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The frequency dependence of the localization length I for acoustic and electromagnetic waves in a
one-dimensional randomly layered medium is studied both numerically and analytically. Through
the consideration of different types of random-media models characterized by abrupt or continuous

variation of the material parameters, it is shown that beyond the low-frequency behavior of I -m
where co denotes the angular frequency, the localization length either approaches a constant or
diverges at high frequencies. In all cases, the value of I for a given random medium is found to ex-

hibit a well-defmed lower bound ~hose value is generally several orders of magnitude times the
correlation length of the inhomogeneities. The dependence of this minimum localization length on

the amount of randomness, plus a comparison with the Schrodinger wave-localization length

behavior, are presented and discussed.

Localization is a phenomenon generic to waves in ran-
dom media. ' ~ With systems of less than two spatial di-
mensions, for example, it is now known that all waves,
Schrodinger or classical (electromagnetic and elastic}, are
localized with an infinitesmal amount of randomness. '
While the basic physics of localization is similar for
Schrodinger and classical waves, the differences in the
dispersion relation and the wave boundary conditions im-

ply that with regard to specific behaviors, such as the
wave-propagation characteristics and the frequency
dependence of the localization length, the two cases are
expected to be distinct. Recent studies of the localiza-
tion length in the low-frequency regime have shown that,
whereas a quantum particle generally becomes more local-
ized in a disordered medium as its energy decreases, the
opposite is the case for classical waves since a low-

frequency wave tends to perceive the disordered system as
an essentially homogeneous effective medium due to its
poor resolving capability. In this work we study classical
wave localization in a one-dimensional continuous ran-
dom medium and point out that at intermediate and high
frequencies the locahzation length variation differs signi-
ficantly from that of the low-frequency regime. In partic-
ular, we show that for a wide class of random material pa-
rameter variations the localization length of a given medi-
um is always characterized by a well-defined minimum
value, which is generally orders of magnitude larger than
the correlation length of the inhomogeneities. Further-
more, depending on whether the random variations occur
abruptly or continuously the minimum value either is ap-
proached asymptotically at high frequencies or occurs at
some interinediate frequency. Comparison with the
Schrodinger wave-localization behavior indicates that
there is no comparable counterpart to the minimum local-
ization length in the quantum particle case.

Consider a one-dimensional medium with spatially
varying density p(z), elastic modulus E(z), dielectric con-
stant e(z), and magnetic permeability p, (z). Since in one
dimension the elastic weave equation and the electromag-

netic wave equation are related by a mapping of the vari-
ables, the results obtained in one case are ensured to be
applicable to the other case as well. In this work we will
use the notations of the elastic case. The wave equation
can be written as a pair of coupled first-order differential
equations:
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where W denotes displacement velocity and P the pres-
sure. In frequency domain, where we let exp( —idiot) be
the time dependence of W and P, the equation becomes

0 p(z) P
—1/E(z) 0 U (2)

d8
dz

= —co[p(z)sin 8+E '(z)cos2e], (3a)

dr
c&

=(res/2)sin(28)[p(z) —E '(z)], (3b)

where U=i W. We would first like to show that for ran-
dom p and E, the localization length 1 of the elastic wave
is nondecreasing at high frequencies.

Localization of the wave means that the dominant
behavior for the solution to Eq. (2) must decay like
exp( —yz) as z~~, where y=—1 '. However, the fact
that the matrix on the right-hand side of Eq. (2) has zero
trace implies that there must also be a linearly indepen-
dent solution which grows like exp[+ yz] with exactly the
same value of y. For arbitrary choice of the initial condi-
tion, the growing solution will be picked up with probabil-
ity one. We thus take P(0}=1 and U(0) =0. By making
a coordinate transforfnation 8=r cos8, U =r sin8, Eq. (2)
takes the form
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with r(0) =1 and 8(0}=0. The 8 equation is now decou-
pled from the r equation, and the value of y can be ex-
pressed as

knowledge of P(8,$) can directly yield y through Eq. (5),
we now focus our effort on getting P(8,$) at the high-
frequency limit. Let P be expanded as

y= lim —lnr =—lim — sin(28) fp(x) —K (x)]dx .1 co 1 z —1

z wz 2s mz
p p(0)+ p(1)+ p(2)+. . .

