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The phase diagram of the mean-field Ising model in a random field obeying a symmetric three-
peak distribution is determined. This distribution is relevant to diluted antiferromagnets in a uni-
form magnetic field. The phase diagram includes a fourth-order point, tricritical points, ordered
critical points, critical end points, and a double critical end point. An ordered phase persists for ar-

bitrarily large random fields at low temperatures.

I. INTRODUCTION

Experimental' and theoretical®® studies of Ising sys-
tems subjected to random magnetic fields have concen-
trated mainly on the question of what is the lower critical
dimension. The consensus opinion is that the lowest spa-
tial dimension (lower critical dimension) above which
long-range order can be established, is two.? However,
strong hysteretic effects' prevent or make it difficult to
observe the ordered phase in equilibrium. Still unresolved
is the issue* of what crossover is actually observed in some
experiments, whether random field to random exchange
or random field to classical criticality.

This paper addresses the effect of different field distri-
butions on the topology of the equilibrium phase diagram.
Most of the theoretical work has focused on the Gaussian®
and two-peak® distributions. We consider here random
fields which can take three values +h,, —hg, or 0, with
probabilities p /2, p/2, or 1—p, respectively. This three-
peak symmetric distribution is relevant' to diluted antifer-
romagnets, such as Fe,Zn,_,F,, in a uniform field hy. In
the Zeeman Hamiltonian' the field conjugated to the anti-
ferromagnetic order parameter (one-half of the difference
between neighboring spins on opposite sublattices) takes
three values: hy, —hg, and O with probabilities
p/2=x(1—x), p/2=x(1—x), and 1—p=x24(1—x)?,
where 1 —x is the concentration of nonmagnetic impuri-
ties. This distribution has also been considered by
Mattis,” who calls it the trimodal distribution. Grinstein
and Mukamel® have studied the case: hy— oo for a one-
dimensional system.

We determine the complete phase diagram of the
equivalent-neighbor (mean-field) Ising model with random
fields obeying the three-peak symmetric distribution. We
find a variety of multicritical points: fourth-order, tricrit-
ical, ordered critical, critical end, and double critical end.
With the exception of the tricritical point, none of the
others have been detected in a previous study’ of the
model.

For p <1, an ordered (ferromagnetic) phase exists for
arbitrarily large values of the random-field strength, h,.
In the context of the equivalent-neighbor model, this out-
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come is a consequence of the fact that a fraction 1—p of
the spins are subjected to no magnetic field, and are suffi-
ciently interconnected by the equivalent-neighbor bonds to
order at low temperatures. We believe that the ordered
phase will also be formed on a finite-dimensional lattice,
provided p is sufficiently small. Indeed, if p<1—p,
(where p, is the site-percolation threshold) there is a finite
probability for the formation of an infinite cluster of spins
subjected to zero magnetic field. If this cluster is not tree-
like, we expect the ordered phase, which forms at zero
temperature to persist at low but finite temperatures, for
arbitrarily large hg.

For p =+, the three-peak distribution was argued’ to be
a good approximation of the Gaussian distribution, be-
cause the low-order momenta (h?) and (h*) are the
same, respectively, for both distributions. Indeed, no tri-
critical point occurs for p =+, which is also true for the
Gaussian distribution.® On the other hand, the Gaussian
distribution phase diagram has no ordered phase for large
random fields, while the three-peak distribution exhibits
an ordered phase for arbitrarily large A, at low tempera-
tures. Therefore, different field distributions will result,
in general, in topologically different phase diagrams. The
matching of the low-order momenta does not ensure the
equivalence of the phase diagrams except at low values of
the random-field strength.

The remainder of this article contains a description of
the model and its solution, in Sec. II, and our concluding
remarks in Sec. III.

II. MODEL AND SOLUTION

In the equivalent-neighbor Ising model, each pair of the
N spins 0;=*1 is connected by a bond of strength 1/N.
Each spin is subjected to a random magnetic field 4 ac-
cording to the following distribution:

P(h)=+5p[8(h —ho)+8(h+h)]
+(1—p)é(h), (1

where 0<p <1, hy>0, and & is the Dirac delta function.
The energy # associated with the N spins is
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1
W= —— O h.o; . 2
x N l2jo‘,¢7,+§ 0 )
The quenched averaged free energy is
1
f_—kBT<N1nZ>, 3)

where Z is the partition function for a given configura-
tion of the magnetic fields. In the thermodynamic limit:’

f=kgT miny(m) , 4)
m
where
Y(m)=5Jm?—(In2coshJ(m +h)) . (5)

In Eq. (5): J=1/kgT, m is the average site magnetiza-
tion, and { ) denotes an average over the magnetic fields,
using the distribution of Eq. (1).

The detailed analysis of this model involves a numerical
solution of Eqgs. (4) and (5), which is presented in subsec-
tion C below. Certain features of the phase diagram are
determined analytically; in subsection A, zero tempera-
ture, and in subsection B, multicritical points.

