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Transverse susceptibility for Ising systems: Direct calculation
from the local magnetic field distribution
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It has previously been reported that, for Ising systems, the energy, magnetization, and neutron

scattering function can be calculated directly from P{II), the local magnetic field distribution. In
this paper it is shown that, in addition, one may also calculate the linear transverse susceptibility P&

directly from P(III ). %ith the use of earlier calculations of P(h },p& for the Sherrington-Kirkpatrick
model is obtained analytically above Tg and is obtained below Tg from Monte Carlo simulations,
where Tg is the spin-glass transition temperature. It is speculated that g& may be nearly linear in

temperature below Tg. Simple cubic ferromagnetic Ising systems in two, three, and four dimensions
are also discussed.

I. INTRODUCTION

The local-magnetic-field distribution, P(h), has been
shown to contain detailed thermodynamic information
about Ising' and classical m-vector systems. In addition,
for Ising systems, the neutron scattering function, S(k,to),
is given by the product of the symmetric part of P(h) and
a thermal factor. ' A neutron polarized perpendicularly to
the Ising system's ordering direction interacts with a spin
by attempting to flip it, the difficulty in fiipping being
directly related to the local field acting on that spin. The
close relationship between S(k,co) and P(h) is thus not
surprising. However, a small external transverse field in-
teracts with individual spins in much the same way, and
hence one might expect to find information about the
transverse susceptibility, Xi, contained in P(k). In this
paper, a relationship between these two functions is
developed.

Fisher showed that Xi can be expressed in terms of a fi-
mte number of local correlation functions for a spin- —, Is-
ing model. It also has been demonstrated that a com-
bination of linear-response theory with transfer matrix
techniques will yield Xi for Ising chains of arbitrary spin
S.~ More rceently, Wang et a/. have developed a
linked-cluster-expansion calculation of Xi for S = —,

'
sys-

tems and have applied it to a ferromagnetic fcc system.
In Sec. II of this paper, it is shown that linear-response

theory can be used with the P(h) formalism previously
developed' and the result is a simple expression for Xi,
which makes the explicit the origin of the particular com-

I

binations of correlation functions appearing in earlier cal-
culations of this susceptibility. In Sec. III, Xi is examined
for a pure ferromagnetic system on a square net, a simple
cubic lattice, a four-dimensional hypercubic lattice, and in
the mean-field limit. While in two dimensions results
have been obtained3 analytically by Fisher, in three and
four dimensions Xi is now obtained numerically using re-
sults from Monte Carlo calculations of P(h) presented in
an earher paper. Section IV contains a discussion of Xi
for the Sherrington-Kirkpatrick spin-glass model.

II. ANALYTIC DEVELOPMENT

For simplicity, a spin- —, model will be considered al-

though analogous equations can be developed for S ~ —,
'

systems. The Hamiltonian is of the form

H =Ho+Hi,
where

o= 2 g~tJ+i+J l llbll i +i

and

Hi = lsibi. g trj» —
~ (3)

J

and we have assumed Jj =Jj, and, for S & —,', J;;=0.
It has been shown previously, by using linear-response

theory, that to first order in the transverse field, bi,

P
(o; ) =pibi TrI I drexp[ —(P—r)Ho]tr";exp( &Ho)tr; ]/Tr[exp—( —PHo)] . (4)

As usual, P denotes ( kn T)
It is now useful to define formally the local-field opera

tor h;:

"i =g Jij+j+Pllbll ~

The Hamiltonian Ho can then be split into two pieces,

Ho= —h, +oH , o

where Ho does not contain the operator o; Rewriting o";.
in terms of raising and lowering operators, and using

[H o;o]=0,
one finds that
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Xi/pi —g(tan—h(Ph; )/b; ) . (12)

The temperature-dependent local magnetic field distribu-
tion is defined by'

P(h)= —g(5(h —h;)),1
(13)

where N is the number of spins in the system. With this
definition,

Xz///pq = f dh P(h)taah(Ph)/h . (14)

Equation (14) is the desired expression for Xi. One can
see that all of the local correlation functions which deter-
mine Xi are contained in P(h). This result is quite gen-
eral, holding for finite parallel field and arbitrary interac-
tions J~, , provided only that J&J. J,;.