QP
(7)

(4)

We recognize from Eq. (4} that y is essentially the average
of sin(28)(p —K '). To carry out this averaging, we as-
sume that p p[g(z)], K=K[('(z)], where ((z) is a sta-
tionary, ergodic, Markov process with infinitesmal gen-
erator Q. Since we allow g(z) E R ~ to have a state space
of arbitrarily large dimension d, a very large class of ran-
dom models is included in this formulation. From the as-
sumed properties it follows that g(z) has an invariant dis-
tribution function P(g) which satisfies the Fokker-Planck
equation Q'P(g)=0, with Q' denoting the adjoint of Q.
The ergodic theorem then tells us that the averaging ex-
pressed in Eq. (4) can alternatively be written as

y= —f 18f dgP(8, $)sin(28}[p(g) —K '(g)] .

Here P (8,g } is the joint invariant measure for the param-
eter set (8,$}which completely describes the Markov pro-
cess for the r variable. P(8,() satisfies the equation
W'P(8, $)=0, where from Eq. (3a)

W= Q —co(p sin 8+K 'cos 8)
8

is the infinitesmal generator for (8,(). Since the

for co~oo. Substitution of Eq. (7) into Eq. (5) yields
y=coco+ei+c2/co+ . for the asymptotic behavior of
y. The equation W'P(8, ()=0 can now be expressed as

a
ae [(psin 8+K 'cos 8)P'o']=0, (8a)

Q'P'"'+ [(p sin 8+K 'cos 8)P'"+"]=0, (8b)

p(o)(8 g)
p(k)

(10)
K(g) 2m[p(g)sin 8+K '(g)cos 8]

Substitution of Eq. (10) into Eq. (5) shows that the contri-
bution from P' '(e, g) vanishes because the 8 integration
gives zero. That means y-ci+c2/oi+. as co~ao,
which proves our assertion that localization length is non-
decreasing at high frequencies. The next term of expan-
sion in P(e,g), P'", can be obtained from Eq. (8b) by us-

inII P'I, Eq. (10), as the input. Insertion of the resulting
P "into Eq. (5) yields a general expression for c i.

where n =0, 1,2, . . . . From Eq. (8a) and the requirement
that

f dep(8, $)=p(g),
we get

f ~dgP(g) f desin(28)arctanI [p(g')K(g)]'rztaneIQ
p(g)sin 8+K '(g)cos 8

where the arctan function is understood to be the branch
which is zero when 8=0, and is monotonically increasing.

To obtain the localization length behavior for all fre-
quencies, we have to consider specific random-media
models. For the first model we will let g(z) =(ji,g2) and

p =1+2cr~g i(z),

K ' = 1+2axf2(z),

(12a}

(12b)

where O~o&[&]&1 gives the amplitude of randomness,
and gi, g2 are random step functions which jump simul-
taneously and whose values are independent and uniform-
ly distributed in [——,', —,

' ]. The thickness M of a given
layer (in which the value of pi~2~ is constant) is assumed
to be exponentially distributed with the probability densi-
ty a exp( —M/a), a being the mean layer thickness. In
what follows we will let a=1. It is clear that in the
present case P(g) = 1 on a square [——,, —,]X [——,, —,],
and the operation of Q represents

1/2 1/2
Qf (Ci, 42) ——f dzi f dz2[f(zi, zz }—f(ki, &2)] .

