and the new correlation
length we identify, must contain the most significant
features of an eventual, more exact treatment. We suggest
that a large spin or cluster formulation is inherent to a sa-
tisfactory explanation of the suppression of X by weak dc
fields’ and that the inclusion of the cluster rotational
response to perturbing ac fields and the consequent rota-
tional correlation between clusters, as illustrated in our
theory, should be incorporated in future formulations.

We find that the dc field and temperature dependence
of X are well represented by suitable scaling relations
chosen for the conditions T > T: and T < Tg, respective-
ly. From these scaling relations we recover the critical ex-
ponents & and y both above and below T,.

II. EXPERIMENTAL DATA

In Fig. 1 we present the parallel ac susceptibility,
X=dM /dh, as a function of temperature T for fixed
values of applied dc magnetic field, H. M is the magneti-
zation and h is an applied 30-Hz ac field. There are
several important aspects of these data.

(1) When H =0, the data correspond to the well-known
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cusp® in X with peak value X° at the temperature T, xo-

(2) When there is a modest applied dc field, H ~100 G,
there is a large suppression of X near T: which appears as
a rounding of the cusp, as previously reported in the
literature.*>

(3) For larger values of H we observe new important
features; (i) As T is reduced from above Tg, the suscepti-
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FIG. 1. The parallel ac susceptibility of a 5 at. % Cu-Mn foil
as a function of temperature for several values of applied dc
magnetic field, H. For weak fields, there is a large suppression
of X near T, but the data appear to be a rounding of the cusp.
For larger values of H (>400 G) there is a temperature-
independent region, terminating at low T with a well-defined
discontinuity. The locus of these points of discontinuity are well
represented by a straight line with AX/X°=aAT,/ Tgo. Values
of the slope, a, for several spin-glass alloys are presented in
Table 1.
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bility smoothly becomes less T dependent, with many
samples actually exhibiting a flat, almost T-independent
behavior®—® before terminating in an abrupt change of
slope at a well-defined temperature, T (H). (ii) The locus
of the T,(H) so determined are straight lines for H up to
~ 1000 G In larger fields the locus of T,(H) exhibits
curvature.” We shall refer to the initial lmear part of the
observed discontinuity as the cusp line.

(4 If we define AT,=T,(H)—TJ, and AX
=X{T,(H)}—X° we find that for 0.2<H <1.2 kG,
AX /X =aATg/T§=bH° with the values of a, b, and c as
given in Table I.

In Fig. 2(a) we plot X as a functlon of magnetic field
for several temperatures above T We find that X(T,0)
—X(T,H) satisfies the well- known scaling relation'® as
shown in Fig. 2(b). The values of 8 and ¥ which we ob-
tain are 3+0.8 and 1.85%0.5, respectively. In Fig. 3(a) we
also plot X as a function of magnetlc field but for several
values of temperature below T We find that the data
are well represented by an even 81mpler scaling relation of
the form,

X(H,T)—X(0,T)=f(H¥"?/(T{—T)")

=f(H/(T{-T)),

as shown in Fig. 3(b). That is, we see that the data below
Tg are very well fitted by 8'=2 and y'=1.

We have taken the data below T, by the following two
sequences in order to check whether there were cooling
rates or other effects which might indicate potential relax-
ation problems. In sequence 1, we cooled in a fixed dc
field, stopping to stabilize the temperature at each value,
and taking several minutes to establish a given data point.
The cooling rates were set by various thermal time con-
stants inherent to the masses of the shield, etc. One can
see the typical temperature spacing between points from
the data of Fig. 1. In sequence 2, we slowly cooled below
T, in zero field, and then having stabilized at a given
temperature, raised the dc field to the levels indicated in
Figs. 1 and 3. We found that after changing to a given dc
field level, it took approximately 5—10 min before we had
a time-invariant signal. (It is not known what the physi-
cal origins of the small signal variations during this
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FIG. 2. In (a) the ac susceptibility data of Fig. 1 are replotted
as a function of dc magnetic field for several values of tempera-
ture (all above T:). In the vicinity of H=0and T = Tf we note
that the curvature would exhibit a singularity as in the solution
of Sherrington and Kirkpatrick (Ref. 16). In (b) we replot the
data using the scaled axis as shown. The values of ¥ and 6 are
given in the text.

period were.) Once the signals settled down, we found
that the values agreed with those obtained by sequence 1
to within the experimental uncertainties. Thus we suggest
that at least for the ac susceptibility, the data should be
representative of an equilibrium configuration for the
temperature and field range studied. Although we did
make preliminary measurements at frequencies of 1073
and 700 Hz which indicated that the cusp line of Fig. 1
was not strongly affected, we believe a future, full study
of frequency and time effects is warranted.