A. Zero temperature

At zero temperature, T=0 or J= oo, Eq. (5) reduces to

lj-=§m2—<lm+h;>. (6)
The values of m which minimize ¢ are the following: for
small hy, m==1, and for large hy, m==*(1—p). A
first-order transition between the two ordered phases
occurs at hy=1—p/2. The transition point, counting
both positive and negative m’s, is actually a point where
four phases coexist.

The physical origin of the two ordered phases is as fol-
lows. For small A, the bonds are strong enough to allow
all spins to order, i.e., m =+1. For large h,, a fraction p
of the spins randomly points up and down, aligned with
the local fields, while a fraction 1— p of the spins, subject-
ed to no field, is in order, i.e., m = +(1—p). The essential
feature is that in the latter group the spins are intercon-
nected by the equivalent-neighbor bonds, forming an in-
finite cluster which can order at low temperatures.

This condition should also be satisfied for a finite di-
mensional lattice, if 1—p is larger than p., the site-
percolation threshold. Hence, for p <1—p, an infinite
cluster is formed. Provided this cluster has loops, i.e., it is
not treelike, the spins on the percolating cluster will order
at low temperatures even for large fields. In the one-
dimensional version® of the model with hy— oo, m is zero
for all p >0, which is consistent with our argument be-
cause the one-dimensional threshold is p, =1.

B. Multicritical points

Close to a continuous transition between ordered and
disordered phases, m is small, and we can expand ¥ in
powers of m:

Y(m)—P(0)=a,m*+a,m*+agm®+agm? . 4)
The a coefficients are the following:
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as=-5J41—4pu +3pu?), ®
ag=5J%—2+17pu —30pu?+15pu3) ,

g =555 (17—248pu +756pu®—840pu’ +315pu*) ,

where J=1/kpT and u =tanh*(Jh).

Following Griffiths,” we use the following symbols to
denote the various entities on the phase diagram: A—
one-phase point (disordered phase); 4 %—two-phase point
(ordered phase); 43—three-phase point (coexistence of or-
dered A% and disordered A phases); 4*—four-phase point
(coexistence of two ordered 42 phases); B—critical point;
BA?—critical end point (coexistence of critical B and or-
dered A? phases); B2—isolated critical point in the midst
of an ordered phase (coexistence of two critical B phases),
which we shall call ordered critical point; C—tricritical
point; and D—fourth-order point.

The fourth-order point D occurs at a;=a4=as=0,
and ag>0. From Eq. (8) we compute the coordinates of
this point: p=3>=0.76, kyT=-=0.55, and hy=0.56.
This goint lies at the intersection'® of a line of tricriti-
cal'>'? points C, a line of ordered critical points B2, and a
line of critical end points BA2. It can therefore be viewed
as the last tricritical point, i.e., for p <0.76 there are no
tricritical points. Mattis’ has estimated the location of
this point by first determining the line of tricritical points
from a, =0 and dhy/dT =0, where

kyT=1—p tanh¥ho/ksT)

is the critical line; then he looked for the “vestigial” tri-
critical point (the D point). His estimate is p=0.75,
kpT=0.44, and hy=0.57. The discrepancy between
Mattis’s and our results is small for p and hg, less than
2%, but rather substantial for the temperature, about
20%. The source of this discrepancy is the fact that the
line of tricritical points is exactly located at a,=a,=0
and a¢ >0, while Mattis’s requirement dh,/dT =0 is not
a necessary condition for a tricritical point to occur. The
latter provides, however, a lower bound on the correct tri-
critical temperature, and an upper bound on the correct
tricritical hq, if no reentrance of the disordered phase
occurs (i.e., dho/dT always negative). The 20%
discrepancy on the temperature estimate indicates that
Mattis’s method to determine tricritical coordinates, first
used in the high-temperature analyses'> of random-field
systems, is not always accurate. To obtain another esti-
mate of accuracy, we looked at the tricritical point at
p=1, exactly located® at kzT=0.67 and hy=0.44.
Mattis’s approximation locates the tricritical point at
kpT=0.58 and hy=0.45. The percentage errors are 13%
for temperature and 2% for h,,.

The ordered critical point B2, terminates a line of first-
order transition points A* in the midst of the ordered
phase A2 In the (a,,a4,a6) space the B? points form a
line which, close to the fourth-order point, is

a 1

08—16

ag

asg

a3

L3
asg 8

, a6<0, ag>0. (9

as
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FIG. 1. Phase diagram for p=1: solid line, critical points;
dashed line, first-order transitions. A tricritical point C also
occurs.

The critical end point BA? occurs at the intersection of
a line of critical points B and a line of first-order transi-
tion points 4% and 4% Close to the fourth-order point,
BA? coordinates are the following:

a 2
4 , ag<0, ag>0. (10)

g
02::0, _—
ag

118
4 as
The critical points B form a surface in the (a,,a4,a¢)

space, or in the (T,hq,p) space which, when not preempt-
ed by first-order transitions, is given by

a,=0or kgT=1—p tanh®(hy/KzT) . (11)
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FIG. 2. Phase diagram for p=0.8: solid line, critical points;
dashed line, first-order transitions. A critical end point BA?
and a tricritical point C also occur.
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FIG. 3. Phase diagram for p=0.74: solid line, critical points;
dashed line, first-order transitions. Two critical end points B4
and an ordered critical point B? also occur. The inset shows a
closer view of the region in the oval.

