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%'e present a method to obtain dynamical correlation functions of quantum many-body systems
in the real-frequency domain from Monte Carlo data of the corresponding imaginary-time Green's
functions. The method is based on a least-squares-fit procedure to solve the integral equation relat-

ing imaginary-tine and real-frequency correlation functions. To demonstrate its feasibility, we have

applied our method to imaginary-time Monte Carlo data for the density correlation function of a

simple model of interacting spinless fermions in one dimension. We compare our results to the
analytical results, available in the limits of zero and strong interaction. %'e find that despite the
presence of noise in the input data, the real-frequency spectra obtained with our method are qualita-

tively correct. They reflect accurately the particle-hole and the soliton-antisoliton excitations,
present in the noninteracting and in the strongly coupled fermion system, respectively. We also
compare our method to other approaches that have been proposed for obtaining dynamical correla-
tion functions via Monte Carlo simulation.

I. INTRODUCTION

In recent years, Monte Carlo (MC) methods have be-
come a powerful tool for the investigation of the thermo-
dynamics and static correlations of quantum many-body
systems. ' However, little progress has been made so far in
the development of MC techniques that would allow the
study of the real-time dynamics of such systems. Recent
attempts to directly simulate real-frequency2 or real-times
correlation functions have dealt only with the simplest
(one degree-of-freedom) model systems and have given
reasonable results only after an exceedingly large number
of MC steps. Also, Pade approximants have been used to
analytically continue imaginary-time MC data for single
degree-of-freedom models. Considering the enormous
amounts of computation time required, it seems difficult
to apply these methods to many-particle systems.

Recently, we have proposed a procedure to extract
real-frequency self-correlation functions from the corre-
sponding imaginary-time Greens functions of many-
particle systems that can be simulated by standard quan-
tum MC techniques. Here, we present a more detailed
account of this method. We should emphasize from the
outset that, given a finite set of "noisy" MC data for the
imaginary-time Green's function, one should expect, at
best, qualitatively correct results for the corresponding
real-frequency spectral function. Roughly speaking, one
encounters the difficulty that the imaginary-time Green's
function is very insensitive to the structure of the underly-
ing spectral function. Hence, even small statistical errors
in the MC input data can give rise to large errors in the
resulting spectral function. It is the purpose of the
present paper to explore possibilities of extracting the
maximum amount of information about the spectral func-
tion that is contained in such noisy input data.

In Sec. II, we will summarize the general properties of
the various types of real-time correlation functions that
are of physical interest. We also derive the basic integral

equation which expresses the imaginary-time Green's
functions in terms of a real-frequency spectral function.

In Sec. III, we discuss the difficulties of solving this in-
tegral equation (to obtain the spectral function) in the
presence of noise in the imaginary-time input data. We
then outline a method to achieve such a solution. The
crucial ingredient of our procedure is to include as a con-
straint on the solution the fact that the real-frequency
spectrum of a self-correlation function is positive. In ad-
dition, we take into account not only MC data of the
imaginary-time Green s function itself, but also indepen-
dently simulated data for its first and second derivatives.

To demonstrate the feasibility of our approach, we have
applied it to a simple one-dimensional (1D) model of spin-
less fermions. '7 In Sec. IV, we discuss the results ob-
tained for the density correlation function of this system
and compare them to exact and approximate analytical re-
sults, valid in the limits of a noninteracting and a strongly
coupled system, respectively. For the noninteracting case,
we demonstrate that the results of our procedure are qual-
itatively in agreement with the exact results and stable
against noise and changes of various "arbitrary" parame-
ters. We also disscuss and compare our procedure to other
methods that might be used to extract real-frequency
spectra from imaginary-time data. For the strongly cou-
pled system, we discuss the dynamics of soliton creation
and diffusion as reflected in the spectrum of the density
correlation function. We show that the essential features
of the spectrum are accurately reproduced in our results
obtained from MC data.

Section V contains a brief summary of the results and
concluding remarks.

II. DYNAMICAL CORRELATION FUNCTIONS

Let us briefly summarize a few general properties of the
various types of time-dependent correlation functions that
will be of interest to us in the following. For the time be-
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ing, we want to assume only that the physical system is
described by some (Hermitian} Hamiltonian operator H.
%e consider the time-dependent correlations between two
arbitrary operators, A and B, which need not be Hermi-

tian, unless it is specified explicitly.
Quantum Monte Carlo methods allow us to obtain the

imaginary-time Green's function, defined as

Sgii(m) =2gqii(co)/(1+e ~}, (2.10)

Xiii =Pea(&)taW
2

(2.1 1)

The connection between S„z,Xiii, and Pzii is summa-
rized by

Ggii(r) = (A( i r—)B}

where

—=—tr[e ~ A( i~—)B],z (2.1)

Hence, the physically relevant correlation functions,
Xqii{z} and Szii(co), can be easily constructed from
0~a(~}

On the other hand, G„~{a)is given in terms of (}}zii(z)
by

A (r) ~tHA tH—'

(2.2)
Gz~(~) =—g e " P„q(z =i co„), 0(~ & P (2.12)