TABLE 1. Properties of cusp line. AX/X°=aATg/T£zb(H/H0)‘, Hy=1kG for 0.2 <H <1.2

kG.

Sample T, (K) a b c
Cu—2 at. % Mn 16.0£0.5 3.3+£0.2 0.15+0.1 0.67+0.06
Cu—5 at. % Mn 27.6 34 0.20 0.65
Cu—8 at. % Mn 37.7 3.6 0.19 0.65
Cu—10 at. % Mn 45.7 2.5 0.18 0.68
Cu-Mn;sGe;s 23.5 1.8 0.18 0.65
Cu-Mn;Nis 27.5 2.9 0.16 0.65
Ag-Mn 6.8 23.2 2.8 0.17 0.64
Cu—1 at. % Mn 11.5 2.7 0.14 0.60
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III. EXPERIMENTAL TECHNIQUES

The samples were prepared by first forming an arc-
melted button which was annealed under Ar at 700°C for
one day. The buttons were then rolled to foils 0.005 cm
thick. Samples 0.4X6 cm? were vacuum annealed at
800 °C for one hour, and then air cooled. The ac suscepti-
bility measurements were obtained primarily at 30 Hz in
two types of apparatus. The sample was always moved
between a pair of astatically wound coils which were lo-
cated in the appropriate ac and dc magnetic fields. The
dc field was varied from O to 7 kG, the ac field was at 30
Hz and typically =2 G. In one apparatus, the output sig-
nal from the coils was detected utilizing field-effect
transistor (FET) electronics in a circuit incorporating elec-
tronic balancing signals as discussed below. In the other,
the signal was measured utilizing superconducting coils
and an associated superconducting quantum-interference
device (SQUID) detector. The measurements of the dc
magnetization were performed using a commercial
SQUID magnetometer.'!

The block diagram of the FET based instrument is
shown in Fig. 4. An audio oscillator (1) provided the
drive current to the primary coil (2). The oscillator out-
put is also connected to a variable gain amplifier (5) and
phase shifter (6). The output from the astatically wound
pair of coils (3) is initially amplified (4) using a preamplif-
ier, and then summed with the output of the phase shifter.
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FIG. 3. The ac susceptibility data of Fig. 1 are replotted as a
function of dc magnetic field for several values of temperature
(all below T:). In (b) we replot these data using the scaled axis
as shown. We note that below 7 the data satisfy a much
simpler scaling relation than above T§.

FIG. 4. Block diagram of the ac susceptibility apparatus util-
izing FET electronics. (1) the audio frequency oscillator, (2) pri-
mary coil for ac field, (3) pair of astatically wound signal coils,
(4) FET preamplifier, (5) variable gain amplifier, (6) phase
shifter, (7) summing circuit, (8) narrow band filter, (9) lock-in
amplifier, (10) DVM, (11) dc magnet. The sample is moved be-
tween the two signal coils as described in the text and illustrated
in Fig. 5.
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FIG. 5. Detailed scale drawing of the coils and sample ar-
rangement: (1) the astatically wound pickup coils; (2) fine string
used to push and/or pull the sample between the two coils of (1);
(3) the primary ac coil, coaxial to (1); (4) Various parts of the
support system to hold coils firmly in helium Dewar; (5) a fine
gas tube in liquid-nitrogen jacket through which gas is blown to
reduce bubbling; (6) sample holder containing rolled foil sample
which slides in plastic tube; (7) thermal shield made of fine
wires and epoxy to eliminate eddy current effects; (8) massive
plastic holder with spring fingers to reduce vibration in helium
Dewar; (9) external dc magnetic field, varian rotatable magnet
with 4-in. gap; (10) heater in liquid helium to produce cooling
vapor; (11) heater on thermal shield to regulate temperature; (12)
cryogenic thermometer; (13) additional heater to maintain shield
at desired uniform temperature.
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The output of the summing circuit is additionally filtered
(8) and then detected by a lock-in amplifier (9) referenced
by the initial oscillator. A digital voltage meter (10)
(DVM) is used for monitoring the coil voltages. The resi-
dual pickup signal due to imperfect balancing of the coils
is further canceled by adjusting the variable attenuatQr
and phase shifter to produce a minimum output at tem-
peratures well above T,. The phase of the lock-in is set to
detect the in-phase signal component at the same tempera-
ture.

In Fig. 5 we present a scale diagram of the coil and
sample arrangement. The sample (6) was moved back and
forth between the two astatically wound coils (1) by a
string (2) that was actuated outside the helium Dewar.
The primary coil (3) was coaxial with the pickup coils.
The assembly was contained within a constant tempera-
ture shield (7) made of fine copper wires and epoxy so as
to eliminate eddy-current pickup. The temperature was
sensed by resistive elements, and suitable heaters are
placed on the shield and in the helium to allow setting and
stabilizing of the temperature to between 1.5 and 77 K.