For the case of general spin S and total Hamiltonian, 6

where we must now also require J~; ——0, one finds

Xi/N(p, i) = J dh P(h)3PS(Ph)lh, (16)

where 9fs is the modified Brillouin function which is de-
fined by'

As(x) =(S+—,)coth[(S+ —,)x]——,
' coth( —,'x) . (17)

exp(WHO )o";exp( —
WHO )o";=exp( —2';o';),

and hence,

P
(o';) =@&bi I (exp( 2~—h;o;))dr, (9)

where ( . ) indicates a thermal average with respect to
00.

The properties of the cr' operator allow Eq. (9) to be
written as

(o,')=pjbi I (cosh(2~h;) —o&sinh(2';))d~. (10)

It has been shown in earlier papers (see, e.g., Ref. 1) that
o'; in the thermal average on the right-hand side of Eq.
(10}can be replaced by tanh(Ph; ). After this replacement,
integration and some simplification yield

(o";)=pj b, (tanh(PIi;)/h; )

so that the linear transverse susceptibihty is

lim Xi/Npi=(1/~ k
~
) . (21)

For a uniform (nearest-neighbor) ferromagnet (or an anti-
ferromagnet on a bipartite lattice) of coordination q and
in zero external field,

(22)

The last expression is, in fact, valid for general S.
It has been previously noted that for certain systems,

e.g., the antiferromagnet triangular net, the one-
dimensional antiferromagnet in a compensating field,
and dilute one-dimensional systems, 9 the transverse sus-
ceptibility diverges at zero temperature. These systems all
share the common property of a finite fraction of sites,
Wo having a local field of zero at T =0. For such sys-
tems, it is this fraction of sites, W'0, which dominate the
low-temperature behavior of the susceptibility:

lim Xi/NIJ, j = Wop.
T~O

(23)

III. FERROMAGNETIC SYSTEMS

The transverse susceptibility for Ising systems with uni-
form nearest-neighbor interactions on a linear chain and
on a square net may be obtained analytically from Eq.
(14) and previously published exact calculations of P(h). '

These reproduce the results obtained earlier by Fisher. 3

Since P(h) can be calculated explicitly on ferromagnetic
Bethe lattices of coordination z up to ten, Xj can also be
obtained for these systems. In practice, however, the cal-
culation increases rapidly in complexity with increasing z.
The mean-field limit, ' however, can be quickly calculat-
ed. Taking as the Hamiltonian,

(24)

Various limiting expressions for the susceptibility can be
obtained from Eq. (14 }. From the normalization proper-
ty of P(h) it is straightforward to show that the high-
temperature limit of Xi is the Curie susceptibility,

lim X/NIJ, =p. (20)
T~ oo

If at zero temperature there is not a macroscopic number
of local fields of zero magnitude, then the zero-
temperature limit yields

To avoid confusion with factors of 2 involved in switch-
ing between o notation and the S = —, case of Eq. (16},the
rest of this paper shall focus on spin- —,

' Ising systems in
the o notation, and hence Eq. (14) will be used for the
transverse susceptibility.

As might be expected, Xj can be directly related to the
neutron scattering function. Using the previously estab-
lished result, '

w'hich has a phase transition at

kyar, =J,
the mean-field magnetization is given by

m =tanh(PJm), T & T,

(25)

(26)

it follows that

N P(co/2)+P( —oi/2)
2 1+exp( —Par )

0~ T)Tc .

It has been shown that18)

P(h) =5(h —Jm),
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from which follows

Xi/Npi ——P, T )T,

Xi/Npi ——J ', T (T, .
(28)

Above Ts, P(h) is given by'

P(h)= —cosh(PIi)exp( —h l2J )exp( P—J l2) .
2n J

Returning to the case of finite dimension, Monte Carlo
simulations have been developed to obtain numerical re-
sults for P(h) for three- and four-dimensional simple cu-
bic systems with nearest-neighbor ferromagnetic interac-
tions. Using these results, Xq may be calculated directly.
Figure 1 shows Xz, normalized by its zero-temperature
value, as a function of temperature for these generalized
simple cubic systems in 2, 3, 4, and infinite dimensions,
the latter being the mean-field limit. While a singularity
in the slope at T, is expected, these simulations in three
and four dimensions are not sufficiently precise to study
this region in detail. It is clear that the peak in Xt is mov-
ing towards a lower temperature as the dimension is in-
creased, although it may never cross T, . Finally, the de-
crease in peak height and the sharpening of the peak with
increasing dimension are both consistent with the ap-
proach to the mean-field limit.