C. Phase diagram

We determine numerically the phase diagrams in the
plane T, h for different values of p. There are two spe-
cial p values: p= % =0.76 and p=0.73, which divide the
interval [0,1] in three subintervals corresponding to three
topologically different types of phase diagrams.

For p=1, we obtain Aharony’s® phase diagram, Fig. 1,
with a tricritical point at kgT=0.67 and hy=044. A
new ordered phase appears for any p < 1, at large hy. On
this phase the magnetization is smaller than that of the
ordered phase at weak h,. The two ordered phases are
separated, at low temperatures, by a first-order line of 4*
points, starting at ho=1—p/2, at T=0. The small-m
ordered phase terminates at a line of critical points which,
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FIG. 4. Phase diagram for p=0.67: solid line, critical points;
dashed line, first-order transitions. An ordered critical point B?
also occurs.



34 MULTICRITICAL POINTS IN AN ISING RANDOM-FIELD MODEL 4769
.0F 1.0
YA
h, B h
0.6r 0.6
01t 0.7
0 0.2 06 T L0 0 0.1 06 T MO

FIG. 5. Phase diagram for p=0.33: solid line, critical points;
dashed line, first-order transitions. An ordered critical point B>
also occurs. Contrary to a suggestion in Ref. 7, this phase dia-
gram qualitatively differs from the phase diagram for the
Gaussian distribution.

for hg— 0, is at kgT=1—p. As p is lowered, the tricrit-
ical point persists for p > §~3 =0.76, Fig. 2. The “vestigi-
al” tricritical point, at p=%§—, is the fourth-order point
occurring at kBT=%EO.55 and hy=0.56. A critical
end point, BA?2, occurs at the intersection of a critical line
terminating the small m phase and the first-order line
separating the small m and the disordered phases from
the large m phase.

For 0.73<p <0.76, a new type of phase diagram ap-
pears (Fig. 3), in which the tricritical point is replaced by
an ordered critical point B? and a new critical end point
BA?, i.e., there are now two critical end points. As
p—0.73, the two critical end points coalesce. This
coalescing point is not a new multicritical point. Viewed
in the three-dimensional parameter space (T,hy,p) it lies
on a smooth line of BA? points, at an extremum. It could
be called a double critical end point, by analogy with the
double critical point (see Appendix A of Ref. 11) which
plays a similar role on a line of critical points.

For 0<p <0.73, we obtain a third type of phase dia-
gram (Figs. 4 and 5), with the critical line uninterrupted
from hy=0, kyT=1, to ho— 0, kgT=1—p. In the or-
dered phase there is a first-order line of 4* points ending
at an ordered critical point B2 This first-order line
shrinks to zero as p goes to zero. At p =0 the model
reduces to the pure Ising model in zero magnetic field,
and hg is a redundant variable which does not affect the
free energy. The phase diagram (Fig. 6) has a critical line
at kgT=1, for any h,.

FIG. 6. Phase diagram for p =0. The vertical solid line is a
line of critical points.

III. CONCLUDING REMARKS

We have determined the complete phase diagram of the
equivalent-neighbor (mean-field) Ising model in a random
field obeying a three-peak symmetric distribution. The
main conclusion of our study is that the topology of the
phase diagram depends strongly on the particular
random-field distribution used. Previously studied phase
diagrams for the Gaussian and two-peak distributions
resemble each other topologically, even though the order
of the transition differs at low temperatures. In particu-
lar, for both distributions, there is no ordered phase for
large random fields at low temperatures. The phase dia-
gram for the symmetric three-peak distribution is qualita-
tively different: the ordered phase persists for arbitrarily
large random fields at low temperatures. We believe this
ordered phase occurs for realistic short-range interactions
in finite dimensions.

Diluted antiferromagnets, e.g., Fe,Zn;_,F,, in a uni-
form field are realizations of the random-field Ising
model with random fields obeying a three-peak symmetric
distribution with p=2x(1—x) (see Sec. I). In spite of
differences between the model and its experimental reali-
zations, such as the random character of the exchange in-
teractions in the experimental systems, it is conceivable
that an ordered phase will form even for large magnetic
fields if 1—p is larger than the site-percolation threshold
D.- In terms of the magnetic concentration x this means
x <[1—=(2p. —1)']/2 and x > [(1+(2p, —1)'7%/2 if p,
is larger than 5. If p, is smaller than 5 the long-range
order should be established at large fields for any concen-
tration x. Since p=2x(1—x)<0.5, our computations
suggest the absence of a tricritical point for diluted anti-
ferromagnets in a uniform field.
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