IV. INTERPRETATION

The striking consistency among the coefficients in
Table I, over a broad range of samples, led us to suggest
that the cusp line is a universal feature of metallic spin
glasses, and we have endeavored to find a theoretical ex-
planation for it. We note that the T dependence of the dc
field suppression of X in such differing materials as
La,_,Gd,Al,, (Ref. 5) and Fe;oNi;gP,g, (Ref. 6) all also
reveal a cusp line similar to that found for Cu-Mn as in
Figs. 1, 8, and 9.

We first observe that the very large suppression of the
dc susceptibility by a weak dc magnetic field® is greatly
underestimated by current spin-glass theories if one as-
sumes individual spin moments. Experimentally, one
finds for Cu-Mn AX /X =17%/kG of applied dc field. In
an attempt to fit their dc magnetization data at H =220
G to expressions developed by Toulouse and Gabay,'?
Chamberlain et al.” concluded that the field had to be re-
scaled by a factor of 28. We interpret this discrepancy as
a fundamental limitation on describing the magnetization
near Tg by the response of individual spins. We regard

1

W

FIG. 6. The intracluster spin exchange gives rise to a net spin
S; and S;, respectively. The intercluster spin exchange Jj; is
dominated by the nearest spins as indicated in the figure, result-
ing in the equilibrium configuration having the random angle
6.
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the suppression as a consequence of a much larger effec-
tive spin size entity, which we term a spin cluster.

Once we admit to spin clusters, one may examine their
response to applied ac fields. In what follows, we develop
a model in which individual clusters, with random initial
equilibrium moment directions and a rotationally invari-
ant exchange interaction, attempt to rotate in response to
an applied ac field. We find that the dynamical descrip-
tion of the local field leads to a new rotational correlation
length which we evaluate using model parameters fit to
the data of the dc field suppression of the ac and dc X.
We identify the divergence of the rotational correlation
length with the observed cusp line displayed in Fig. 1 and
parametrized in Table L.

V. THEORY OF A CLUSTER SPIN-GLASS
MODEL LEADING TO A NEW LOCAL-FIELD
CORRELATION LENGTH

We consider the individual spins s; as spontaneously
forming clusters of net spin S; with an average spin size
S, which is a function of the external dc magnetic field H,
and the temperature 7. For T well above the spin-glass
transition temperature, T,(H), the clusters rotate relative-
ly independently in response to a low-frequency applied ac
magnetic field, and hence the system exhibits a parallel ac
susceptibility X which is close to a Curie law. At T near
T,(H), we will show that the theory predicts the develop-
ment of a long-range rotational correlation length for the
local field H;, which is felt by each net cluster spin, S;.
This dynamical local-field correlation in turn manifests it-
self in a special long-range behavior characterizing the ro-
tational properties of the clusters. We postulate that at
the temperature where the local-field correlation length
diverges, we should expect an anomaly in the measured X,
depending on the frequency. Using cluster parameters fit-
ted to our data above T,(H), we are able to predict the
divergence temperature and find qualitative agreement
with a new cusplike feature observed in our experiments.

At any given H and T, the ith cluster is composed of
randomly oriented n; individual spins S;=2"s;. The
average cluster spin S(H, T)=EN| S; | /N, where N is
the total number of clusters. We define the average num-
ber of spins per cluster, n, via S=V'n |'s; | and the total
number of spins as N 0. In what follows, we take |s;| to
be unity, and thus N°=nN=S2N. S will be sufficiently
large such that we may regard the spin as classical in de-
fining the thermally averaged magnetic moment of the ith
cluster as

M;=[(H+H;)/|H+H; | ]SL(S |H+H; | /T), (1)

where T is in units of T;), H and H; in units of
kpTy/gup. M is in units of gup and L is the Langevin
function.

Before we present an expression for the total energy we
must explain the meaning of a special operator, ﬁij. We
take the interaction energy of any two clusters to be a
function of their relative orientation and an exchange pa-
rameter J;;. However, in contrast to the usual theories,
we postulate that the minimum energy orientation of any
two interacting spin clusters, S; and S;, may be at any an-
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gle independent of J;;. Since this is a quite different
description than the one of the models frequently em-
ployed, we digress to present a simplified picture of how
this might come about. In Fig. 6 we schematically
represent the two clusters in their minimum energy con-
figuration. Each of the clusters is, in turn, comprised of
many individual spins which interact via some exchange
interaction with their counterparts in the other cluster. If
the energy between the individual spins nearest each other
dominates the total cluster-cluster interaction energy, and
their local exchange constant was such as to require paral-
lel spins, the equilibrium configuration would be as
shown. The relative angle 0;; between S;,S; is described
by the operator Eij(Oij) and the two-cluster contribution
to the energy is given by E;; =J;S; R;;S;.