0=—~J"o o.
EJ I J

(ij)
(29)

where the sum is over all pairs (ij). The JJ are indepen-
dently distributed random bonds with mean Jo/N, taken
to be zero here, and variance J /N, N being the number
of sites.

A transition from the paramagnetic phase to the spin
glass occurs at

IV. THE SHERRINGTON-KIRKPATRICK
MODEL

The Sherrington-Kirkpatrick (SK) model" is an
infinite-range spin-glass model with Hamiltonian

Inserting this into Eq. (14) and using

slllli( pIt ) I gpi h( p&h
h

(31)

(32)

to transform the integral over all It to a finite integral
over P', one finds'

Xi/Nisi exp( ——P—J2/2) I dP'exp(P'2Jz/2) . (33)

As has previously been noted, ' the temperature deriva-
tive of P (It ) is expected to be continuous at Ts in the SK
model. Thus continuity in the temperature derivative of
Xt is also expected, and one can use the derivative at Ts
to approximate Xi below Ts. It is interesting to note that

JXi
B(ksT) Np2i

Xi( Ts )

Npz
(34)

so that a straight line extrapolation of JXq/Npt from Ts
~ould intersect the T =0 axis at 1.

Although an analytic calculation of P(h) is not avail-
able below Ts, numerical results are, having been obtained
from Monte Carlo simulations. ' Numerical estimates of
Xi may therefore be obtained in the spin-glass phase.
However, because of the long relaxation time associated
with the SK model, it is believed that these simulations
overestimate P(h =0). Since Xi is very sensitive to this
value at low temperatures, it is likewise to be expected
that these numerical results for Xi in the low-temperature
regime lie above their true values.

In Fig. 2, Xi as a function of temperature is plotted. As

kgTg ——J . (30)
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FIG. 1. The transverse susceptibility as a function of tem-
perature for simple cubic (SC}1attices in 2, 3, and 4 dimensions
and in the mean-field limit. The results in 3 and 4 dimensions
are approximate (see the text) and the dotted lines are to guide
the eye.

I

2.01.0 3.0
T T

FIG. 2. The transverse susceptibility of the Sherrington-
Kirkpatrick model. Results below Tg are approximate and the
dashed line shows the linear extrapolation from T (see the
text). The zero-temperature upper-bound Xz is defined in Eq.
(38).
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the temperature is lowered below Ts the linear extrapola-
tion provides a reasonable fit to the data until T & Tg/2.
In light of previous comments, it is not unreasonable to
expect the exact function to lie even closer to the extrapo-
lation.

This approximate "freezing" of BX /BT below Ts is
reminiscent of the approximate freezing of BP(0)/BT
below Tg. ' Given that the latter is believed not to be ex-
act aild glveil the close I'elatioilshlp betweeil Xi alld P(0),
one might expect that the apparent freezing of BXi/BT is
also not exact.

Thouless, Anderson, and Palmer have argued that at
T=Oand for small

~
h ~,

'

P(h) Nihil

where

V. CONCLUSION

It has bo:n shown that the transverse susceptibility may
be obtained from the distribution of local magnetic fields
for a quite general class of Ising systems. At sufficiently
low temperatures, Xi can serve as a direct measure of
P(h =0). By exploiting previous calculations of P(h), Xi
has been obtained for a variety of Ising systems. Perhaps
the most interesting result is the approximate freezing of
Bz/BT in the spin-glass phase of the Sherrington-l
Kirkpatrick model. Whether or not a similar
phenomenon will occur in finite-range Ising spin glasses is
not yet clear and is the subject of current investigation. A
candidate for experimental analysis of this issue is
Feo 55Mgo q5C12, an Ising-like system which is believed to
exhibit a mixed antiferromagnetic and spin-glass phase. "

A = —,
' [(21n2+1)/3+(In2)'/ ] (36)

An upper bound to Xi(0) may be obtained from this by
assummg

P(h)=a [h [,
=0 [h[)a-'/2

This yields

Jz, (0)/%pi &Xi ——2A'/2=1. 10S (38)

or about 10% higher than the value obtained from the
linear extrapolation.
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