(13)

%'e note that the present model can easily be adapted to
the special case in which the values of gi, (2 are binary in
nature (two different materials). The mathematics actual-
ly simphfies in that instance. Equations (11)—(13) com-
plete the prescription for calculating the high-frequency
behavior of the model. For low frequencies, the limiting
form of y has been determined by previous works2 to be

y -co . For completeness, we write down the low-
frequency asymptotic expression for y with all the per-
tinent factors:

y= —„(o,+crx)auo oi, ai~o2 2 ——2 (14)

where uo=(Ko/po)' =1 is the average velocity of the
medium. To interpolate between the lo~- and the high-
frequency limits, we use transfer matrix to obtain numeri-
cally simulated values of y. That is,
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nT z (15)
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where ( ) denotes configurational averaging,
T=(l —~R ~z)'~2, with R =—q'/p', and p, q are given

by

p q N

~I+i, l
0

The notation M;+i, ; denotes a 2)&2 transfer matrix with
elements

m 11™22 =o 5 [ I +[(Pi +i' + i ) /( pi Ki )] '"
l

Xexp[&(0 +i+4) l

mi2 ——mgi ——0.5t 1 —[(p;+iK;~i)/(P~K; )]I'~

&exp['(4+ i
—4'I )]

and P; =a;(p&/K~)' /2, where p; and K~ are, respectively,
the density and elastic modulus of ith layer, and a; is its
thickness. In Fig. 1 we plot the numerically calculated lo-
calization length / ( =y ') as a function of wavelength A,

(=2'/co), both in units of a (=1), for three values of
o =o~=ox. Every point represents the result of averag-
ing over 40 configurations. The low-frequency limit,
evaluated from Eq. (14), and the high-frequency limit,
evaluated from Eqs. (11)—(13), are also shown by dashed
lines. It is seen that except for statistical fiuctuations, the
behavior of the localization length is essentially a smooth
interpolation between the low- and the high-frequency
limits. The minimum localization length for this model is
therefore given by I/c i. On the same graph we also show
the locahzation length for the quantum Schrodinger wave
where the random parameter is the potential V:

a =o,[1+2$(z)],

where p is the particle mass, A' is Planck's constant, and
the wavelength is defined by A, =2M/&2pE (the zero of
E in this case is defined by the lower bound of the poten-
tial, which also corresponds to the lower bound for the en-

ergy eigenvalues). The localization length in this case is
again calculated by the transfer matrix method with each
point representing averaging over 50 configurations. Be-
sides the trend of the high-frequency variation being dis-
similar to that of the classical wave ease, the localization
length for a quantum particle clearly has no lower bound.
One source of these differences can be traced to the
dispersion relations of the waves and their effect on the
refiection coefficient at an interface: whereas the classical
wave reflection coefficient is independent of the frequen-
cy, the quantum particle always becomes more transmit-
ting as its energy increases. Another source of difference
is that whereas for the quantum particle with small E
there can be regions where V~E and the Schrodinger
wave becomes exponentially attenuated, the acoustic wave
in a nondissipative continuous medium is always (locally)
propagating in nature. However, it should be remarked
that for the electromagnetic wave in a medium containing
metallic elements (e(0) the analogy with the acoustic
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FIG. 1. Localization length for the discontinuous mode1 plot-
ted as a function of wavelength A, =2m /u (mean velocity is 1 in
the present case) for three values of the randomness parameter
o. Dashed lines denote high- and low-frequency limiting
behaviors evaluated from Eqs. (11)—(14). The localization
length for a quantum particle is shown by the dashed-dotted
line. Both the localization length and the wavelength are mea-
sured in units of average layer thickness V, taken to be 1 in the
present case.

(18a)

so that

wave breaks down (as pointed out in Ref. 5), since there
the wave can become exponentially attenuated inside re-
gions of negative e. In that particular case a different
mathematical treatment is needed, and the result obtained
so far in regard to the localization length lower bound are
not expected to be applicable.

The second model we would like to consider is one
where there is no abrupt variation of the material parame-
ters. One way to obtain such a model is to smooth the
material parameters of the first model with an exponential
filter. The discontinuities in the material parameters then
becomes discontinuities in the first derivative of the ma-
terial parameters with respect to z. More precisely, if we
let m denote the material parameter p or K ' of the first
model and m denote that of the second model, then
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t
m (z) =P I exp[ —tz(z —s)]m(s)ds, (18b)

where a and P are constants. Since m is a piecewise con-
stant function, Eq. (18) can be integrated within each con-
stant region to obtain

m (z) =exp(z i
—z)m (z i )+[1—exp(z, —z}]m, (19)