Because the anisotropy energy for Cu-Mn is much
smaller than the Ruderman-Kittel-Kasuya-Yosida
(RKKY) energy [at 1 at.% Mn, E(anisotropy)/
E(RKKY)=0.003),"* we do not incorporate anisotropy in
our initial formulation, and hence take our model Hamil-
tonian as rotationally invariant. For simplicity, in the
development of the subsequent theory, we shall restrict
ourselves to a two-dimensional spin system, hence all rota-
tions are about an axis perpendicular to the plane. In this
case, E,-j(()ij) is simply the rotation operator which rotates
S; toward S; by the angle 6; and Ej; is rotationally in-
variant. We may now write the total energy of the cluster
spin system as

E= Y J;S;R;S;— I HS,;, )

i,jli>j) i
where we take the distribution of the equilibrium 6;; to be
uniformly random for all angles, and the J; to be
represented by a random Gaussian distribution P(J;;) of
variance J(H,T). We make the further assumption that
the spin clusters will only interact appreciably with
nearest neighbors, whose number we characterize by an
average neighborhood number, Z. (We visualize Z ~10.)
Thus in what follows, when we wish to determine the
average local field at a given cluster, we shall only regard
such sums as being over a number Z. We take the local
field at site i to be given by a mean-field expression in-
cluding the leading term in the Onsager local-field correc-
tion:'*

z z _
H,' = 2 Jinlej -—J2 z (Rj,Mi‘a/aHJ )R,]MJ y (3)
j=1 j=1

where 3/0H=Vy.

We now define a particular averaging procedure for any
thermally averaged variable, such as the M; or H;, given
by

(@)= [Pup 1@y [ T149,0 @
i,j LJ

where d();; is the solid angle element which enters be-
cause of the random rotational angle of the R;; and
I1,,49; is the product of all dQ;’s. From this defini-
tion one may show that {J;;Q} =.L2{6Q/81,-j} and that to
first approximation 9H;/dJ; ~R;M;. (See Appendix
A1b) Using Eq. (3) with these two equations, we can
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further show that {H;} =0 (see Appendix A 2a), and that
again to a first approximation: (see Appendix A2b and
2¢)

{Hi‘Hi}=JZ é [Mj'Mj}
j=1

and (5)
z
(H;xdH;}=J? 3 (M, xXdM,}
j=1

where dH; is to be regarded as a change of the local field
for the ith cluster, in the time interval and caused, for ex-
ample, by an applied perturbation at some other cluster
away from site i. Similarly, dM; is the associated change
in the thermally averaged moment of the cluster.

We now seek to write an alternate expression for (5) us-
ing the probability distribution for H;, P(H;). We take
P(H;) to be isotropic (see Appendix B) and to be charac-
terized by an appropriate distribution with variance
h(T,H). Thus we convert the {Q} averages over P(J;;)
to (Q) averages over P(H;). This procedure would re-
quire a specific representation for the P(H;) to be exact,
but we assume that a suitable approximation is an isotro-
pic Gaussian distribution (see Appendix C) such that
h?=(H;-H; ), where

(@)= [ oPH)[]d*H; . (6)

Assuming the mean-field condition: (M;-M;)

= <Mj‘Mj), we ﬂnd
h1=ZJ*(M;"M;) . M

If H; is changed to H;+dH; by some perturbation of the
system, we obtain dM; from Eq. (1) and form

M; xXdM;=(S*/T)L(S |H+H; | /T)-(H+H;) xdH;

where Lo(x)=1/xL(x). Assuming dH; is isotropically
random, we have

(M; xdM;) ~(S*/T*{(L3){(H,;xdH,) . (8)

If we define F;=(H; XdH;), which we take as the sim-
plest dynamical quantity to measure rotational changes of
H;, and combine Eq. (8) with Eq. (5), we find the impor-
tant equation describing the propagation of a local-field
rotational disturbance,

zZ
F;=(J2S*/T*(L§) 3 F; . 9

We recognize Eq. (9) as a difference equation being con-
vertible to the form: (V2—k2)F(r)=0, where k*=6/
1%T?/ZJ2S*(L3)—1) and [ is the mean distance be-
tween clusters. We identify the condition k =0 as when
the local-field correlation length becomes infinite, corre-
sponding to

T?=2ZJ*S*(L}) rot, - (10)