S„(t)={A(t)B} (2.3)

Z=exp( PH) —is the partition function at temperature
kaT=1/P, and r is limited to 0&«P

On the other hand, the experimentally observable linear
response of the system is given in terms of real-time corre-
lation functions of the form

GA~(r)= f ~e ' Pqa(ru) .l+e-~ (2.13)

[where r0„=n(2n+1)/P, n =0,+1,+2, . . . ] and hence in
terms of /qadi(co), by

Xgg(t) =i {[A(t), B] }, (2.4)

where [, ] denotes the commutator. For example, the
dynamical structure factor can be written as the time
Fourier transform of some Sqzi(t),

S„ii(r0)= I dt e'"'Sgg (t) . (2.5)

Quantities like the frequency-dependent conductivity are
gi~~n by the retarded (z=r0+i0+) part of the two-sided
Laplace transform of some X„&(t),

Xiii(z) =n J dt 8(ot)e~'Xgz(t), (2.6)

where z is a complex frequency with Imz~0,
0 =sgn(lmz), and 8(ot) denotes the step function.

For our purposes, it is convenient to introduce the
correlation function,

The problem of converting the imaginary-time Green's
function into the real-frequency correlation function is
thus reduced to solving this integral equation (2.13).

Of particular interest in the followinp is the case of
self-correlation functions, that is, B=A, where Pz„g(co)
is real valued and positive in the sense that

P„"„y(r0))0 . (2.14)

If the operators A and B are Hermitian, i.e., A =At,
B=B,Pqz(t) [as defined in (2.7)] is purely imaginary,
and the self-correlation function satisfies

(2.15)

Finally, we should point out the connection between the
imaginary-time Green's function Gzz(~) and the sum
rules obeyed by S„ii(m), X'„'ii(a)), and y'„'~(r0), namely,

(}I)gg(t)=i{[A(t),B]~} (2.7)

[and, analogous to (2.8), its two-sided Laplace transform
pzii(z)] where in (2.7), [, ]+ denotes the anticommutator.
Although P„z itself is not of physical interest, it is direct-
ly related to the physically relevant linear-response func-
tions Sz~ and Xiii. On the other hand„Pzz(z) is in a
simple way connected with Gzz. These relationships are
conveniently formulated in terms of the spectral functions
defined at real frequencies co by

(I{''„'ii(co)=—[X„ii(z=co+i0+) X~ii{z=co —i0 )]-
21

Ggii (r) = ( —~) S„ii(co),~=0 (2.16)

Ggg(r) = J ( co) Pgg(co), —

m =0,2,4, . . . , (2.17)

where m=0, 1,2, . . . and Gzz'(r) denotes the mth deriva-
tive. Furthermore, if Pzii(r0)=()}'„'ii( —co) [e.g., for the
self-correlation function of a Hermitian operator
A =B=A, Eq. (2.15)], we have

=—I dt e'"'Xgg (t),
2l

(2.8)
Gq~'(~) = ( —co) X~~(co),x=0

dao 0'ia(~}
4~a(z}=

Cd —Z
(2.9)

and, analogously, Xiii(co). They contain the complete in-
formation about the full complex frequency functions,
P~~(z) and Xiii(z), respectively, since, for example,

(2.18)

Hence, G&7i'(v =0) contains the mth moment of Szii(co)
and also the mth moment of Pzz(co) and Xzz(co) in the
case A =8=A~.
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III. CONVERSION FROM IMAGINARY TIME
TO REAL FREQUENCY

A. Overview

function PF,

p
(t(g(((co)=PF(co;ai, . . . , aF)= g a(P((co},

/=1
(3.1)

As pointed out in Sec. II, the spectral function Pz(((co)
can be obtained from Gz(((r) as the solution of the in-
tegral equation (2.13). This would be a straightforward
numerical exercise if Gz(((r) were given with arbitrary ac-
curacy for an arbitrarily large number of r values. We
could, for example, start from some approximate trial

I

where (()((co) is an appropriately chosen complete set of
orthogonal (or at least linearly independent) functions.
%e would then vary the amplitudes gI so as to minimize
the "mean squared deviation" function [not to be con-
fused with S(co},Eq. (2.5)]

P (x) Q)S(ai, . . . , a(;)= dr Gg(((r) K(r, co)P(;(co;a 1, . . . , aF)
0 2$'

2

(3.2)

where

K(r, co)=2e '"/(1+e ~) .

By taking

(3.3)

I

tion, is insensitive to the detailed behavior of (()'„'((.

Notice, however, that the (first and second) r deriva-
tives,

S l=1, . . . ,E,
aI

(3.4) K(r, m ) =( co) K(r—, m ), (3.7)

a set of F linear equations for a i, . . . , aF results which is
readily solved numerically. With a sufficiently large
number, F, of "fit" parameters a(, we should then obtain
Pq(((co) with (in principle) arbitrary accuracy.