where zi &z denotes the coordinate for the lower end of
the layer, and we have let a=P=1 so that (m ) =(m ).
By using this model, the calculation of the asymptotic
leading term of y yields ci ——0. One immediate implica-
tion is that instead of approaching a constant, the locali-
zation length now increases at high frequencies. Since it
is known that in the low-frequency regime the localization
length increases as the frequency decreases, there must be
a minimum at some intermahate frequency. By subdivid-

ing each layer into ten intervals, we have carried out nu-
merical simulation on the continuous model by treating
the inaterial parameters within each interval as piecewise
constant and using the transfer matrix to calculate y. In
Fig. 2 the calculated localization length for the three m

parameter sets shown in Fig. 1 is plotted as a function of
wavelength. Each point is noted to be the average for 40
configurations. The minimum of the localization length
is seen to occur at A,=loa, with the behavior for low fre-
quencies, A, ~&10a, approaching that given by Eq. (14)
(shown by dashed lines). Physically, the divergence of lo-
calization length at high frequencies is understandable in
terms of decreased refiection coefficient since, as the
wavelength decreases, the wave begins to perceive the en-
vironment as slowly varying and the wave transmission is
consequently increased. We expect a similar effect to
occur for the Schrodinger wave if the variation of V be-
comes smooth. However, that would not alter the qualita-
tive behavior of the Schrodinger wave-localization length
as a function of frequency. An interesting (hypothetical)
problem arises if we consider the electromagnetic wave
and allow the presence of metallic regions within the con-
text of the continuous-variation model. Can the high-
frequency divergence of I be counteracted by the presence
of negative e regions? If so, for a given fraction of metal-
lic elements how negative would e have to be before the
high-frequency trend of I is reversed? We have no clear-
cut answers to these questions at present.

In Fig. 3 the values of minimum localization length L
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FIG. 2. Localization length for the continuous model plotted
as a function of wavelength A, =2m/co (mean velocity is 1 in the
present case). The three values of a denote the amount of ran-
domness used to generate the m parameters. The material pa-
rameters for the continuous model is obtained from m by using
Eq. (19). The units for localization length and wavelength are
the same as those in Fig. 1. The dashed lines denote the lo~-
frequency limiting behavior given by Eq. I,'l4).

f0
O.f

l

0.2
I ( )

0.4 0.60.8 f .0
a

FIG. 3. Minimum localization length for the discontinuous
and the continuous models plotted as a function of o.
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for the two models are plotted as a function of random-

ness parameter o (=tTo ——ox). It is noted that the varia-

tion of I. can be approximately described by the relation

(20)

where' varies from 2 at small o to &3 for a~i.
Besides the two types of random-media model con-

sidered above, we have also numerically simulated a non-

Markovian model in which p and E ' are given by Eq.
(12) but the layer thickness is constant. While y still

behaves as to2 at low frequencies, at intermediate frequen-
cies the localization length displays oscillations before set-

tling down to a constant at high frequencies. The oscilla-
tions are interpretable as a remnant of a periodic system
where there are bands of delocalized states. In this case
the 1ocalization length minimum occurs at some inter-
mediate frequency.

In summary, we have shown that under the assumption
of Markov, stationary, and ergodic dependence for the
random material parameters the localization length for
classical waves (with special case of exception noted) in
one dimension is nondecreasing at high frequencies and
generally possesses a minimum value. Implications of
this result, plus consideration of localization in higher di-
mensions, are presently being pursued.
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5e/c~p, c/p, ~E, electric field ~ displacement velocity, mag-
netic field ~ pressure. Here c denotes the speed of light.
The mapping breaks down, however, for e negative (metal
layers) since p is always positive. In this work we only consid-
er e positive so that the wave is propagating in nature.

6Mathematics of stochastic methods is described by C. W. Gar-
diner, Handbook of Stochastic Methods for Physics, Chemis
try, and the ¹tural Sciences (Springer-Verlag, New York,
19S3). The operator Q is defined as Qf ( go)
=lim(1/z){E[f(g(z))

~
g(0)=goj —f(go)), with the notationz~{)

E[ ] denoting the operation of taking expectation value.