In Appendix D we show that the instability associated
with the quantity H; X dH; leading to the transition tem-
perature relation of Eq. (10) always occurs at a higher
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temperature than that associated with the instability asso-
ciated with the quantity H;-dH;. We determine the value
of T, corresponding to a given value of H by a self-
consistent solution of Eq. (10) with the following compu-
tational sequence. We first determine the two parameters
of the model, S(H,T) and K,=ZJS*, by fitting the dif-
ferential dc magnetization, AM/AH=X, to the data.'’
We obtain a theoretical expression for X, by differentiat-
ing Eq. (1), which, when normalized to unity at H =0 and
T=1,is

X4=(3N/No)d{M;-Z)/dH . (11

Equation (11) in conjunction with Eq. (7) is equivalent to
the S-K'6 solution, which we note is very close to the X,
of the Parisi solution!” over the temperature range
covered. We assume that X, is equal to our measured ac
X for all temperatures above T , and that it remains con-
stant at the plateau value for all T < T° (The latter cor-
responding to the observation that the dc magnetization is
nearly independent of T below T .) We note that X, is
independent of S at H =0, and hence we can evaluate
Ky(T,0). We find that K, is essentially constant with
temperature, and hence we assume that it will be even less
dependent on magnetic field. Thus, we take K to be in-
dependent of H, and equal to KO(T ) for all T > T0
where the normalization makes Ko——9 Below T, KO
has a mild temperature dependence which is fit to the
data. For finite H we determine the value of S which re-
sults in a self-consistent fit to the X data via Egs. (7) and
(11). In Fig. 7 we present the values of 2S as a function
of H for several T. Using the values of S recovered from
the data fitting procedure just described, we may deter-
mine values of 7, as a function of H from a self-
consistent solution of Eq. (10).
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FIG. 7. In (a) we present the values of average magnetic mo-
ment (25) per cluster as deduced via the fitting to the data as
discussed in the text. We obtain very nearly the same values for
either case (a) or case (b) of the P(H;) distribution used to obtain
curves 2 and 3, respectively, in Fig. 8. The P(H,) of cases (a)
and (b) are described in the first paragraph of Sec. V. In (b) the
open circles represent values of 2.5 as a function of temperature
when the dc field is equal to zero. The solid line represents
values of K for the P(H;) of case (b). For case (a), K, is nearly
independent of temperature even below T,.
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VI. COMPARISON OF THEORY AND EXPERIMENT

In Fig. 8 we compare our data of Fig. 1 with values of
T,(H) predicted via the procedure just described, for two
forms of the P(H;)."® We find qualitative agreement with
case (a)

P(H;) < Hexp(—3H}?/2h*)dH,;dQ

[curve (2)], and excellent agreement for the modified dis-
tribution; case (b):

P(H;) <exp(—H?/2h*)dH;dQ

[curve (3)]. In Fig. 9 we present a comparison between
data for another sample concentration, over an extended
H range with the predictions utilizing the case (b) P(H;).
Again, we find very good agreement.

In Fig. 8 we also present values of T,(H) determined
from expressions for the de Almelda—Thouless19 (AT)
and Gabay-Toulouse'? (GT) formulations for the phase
transition. The AX and AT relations that are used are for
the AT formulation (see Ref. 20)

AT=[(m +1)(m +2)/8]'*H*",
M/H=1—3[4/m +2]'3H*" (12)

(see Refs. 7 and 21), and for the GT formulation (see
Refs. 20 and 21),

AT=(m2+4m +2)H*/4(m +2)?,
M/H=1—-H/V2 (13)
(see Refs. 7 and 22) for m =3, and X=dM /dH, and
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FIG. 8. A comparison of the experimental data of Fig. 1 with
several theoretical expressions discussed in the text. Curve 1,
the AT transition as represented by Eq. (14). Curve 2, deter-
mined via the theory described in the text and using the P(H;)
of case (a). Curve 3, similar to curve 2 except utilizing the
P(H;) of case (b). Curve 4, the GT transition as represented by
Eq. (15). The P(H;) of cases (a) and (b) are presented in the first
paragraph of Sec. V.
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AX =1-—X we obtain for the AT formulation,

AX =(3)($)(5)2AT?, (14)
and for the GT formulation,

AX=V2(57)2AT' 2 (15)

The curves obtained using Eqgs. (14) and (15) are
displayed on Fig. 8, labeled 1 and 4, respectively. We see
that both the AT and GT transition relations are clearly
inconsistent with the experimental cusp line. The same
observation applies to the data presented in Fig. 9 for a
Cu—1 at. % Mn sample.