In a Monte Carlo calculation, however, Gz(((r) is calcu-
lated at only a limited number af r; values (i =0, . . . ,I.).
We can still follow the "least-squares" approach, outlined
above, if we replace the r integral in (3.2) by a sum over
the discrete r; values. However, we then have to restrict
the number of fit parameters to

(3.5)

displayed in Figs. 1(b) and 1(c), show a different peak
structure than K(r, co) itself. The r derivatives of Gz(((r),

G&7('(r)= J K(r, co)( co) (t(q—(((co), (3.8)
2n

contain the same spectral function (I)'„'(((co) under the in-
tegral, weighted, however, with K(r, co)( co) instea—d of
just K(r, co). One wauld, therefore, expect that the deriva-
tives, when measured independently with the same accura-
cy as G„z(r), should reveal more detailed information

[otherwise the set af linear equations (3.4) becomes singu-
lar and the solutions are no longer unique]. It is clear that
this in turn limits the "resolution" of our "measurement"
of Pg(((co).

Even more severe limitations, however, arise from the
fact that all MC data are "noisy:" Roughly speaking, the
difficulty is that a small statistical error in the input data,
G„(((r;),will in general lead to a large error in the spectral
function (()zz(co}, when the simple linear conversion pro-
cedure [Eqs. (3.1)—(3.4)] is applied. To understand this, it
is instructive to consider the behavior of the integral ker-
nel, K(r,co), shown in Fig. 1(a) as a function of co for
various values of r: For 0&r&p/2, it exhibits a broad
peak at positive frequencies with a width of the order 1/r.
In the limit

~
co

~
&&r ',(p—r) ', it falls off like

exp[ —r(co)] for co pO and like exp[(P —r)co] for co &0.
When r reaches p/2, the peak is centered around co &0,
and for p/2&r&p it appears at negative frequencies,
Smcc

K(r, co) =K(P r, co—) . —

3 2-
h

0

2
QQ.

I

20

3
)0-
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CQ

0
l I
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I
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Clearly, K(r, co) is a quite structureless object, and the
imaginary-time Green s function G&3(r), obtained by in-
tegl'at111g over /gal(co) with K( , r)acos a weight fllilc-

FIG. 1. Integral kernal I( (v, ~) and v. derivatives for ~=0
( ~ ~ ~ ), P/4 ( ), and P/2 (———).
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about the underlying spectral function Pq(((a(), at least,
for frequencies co larger than the thermal frequency 1/P.

B. Conversion procedure

the relationships

G{~)=([H,A( i—1))-At),
'2 (3.9)

After these preliminary remarks, let us now describe
our convemion method.

First of all, we restrict ourselves to self-correlation
functions G„„i(~)for which Pzz i(co) is positive, as point-

ed out in the preceding section [Eq. Q.25)]. This property
turns out to be a very important piece of information, and
our method relies heavily on it.

Using Monte Carlo techniques, we "measure" G(r)
and, independently, the first few (two, in the sample cal-
clilatlolis discllssed 111 Sec. IV) of its T derivatives, llslllg

G(7.)=([H,[H, A( i—7-)] ] At),

and so on. (For notational convenience, the subscripts
AA are omitted here and in the following. )

To extract information about the spectral function from
these data, we employ, basically, a least-squares-fit pro-
cedure, similar to the one outlined above: We introduce a
trial function P(;(a(;a(, . . . , aF) of the form (3.1) with
basis functions P( (yet to be specified), and a "sum-of-
squares" function

S(ai, . . . , aF)=
& gg I[GMc(r() —GF '(~;;a(, . . . , aF)]/bGM(c(v;)I

MC (

In (3.10), 6Mc(r; ) denotes the MC data for the mth derivative (m =0,1,2, . . .) of G(~),

Gz '(r;;a(, . . . ,aF)= K(r;,o()( o()—PF(co;ai, . . . , aF)
2'lT

(3.10)

(3.11)

$F((0;ai, . . . , a(") &0 (3.12)

at all values of a(. We will demonstrate later on (Fig. 8)
that this constraint is essential in stabilizing the fit result
P(; against large, unphysical statistical fluctuations.

To carry out the minimization, let us write S explicitly
as a function of a(, . . . , a(;. By inserting (3.1) into (3.11),
and then (3.11) into (3.10), we obtain

the corresponding fit. lLGMc(r; ) is the standard deviation
of GMc(r; ), and NMc is the total nmnber of data points
G~Mc(~; ) included in S. We then minimize S with respect
to the amplitudes a(. However, we do not permit arbi-
trary values of ai, . . . , aF but rather impose the con
straint that only those values are allowed in minimizing S
for which

1, (I —1)5$'&o(~lb W

0, otherwise, (3.20)

for 1=1,2, . . . ,E. If the spectral function P"(to) is non-
symmetric [i.e., P"(—co)+P"(t0) for certain (0], we intro-
duce an analogous set of blocks at negative frequencies.
However, in many cases of interest, we know that

P"(o()=—P"( —a() (3.21)

tion of the problem) by an appropriate choice of the basis
functions P((co) in (3.1). One such choice, the one that we
will apply in the following, is a "histogram" representa-
tion, i.e., the P( are chosen to be nonoverlapping rectangu-
lar blocks of a certain width 5W (to be specified later on).

F E
S= g P((a(a(+ QX(a(+So,

I,/'= 1 1=1

where

2
Pll' g gpRp(Rpl' &

P
2X(——g g~G~R~(,

2 2So= gg„G(

G„=GMc(v;. ), (u=—(m, i),
g( =[&Mc~GMc«. )] '

dQ)R ( —— K(r;,o()( —ai) P(((o) .
2m

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(for example, if A is Hermitian) and may hence choose a
symmetric trial function right from the beginning. In this
case, we take (3.20) as the definition of P((a() for o(&0
and define

It can easily be taken into account by setting

aI ——bI, I=1, . . . ,F (3.24)

(3.22)

i.e., P((o() consists of two blocks of width b IV, positioned
symmetrically around co=0. A typical example of such a
p(;(CO;ai, . . . , aF) ls sllowil 111 Fig. 2.

With this set of basis functions, the constraint (3.12) is
equivalent to

(3.23)

Clearly, under the condition (3.12), the minimization of S
becomes a nonlinear problem. However, it can be reduced
to a series of linear equations (allowing a complete solu-

where the parameters b~ are arbitrary real numbers. To
minimize S with respect to the b~, we have to solve the
system of nonlinear equations
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0=as(b', , . . . , bF') tab,

=4 QPttbt —Xi bt, 1=1, . . . , F .
t

(3.25)

depend on b, W or, equivalently, on the total width of the
spectral function,

(3.29)

From (3.25) it follows that, for a particular value of I, ei-
ther bt or the term within large parentheses (or both) van-

ishes. The complete set of (in general complex) solutions
of (3.25) can therefore be obtained as follows. For a cer-
tain subset of i's, ii, . . . , lx (JC &B, say, we choose

~ ~ 0 bl ~0
K

(3.26)

For the other l's we solve a system of linear equations for
$2,

1 +lI y ~ ~ e y lK

P(tbt —XI, 1 =1, . . . , F; i&ii, . . . , ltd .

(3.27)

There are 2 subsets l&, . . . , lx and hence (at most) 2F

solutions of (3.25). From those, we select the ones for
which

S,'&O, I=l, . . . ,r, (3.28)

and out of those, the one which gives the smallest value
for S(bi, . . . , bF). This is the absolute minimum of
S(ai, . . . , aF) under the constraint (3.12).

We should emphasize at this point that the above-
described minimization procedure can be applied whenev-
er the basis functions Pi(co) are positive [in the sense of
Eq. (2.14)] and "nonoverlapping" [in the sense that, for
any two, i and l' (i'+I), $&(to) vanishes wherever P&(to)
does not].

A comment concerning our particular choice of basis
functions 4i is now in place: First of all, let us point out
that it is flexible enough to approximate any positive
function p"(co) with arbitrary accuracy: We just have to
allow for a large enough number of blocks with a small
enough width b, W. In praxis, however, this will hardly be
the problem since, as we pointed out at the beginning, our
"measurement" of p"(co) is subject to a hmited resolution,
depending on the statistical quality and number of input
data. The finite-block width hW takes this limited reso-
lution into account.

This brings us to the question of how to choose b W.
Obviously, the flt results, a„.. . , aF, and S(ai, . . . , az}

One possible approach to selecting a value for W is to use
it as an additional flt parameter: I.et us denote the (abso-
lute) minimum value of S(b, , . . . , bt;} for a given value
of Wand Eby

SF SF(——W) . (3.30)

IV. APPLICATION TO A SIMPLE MODEL:
SPINLESS FERMIONS IN ONE DIMENSION

A. The model

For a typical set of MC data (the details of which will be
described below) and for values of 8=2, 3, and 4, we have
displayed SF(W) in Fig. 5(a). It clearly exhibits local
minima. For a given value of F, we select that value,
WP', for which SF(W) attains its absolute minimum.
(The significance of the secondary local minima will be
discussed in the following section. }

Notice that, as one would expect, Sz[ WP'] will saturate
to some final absolute minimal value as we increase F fur-
ther (Fig. 6). We then choose the smallest value of F for
which Sz( Wz) comes within, say, a few percent of this sa-
turation value.

In this way, we have, finally, determined all the param-
eters that enter into our fit result P~. Our procedure of
selecting F, the number of blocks, and W= WF, the total
width of the spectrum, may appear somewhat arbitrary.
However, as we will discuss in the following section, the
final result PF does not depend crucially on F and W
(when varied within reasonable limits).

In concluding this section, we should point out that cer-
tain sum rules will automatically be satisfied by the real-
frequency correlation functions obtained from our fit pro-
cedure. Namely, the correlation function S(to} [obtained
from the fit result for P"(co) by multiplying with the
thermal factor (2.10}]obeys the mth sum rule, (2.16) [to
within the statistical accuracy of the MC value of
G' '(r=0)] if G' '(r=0) is included in the sum of
squares (3.10}. Furthermore, if P"(—c0)=P"(to), the fit
result for P"(to) and X"(co) [obtained from the fit result
for P"(co) via (2.11)] will obey the mth sum rules, (2.17)
and (2.18), respectively, if G' '(r=0) is included in the
it.