We have previously mentioned the failure of the GT
formulation to account for the magnitude of the very
large suppression of the ac or dc susceptibility by weak
applied dc magnetic fields. This same observation applies
to the AT formulation as well, as long as the moments are
taken to be those corresponding to single atomic spins.
We regard that as a serious limitation to the applicability
of these formulations, and as noted, this observation pro-
vided the initial impetus to incorporate a cluster model
from the outset. We wish to further point out, however,
that the relations of Egs. (14) and (15) are independent of
the observed spin value and hence even with an adjust-
ment of the spin moment, neither formulation appears
likely to be associated with our observed cusp line feature.

In Fig. 10, we plot the reduced field, H2”*> versus
AT/ Tg, for a Cu—1 at. % Mn sample, over an extended
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FIG. 9. The parallel ac susceptibility of a 1 at. % Cu-Mn foil
as a function of temperature for values of applied field up to 7
kG. The dashed curve represents the locus of the cusp line
which exhibits the curvature as shown for higher magnetic
fields. The open circles are points calculated using the P(H;) of
case (b), following the data analysis procedure as described in
the text. The solid line is for the GT expression given in Eq.
(15).
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field range up to H=7 kG. Here, H, is in units of
kg Tgo/gpg. These conditions were chosen so as to allow
comparison with the recent torque data reported by de
Courtenay et al.,”* who compared their deduced feature
near T, with the behavior predicted by Kotliar and Som-
polinsky.?* The material presented in Fig. 10 may be
summarized as follows.

(1) The data have a H?/* dependence to quite high
fields, and correspondingly large shifts of 7.

(2) The results of our rotational correlation theory util-
izing the case (b) P(H;) (open circles) are in excellent
agreement with our data (crosses).

(3) The GT relation of Eq. (13) is not plotted in Fig. 10
because it would simply lie along the vertical axis for the
range of fields covered. Thus, we confirm the interpreta-
tion of Figs. 8 and 9 that the GT relation cannot be iden-
tified with our data.

(4) While the AT criteria agrees with the observed H?2/>
dependence, (although the shape is off by a factor =2),
the AX-AT relation is quantitatively so far off (see Fig. 8),
that it cannot likely be identified with the data.

(5) The transition feature reported by de Courtenay
et al.?® (open squares) would seem to correspond to an en-
tirely different phenomena.
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FIG. 10. The reduced field, H,, to the % power versus

AT, /Tg as determined from the data of Fig. 9. The crosses (X)
represent the data of the cusp line. The circles are points calcu-
lated using the P(H;) of case (b). Were the GT relation of Eq.
(13) plotted for the scale of Fig. 10, it would be essentially a
vertical line from the origin. The dashed curve represents the
AT expression of Eq. (14), but with S taken as 1 rather than be-
ing adjusted so as to insure agreement with the large suppression
of the dc susceptibility in the magnetic field. (Were the correct
S values used, the dashed line would be nearly horizontal.) The
squares are taken from Fig. 2 of Ref. 23, where they identify a
transition feature associated with zero torque on their spin-glass
sample. It would appear that the torque feature measures an
entirely different property than that associated with the cusp
line of Fig. 1 or 8.
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VII. CONCLUSION

We present extended measurements of the temperature
and dc magnetic field dependence of the parallel ac sus-
ceptibility,* for the Cu-Mn spin-glass system. We find
that there is a large suppression of X for weak magnetic
fields, and that for modest field values as one lowers the
temperature below Tg, X becomes almost independent of
temperature before exhibiting an abrupt change of slope at
a well-defined temperature. We have attempted to identi-
fy the locus of this observed feature with the well-known
de Almeida—Thouless' or Gabay-Toulouse!? transitions
and find that they are in clear disagreement. This
disagreement has led us to seek an alternate formulation
of the problem, and we have developed a phenomenologi-
cal model which appears to have considerable success in
predicting the observed transition feature, using model pa-
rameters obtained by a parametrization of the ac and dc
susceptibility data.

We interpret the very large suppression of the ac and dc
susceptibilities by weak applied magnetic fields as being
indicative of cooperative spin behavior, which we term a
spin cluster. We find that a theoretical examination of
the response of these exchange coupled clusters to an
external ac magnetic field leads to the prediction that
there is a local-field rotational correlation length in spin
glasses. We identify the divergence of this correlation
length as occurring at the T and H for which we observe
a new cusp feature in the temperature dependence of the
ac susceptibility measured in modest applied dc magnetic
fields. The new feature we have observed experimentally
appears in so many samples, and with striking similarity
(as displayed in Table I), that we regard it as an inherent
property of metallic spin-glass systems.

It is clear that there are many simplifications incor-
porated in our model and analysis. Nonetheless, we be-
lieve that the basic assumptions of the model have merit,
and warrant further study. We would expect that there
may be other indications of the local-field rotational
correlation length we have developed.

We cannot help but note the remarkable agreement be-
tween our data and the predictions of our theory utilizing
the case (b) local-field probability distribution function.
The formation of clusters likely depends on both the
physical distribution of the moments and the consequent
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interactions. Once the clusters are formed, they, in turn,
determine the appropriate P(J;;) distribution. We suggest
that it would be of value to ascertain the particular P(H;)
distribution to which a given P(Jj;) corresponds. In prin-
ciple, it should be possible to determine one distribution
function given the other, and while this is a worthwhile
effort for its own sake, there may be important physical
insight in terms of interpreting the one that appears to fit
the data so well.

We have confirmed that the transition line is qualita-
tively the same for frequencies of ~10~3 to 700 Hz.
Therefore, we believe that the dynamical correlation per-
sists for the corresponding time scale. It would be of
great interest to determine the nature of the dynamical
correlation to much longer and shorter time scales via fu-
ture experiments.

We find that our data are well represented by the scal-
ing relations indicated in Figs. 3 and 4 for temperature
above and below T, respectively. The values of the criti-
cal exponents deduced are compared with those of other
experiments in Table II. We note that our data below T,
were taken via two temperature field sequences, as ex-
plained in Sec. II, and thus we feel that they are represen-
tative of a meaningful equilibrium condition.
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APPENDIX A

In this appendix we present a proof for various rela-
tions utilized in our development of the theoretical model
in Sec. V. In Part 1 we develop several useful general re-
lations which are then used to establish more specific rela-
tions in Part 2.

1. General relations

The general relations are listed as follows.

TABLE II. Critical exponents (Mn concentrations in at. %). Listed are the critical exponents of
several samples. (The definition of 8’ and y’ are given in the text.)

(a) Above T,
Ref. 4 Ref. 13 Ref. 25 Ref. 26 This work
Ag-Mn(10.6) Gd-Al Cu-Mn(1) Ag-Mn Cu-Mn(5)
2.0 5.7+0.2 5.7+0.5 3.0+0.2 3.0+0.8
Y 1.5+0.5 2.7£1.0 3.3+0.05 2.2+0.1 1.85+0.5

(b) Below T,

Cu-Mn;sNig s [this work (X,.)]

& 2.0

v’ 1.0
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a. {J;XQ}
We have
{J; XQ}=J*{3/3J,;Q} , (A1)

where Q is any system variable, and the { } represent a
particular averaging process defined by Eq. (4). We note
this relation holds because we have taken a Gaussian dis-
tribution for P(Jj;).

b. 3H;/3J;
We have
3H;/dJ;=R;M; . (A2)

This relation is not exact because we drop the J;; deriva-
tive of the Onsager correlation term to the internal field
[see Eq. (3)]. We note that the omitted term is of the
form J23(R;M;-3/0H;)R;;M;, and therefore of higher
order of J than the leading term.

c. Internal field equation

The internal field equation, Eq. (3), can be rewritten as

H;= 3 [J; —J*3/3J;)IR;M; @
J

by the use of (A2) as follows. From Eq. (3) we have
J j

We replace R iM; in the second term by dH, /dJ;; [using
(A2)]; and note that

(3H; /dJ;;)(3/3H;)R;;M; =(3/3J;;)R;;M;
because the only explicit variable dependence in M; is on

H;.

d. {CxH,}

We evaluate the quantity {CXH;} or {C-H;} where C
is any vector quantity in an identical manner; and hence
we only present the procedure for one:

{CXH;}=J2T {(3/3J;C)XR;M;} .

J

(A4)

Proof:
{CXH;}={CX 3 (J; —JY3/3J,;DR;M;} ,
j
using (A3). To evaluate the right-hand side of (A4), we

identify the quantity CXﬁ,-ij as a Q factor in the sense
of (A1) and making use of (A1) we may express it as

{C><H,~}=.122 {(dC/dJ;j) X R;yM;

J
+Cx[3/3J;(R;M;)]

—Cx[3(R;M;)/3J;1} .

The last two terms cancel, thereby proving (A4).
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e. Scalar quantity

For any scalar quantity, a, we find
{aH;}=J% {[(3/3J;)a]R;M;} (AS)

j
by the same argument as in (4).
2. Specific relations

Having prepared the relations (A1) to (A5) in part 1, we
now establish some specific results.

a. {H;}
We have,
{H;}=0. (A6)
This follows by letting a =1 in (AS5).
b. {H;xdH,}
Here,
{(H; xdH;}=J? {M; xdM;} . (A7)

J

Proof: Let H;=H;+dH; and M;=M;+dM;. Hence
{H; XdH,} = —{H; XH,}.