LL

O

3

To test our method, we ap ly it to a simple model, a 1D
system of spinless fermions, described by the Hamiltoni-
an

H= g [ t(c~cz+i+H. c. )+—Vn~nz+&], (4.1)
1gj&N

where c~ (cj } annihilates (creates} a fermion at lattice site
J~

"j =~j~j (4.2)

FIG. 2. Typical trial function QF{co;a„.. . , aF) for F=3.

is the occupation number at that site, and X is the total
number of sites in the chain. We restrict ourselves to even
values of N. Furthermore, we assume periodic boundary
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conditions, i.e.,

~J +W ~J (4.3)

G(r, k)= — g e '"'1 ''[(n ( ir—)n'(0})
1gj,j'gN

for arbitrary j. In (4.1), the first term, involving the over-

lap integral t gives rise to single-particle transfer between
nearest-neighbor sites. The second term describes an in-

tersite repulsion (for V & 0) between two particles.
Using the "world-line" MC algorithm, we simulate the

density correlation function

k & 0. [Note that the case k =0 is trivial: In the canoni-
cal ensemble, G(r, 0) and P"{t0,0) vanish due to particle
conservation. ]

In addition to G(k, r) we also simulate its first and
second derivative, using the relations

(nj(r)nj (0))=([H,nj(r)] nj (0))dr

= (IJ(r)nj (0) ) —(IJ i(r)nj (0) )

(4.16)

where

= (nk( —ir}nk(0) ),

—&n) ) (n'&]

(4.4)

and

2

(nj(r)nj (0))= —([H,nj(r)] [H, nj (0)] )

= —2&1,( )I, {o)&+ &I, ( )I (0) &

(4.17)

nt, N'/ ——g e '"J(n —(n ) ),
lgjgS

2m N N Nk= rt, rI= ——+1„.. . , ——1,—.
N '

2
' '2 '2

(4.5)

(4.6)

where

IJ t(cj cj+i cj+ic—f) . (4.18)

Here ( ) denotes the thermal average in the canonical en-

semble, i.e., the total number of fermions

(4.7)

is fixed.
Since the Hamiltonian (4.1) is invariant under transla-

tions (I ~j +I} and spatial inversion j(~N j), we hav—e

( nk(t)n t, (0)) =0, k~k' (4.8)

and

We have carried out these simulations for four cases,
namely:

{1)A noninteracting, half-filled system with

V/t =0, ktt T/t =0.2, N =16, Np 18 . ——
(2) A strongly interacting, half-filled system with

V/t=6. 0, ktiT/t=0. 2, N=16, N~ 8. —

(3) A strongly interacting, half-filled system with

V/t =12.0, kttT/t=0. 2, N =16, Np 8. ——

(nk(t)nk (0))=0 (all k, k'),

where

(4.9) (4) A strongly interacting, less than half-filled system
with

nk =(2/N)'~ g sin(kj)(nj —(nj ) ),
k

(4.10}

n t(2/N)'~ icos(kj)(n —(n )) .
k

(4.11)

=i([n (k)t, n(k)0] +) .

Hence, using (2.15), its spectral function satisfies

P"(co,k) =P"(—a), k) =P"(—co,k),

(4.13)

(4.14)

since nk is Hermitian. Furthermore [from Eq. (2.13)],

G(r, k)=G(P r, k)=G(P r,——k) . — (4.1.5)

Therefore, we have to consider only positive wave vectors,

It is then easily shown that the self-correlation function of

nk=2-'"(nk+tnk)=n t
k (4.12}

is in fact identical with that of nk In term. s of the P-
correlation function, for example, we have

p(t, k}—=i([nk(t), n k(0)]+)

V/t =6.0, ktt T/t =0.2, N =16, NF 7. ——
The Trotter number in runs (1), (2), and (4) was L=25,
corresponding to an imaginary-time "slice" b,r
=p/L=0. 2/t. In each run, 2000 fermion configura-
tions were sampled, which took of the order of 10 hours
of CPU time per run [total CPU time for all G(r, k) and
derivatives measured] on a VAX 750, using a standard
Fortran program. In run (3) we chose L=40 and hence
br=0 125/t. .

The statistical errors (b,G~Mc} in our G(r) data were of
the same order of magnitude at all r;, typically 0.5—1.0%
of the value of G(™(r=0}.The relative error
&G~~z/G'~'(r;) was therefore quite small near r=O and
r=p (0.5—1.0%), but substantially larger (10—100%) at
intermediate values of r (r-p/2), since, for the cases con-
sidered, G' '(r) becomes very small in this region [typi-
cally G(r=P/2)/G(r=O)-10 —10 ].

S. Noninteracting fermions

In this case, an exact solution can be obtained for the
grand canonical problem. For a reasonably sized system,
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the grand-canonical and canonical results are essentially
equivalent except for the trivial case of zero wave vector.
The single-particle energy is

6(p) =—2r cosp (4.19}

For a finite system with periodic boundary conditions, the
wave vector p is restricted to the discrete values (4.6) and
4)"(co,k) has the form

p"(co,k ) = g Ak F5(e(p +k) s(p—) ai)—,

where, in the grand-canonical ensemble,

AkF rrN ——'(1 fF +.k )f—F,
fF = 1/(1+exp I p[e(p) —p] I ),

and for a half-filled system,

(4.20)

(4.21)

(4.22)

(4.23)

CL

2)

at all temperatures. Note that in the infinite system limit
(N~oo) the sum over the wave vectors p in (4.20) goes
over into an integral. Instead of the densely spaced,
discrete 5-function peaks, t))"(ro,k) exhibits then a
"smeared-out" continuum.

For temperatures that are small compared to the band-
width, ks T «4r, the system is essentially in the ground
state, and the only excitations in (4.20) are particle-hole
excitations across the Fermi point, pF ——m/2. These are
sketched schematically in Fig. 3: For small momentum
transfer, k «n, we expect a narrow spectrum at small en-
ergies co-uFk =2tk As k. increases, more and more lines
should appear, distributed over an energy range up to the
full bandwidth 4r In Fig. .4, we show the results for
((}"(co,k), obtained from the MC data with the conversion
method described in Sec. III. Also shown is the exact re-
sult for the grand-canonical case (4.20). (The 5 functions
are displayed as Lorentzians of finite width [full width at
half maximum (FWHM)], 5&v=0.2r, and area Ak F, given
by (4.21).) Notice that the fit to the MC data follows the
exact result very systematically: With increasing k, the
spectrum becomes broader, and its center moves to larger
frequencies.

Note that, in general, due to the noise in the input data,
the individual 5 functions in ((}"(co,k} cannot be resolved
by the fit procedure. Let us emphasize, however, that in
the infinite system limit, this detailed 5-function structure
is not of physical interest. As we increase the system size,
an increasing number of more and more densely spaced
5-function peaks appears in the spectrum, each of them
carrying less and less weight. Physically relevant then, is
only some smeared-out average of P"(co,k) over a frequen-
cy width of the order of one larger than the typical level
spacing. The finite width of our rectangular blocks, hW,
takes this "infinite system smearing, " at least crudely,
into account. For comparison, the infinite system limit of
4)"(co,k) is also displayed in Fig. 4. Note that for wave
vectors up to k =5m./8, there is good agreement between
the fit and the infinite system result. For larger k, the
agreement is at best qualitative due to both the finite-size
effect aild statistical flllctuatlons.

We have also used the MC data for the noninteracting

FIG. 3. Particle-hole excitations of a noninteracting 1D fer-
mion system for {a)small and {b) large momentum transfer k.

i 0 k =vr!8

l.p-

'~ 0.5-

0

I.a-

FIG. 4. Spectral function P"(ro,k } of a noninteracting half-
filled fermion system with V=O, k3T/t=0. 2 at several wave
vectors k; fit result ((}F ( }; exact result for %=16, XF——8
{———},exact result for N~oo{- ~ -).



MONTE CARLO STUDIES OF THE DYNAMICAL RESPONSE OF. . . 4751

system to test the stability of the fit results. Remember
that the total width W of the fitted spectra in Fig. 4 was
determined by the procedure outlined in Sec. III, i.e., by
minimizing the least-squares function, S~( W), for a trial
function P~(r0;bi, . . . , b4) with E=4 blocks. In Fig.
5(a), we have plotted Sz(W) versus W, obtained for the
set of MC data 6' '(r;, k) at wave vector k=5m/8 with
E =4 (solid curve) and also for E=3 and E=2. Focus-
ing on the case E =4, we note that Ss( W) exhibits three
local minima at W4(0), Ws", and Ws', respectively,
where W' '&W'"&W' ' and S [W' ']&S (W'")
&S4( Ws '). The absolute minimum is hence at W= Wsi '.
The fitted trial function $4(r0;bi, . . . , bs) obtained for
this particular value of W [with bi, . . . , b4 chosen so as
to minimize S(b i, . . . , b4), Eq. (3.10)] is the result shown
in Fig. 4(c) (for k=5m/8).

To understand the significance of the other two mini-
ma, Ws" and W4', we have displayed the fitted trial
functions $4(co;bi, . . . , bs), obtained for W=Ws" and
W'= Ws ' in Figs. 5(b) and 5(c), respectively. Clearly, all
three results are very similar. They approximate the exact
spectral function adequately in the way in which their in-
tensity is distributed on the frequency axis. The differ-
ence between them lies in their resolution: As we increase
W' from W~4

' to Ws", say, the blocks become broader and
their center position moves "outward" (to larger frequen-
cies). Obviously, there is a limiting value. W„say, some-
where between Ws ' and Ws", such that, for W& W„ the
fourth (rightmost} block (W —heo&ro& W) falls into a
frequency regime where the spectrum has zero intensity.
The fit procedure "recognizes" this correctly: It sets the
rightmost amplitude b4 0[as, fo——r example, in Fig. 5(b)]

when W & W, and only allows the first three amplitudes,
bi, b2, bs, to vary and, eventually, attain nonzero values.
The fit result $4(r0;bi, . . . , bs) for a value W& W, is
therefore identical with the fit result P3 (co;hi, . . . , b3)
that one would obtain by allowing only E=3 blocks in
the trial function, and, instead of W, a spectral width
W' =3W/4. This clarifies the role of the second
minimum in S4( W) [at W4"]: It corresponds to the best
possible fit that can be obtained with E=3 blocks. Note
that the right edge of the third block in Fig. 5(b} [located
at 3 W4" /4] coincides exactly with the position of the lo-
cal minimum of the least-squares function S3(W) and,
more generally,