We regard H; as the quantity C in (A4) and it follows
that

(H;xXH;}=J* 3 {[(3/3];H;]X R;M;}
J

J

Since the vectors product is rotationally invariant in two
dimensions, we then have

j j

thereby verifying (A7).
C. { H,‘ ’H,' }
Here,

(HiHi} =723 (M;"M,] .

J

(A8)

This is proven by analogy to (b) above, and recalling that
(A4) held for either cross or dot product.

APPENDIX B

Here, we prove that if P(J};) is a Gaussian distribution
and R;; is a random angle rotation operator in two dimen-
sions, as assumed in Sec. V, then the internal field proba-
bility distribution P (H;) is isotopic.

Proof: We observe that if {H;}=0, and [(H[)?]
=[(H})?] where H} is the x component of H;, etc., then
P(H,) is isotropic. Now {H;} =0 by (A6); and if we iden-
tify H" as the “a” factor in (AS5), then we have



4780
((HFP)=J* 3 [(8/3], H IR, M, "]
J

=J2 {(R;M;)*(R;M;)} [using (A2)]

j
=723 ([(RyM; %} .

J

Since R,-j is a uniformly randomly distributed rotation
operator, this last quantity is independent of any particu-

)

((H™) = {(H*"(H;)")
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lar component direction, and hence is the same value for
the x or y component. Thus {(H)*} ={H})?}, as was to
be shown.

APPENDIX C

We prove that if P(J;;) is a Gaussian random distribu-
tion, then P(Hj;) is also a Gaussian distribution:

=J2 ([8/3J;(H)™'|(R;M;)*} [from (AS5)]

1

=2n—1DJ*3 {(HH*2[(3H,;) /3], I(R;;M; ¥}

J

=(2n—DJ* 3 {((H)*[(R;M;)*]*} [using (A2)]

J

=(2n— DJ*{(H})*"~?)

3 [(R;M; PP } ,
J

where we have replaced the { } expression of the preced-
ing line by a product of { }-{ } factors. This last relation
is characteristic of a Gaussian distribution with the vari-
ance approximately equal to {Jzzj[(ﬁ,-ij)"]z}, as in
Appendix B.

APPENDIX D

We wish to show that the instability associated with the
quantity H; XdH; leading to the transition temperature

[

relation of Eq. (10) always occurs at a higher temperature
than that associated with the instability associated with
the quantity H;-dH; (i.e.,, analogous to the AT transi-
tion).!®

From Egq. (1) and using Ly(x)=L (x)/x, we have

M, =(H+H;)(S*/T)Lo(S |H+H; | /T),

where

dM;=dH;-S’Lo/T +(H+H;)(S2/T)Ly-S/T(H+H,)/|H+H, | -dH; ,

where L means (d/dx)Ly(x). Using the { ) averaging
process defined by Eq. (6), we have

(M;-dM;)=S*(L%)/T?*(H-dH, +H,-dH, )
+S%(LoLo/T? |H+H; |(H+H;)-dH;) .

We note that (H-dH;)=0 and that the second term on
the right-hand side of the expression may be written as

=(S*(LoL¢)/T*{|H+H; | )((H+H;)-dH;)
=(S(LoLy))/T* |H+H; | Y(H;-dH;) ,

which is equal to a negative number x (H;-dH; ) because

r
L is always negative. Hence

(M;-dM;)=(S*(L3))/T*1+ negative number)
X <H, ’dH,' > .
Thus, in analogy with the (M; XdM;) instability, the
(M;-dM; ) instability occurs when
(ZJ*S*(L}))/T(1+ negative number)=1,

whereas  (M; XdM;) instability occurs when
(ZJZS“(L(Z)))/T;:L therefore T; <T, as was to be
shown.
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FIG. 5. Detailed scale drawing of the coils and sample ar-
rangement: (1) the astatically wound pickup coils; (2) fine string
used to push and/or pull the sample between the two coils of (1);
(3) the primary ac coil, coaxial to (1); (4) Various parts of the
support system to hold coils firmly in helium Dewar; (5) a fine
gas tube in liquid-nitrogen jacket through which gas is blown to
reduce bubbling; (6) sample holder containing rolled foil sample
which slides in plastic tube; (7) thermal shield made of fine
wires and epoxy to eliminate eddy current effects; (8) massive
plastic holder with spring fingers to reduce vibration in helium
Dewar; (9) external dc magnetic field, varian rotatable magnet
with 4-in. gap; (10) heater in liquid helium to produce cooling
vapor; (11) heater on thermal shield to regulate temperature; (12)
cryogenic thermometer; (13) additional heater to maintain shield
at desired uniform temperature.