S3(3W/4) =S4( W), W& W, . (4.24)

The occurrence of a third minimum of S4( W} at Ws ' can
be understood analogously. As we increase W from Ws"
to W4 ', a second limiting value W~, say, will be reached,
beyond which the two rightmost blocks falls into a spec-
tral region of vanishing intensity and the fit procedure
will set b3 —b4 ——0.—The fit result $4(eo,'bi, . . . , bs) for a
spectral width W & Wq is hence identical with the
$2(ro;b i,b i) that would be obtained for a width
W'=2W/4= W/2. Analogous to (4.24), we have

S2( W/2) =Ss( W), W & Wg ', (4.25)

the right edge of the second block in Fig. 5(d) [at Ws '/2]
coincides with the minimum of Sq( W).

One further feature to be noted in Fig. 5(a} is the fact
that the first (absolute) minimum of SF( W) becomes shal-
lower when E, the number of blocks, increases. At the
same time, the minimal value SF[WP ] saturates to some
final value
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F=4
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S„= lim Sp[WF '](Sp[WP'],E~ eo
(4.26)

].20

as shown in Fig. 6. To test our method with a larger
number of blocks, we have computed S~(W} for E=8.
We find that (as for the smaller E, E=2,3,4) the exact
upper cutoff of the spectrutn ( W, -3.4t) is clearly visible
in S~(W). As we decrease Wto values below W„Sz(W)
increases steeply, indicating that with W& W„a good fit
to the MC data cannot be obtained. However, the first
few local minina, especially the absolute miniinum, Ws ',
are hardly visible anymore. Nevertheless, although the
absolute minimum of SF( W) is not very well defined, we

FIG. 5. (a) Minimized sum of squares S~( W) as a function of
the tota1 spectral width $V, obtained for the k =5m/8 MC data
of the noninteractin0; fermion system and F=2,3,4; also shown
are fit results P~(F =4) for the spectral function, obtained at
those values of $V where S4(8') exhibits secondary local mini-
ma, (b) 8 =fY"', and(c) 8'=8' '.

I.I0
0

FIG. 6. Absolute minimum, S~[WF'] versus F for the
k =5K/8 MC data of the nonlnteracting fermion system.
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still get physically reasonable fit results for the spectral
function. We have evaluated Pz for several arbitrary
values of $V) Ws '. Again, we find that as W' increases
(and hence the blocks broaden and their center positions
move outward, the fit procedure assigns the appropriate
intensity to those blocks which happen to be at the right
frequency. The qualitative features of the fit result are
hence quite stable against changes in the parameters 8'
and I'.

To demonstrate the importance of the constraint (3.12),
requiring Pz to be non-negative, we have displayed in Fig.
7 the fit result (again for the MC data with k=5m. /8).
$4(ui;ai, . . . , a4), obtained by minimizing S{ai,. . . , a4)
without the constraint (3.12). In comparison with the pre-
viously discussed result, Fig. 4(b) obtained with the con-
straint, it becomes obvious that the constraint improves
the result drastically. Without it, a physically meaningful
fit result cannot be achieved.

To test the usefulness of measuring MC data for the r
derivatives of G (r, k), we have also carried out fits where
only G(r, k) data, but not G'"( rk) or G' '(r, k) were in-
cluded in the sum of squares (3.10). The results for PF
obtained without derivatives are (in the noninteracting
case) essentially the same as those shown in Fig. 4. There-
fore, we conclude that it is sufficient to measure only the
zeroth derivative of G (r, k) if a large fraction of the total
spa:tral weight of P" appears at high frequencies,
co »ks T. Including the independently measured
derivatives in the fit leads only to marginal improvements
of the result. The ~ derivatives become very important,
however, if P" contains dominant low-frequency
(co «ks g components. This occurs, for example, in the
strong coupling regime of (4.1), V» t, where the system
exhibits a charge-density wave (CDW) ground state and
hence P"(co) a very strong zero-frequency Bragg peak at
k =m. This will be discussed in the following section.

In concluding this section, let us also briefly discuss the
application of other methods that may be used to extract
real-frequency spectra from imaginary-time MC data.
Clearly, our choice of the trial function PF, as given by

I A
'k lgJ

O ~~m ~~ m rs'

3

m/t
FIG. 7. Fit result for the spectral function pr(F=4) ob-

tained from the k =Su/8 MC data of the noninteracting fer-
mion system by minimizing (3.10}without the constraint (3.12}
fit result ( };exact result for X= 16, NF ——8 (———}.

(3.1) and (3.20) is quite arbitrary, and other possibilities
should be explored.

As we pointed out above, the spectral function P"(co) of
a finite system is, in general, a superposition of 5 func-
tions, corresponding to the discrete excitation energies of
the system. Naturally, this suggests that we write PF as a
superposition of terms of the form at5(co —col) (where
1=1, . . . , F„s ay) and to use both the aI and the transition
energies cot as fit parameters to minimize (3.10) [again
undef' the constraint (3.12), i.e., ai & 0]. We have carried
out such a nonlinear least-squares procedure for the
noninteracting Fermion MC data discussed above. At
small wave vectors (k =rr/8, 2'!8) where the spectra ex-
hibit essentially only one narrow peak [e.g., as in Figs. 4(a)
and 4(b)], the fit results we find are in good agreement
with the exact ones. However, as we go to larger k and,
hence, multiple peak structures (e.g., Figs. 4(c) and 4(d)]
the fit fails to resolve the details of this structure. For ex-
ample, in trying to fit the MC data at k =n with a super-
position of I' =4 5 functions (with variable positions
toi, . . . , toq and amplitudes a i, . . . , a4), we find that three
of these 5 functions "collapse" into one single peak (e.g.,
co&-=to3 -—co4), i.e., the fit result Pq exhibits essentially only
two-peak structure instead of the four-peak structure that
one would expect from the exact P"(co,k) shown in Fig,
4(d). The difficulty that arises here is that too many fit
parameters enter into the problem: The statistical error in
the MC data simply does not warrant a sufficiently accu-
rate determination of all the parameters. Clearly, this "in-
flation" of fit parameters becomes more severe when we
increase the system size, and hence the number of 5-
function peaks entering into the spectrum. Therefore,
based on our experience, we feel that this "5 function"
method is not feasible in the case of many-particle sys-
tems, since sufficiently accurate MC data would require
prohibitively long computation time.

In this connection, we should point out that the 5-
function method is, essentially, equivalent to the Pade ap-
proximant approach, proposed in Ref. 4. Here, one at-
tempts to carry out an analytical continuation of the
imaginary-frequency data P (z=ico„), obtained from the
corresponding G(r) by Fourier transform [Eq. (2.12)].
The two-sided Laplace transform P(z) is approximated by
a rational (meromorphic) function with finite number of
poles on the real axis and P(z)-1/z,

~

z
~

~~. Using
(2.8), it is easy to see that the corresponding spectrum
p"(co) is just the superposition of 5-function terms
at5(co —cot), discussed above.

As a third approach, we have used as a trial function
Pz an "educated guess" of its analytical structure: Sup-
pose that, on the basis of certain physical insight (or
prejudice), such as approximate analytical treatments, we
"know, " at least roughly, its analytical form, but lack the
knowledge of certain parameters that enter into it. We
can then use this analytical form as the trial function and
adjust the unknown parameters to fit the MC data. We
have carried out such an approach, again for the MC data
of a noninteracting Fermion system, using as a guess for
the analytical form the exact infinite system limit of
P"(co,k), Fig. 4. These functions (for all values of k) can
be naturally parametrized by the total intensity, an upper-



MONTE CARLO STUDIES OF THE DYNAMICAL RESPONSE OF. . . 4753

and a lower-frequency cutoff, and a certain thermal
smearing of the low-frequency cutoff. By adjusting these
four pai."iimeters to fit the data, reasonable agreinnent with
the exact infinite system results could be obtained. This
agreement may solon surprising, at first sight, since the
MC data were obtained for a finite system. To under-
stand this, let us note that despite the very different
shapes of the finite and the infinite system spectral func-
tions, P"(to,k), displayed in Fig. 4, the difference in the
corresponding imaginary-time functions 6' '(r, k') is typ-
ically of the order of {or less than) 1% of G' '(O, k) and
hence of the same order as the statistical error of the MC
data. In conclusion, we can say that the method of
"analytical guesses" may be used complementary to the
"histogram" method. Assuming such an analytical guess
may allow measuring more easily the dependence of cer-
tain spectral features (such as gaps, linewidths, etc.} on
model parameters, temperature, etc. On the other hand,
the histogram approach has the advantage that it is
"upprejudiced" in that no particular analytical shape has
to be assumed.

E(p,p') = V+ e, (p)+e, (p'), (4.27)

where e, (p) is the band energy of a single (anti) soliton
with a wave vector p and spatially "far" away from its
counterpart. Neglecting the admixture fram other bands
{i.e., renormalization due to virtual pair excitations), e, (p)
is given by

(n=1,2,3, . . .) can be created, as shown in Fig. 8(c) for
n =2.

As we "turn on" a small, but finite intersite transfer,
0& t « V, the degeneracies are lifted and the n-pair states
are broadened into bands of a finite width of the order of
t .As long as this bandwidth (-t} is small compared to
the spacing V between adjacent bands, we may {in lowest
order) neglect the mixing between states from different
bands so that the soliton-pair number, n, remains a gaod
quantum number. To be specific, let us consider the
eigenstates of the lowest (n =1) soliton-pair band. In an
infinite system, they are scattering states characterized by
the asymptotic wave vectors, p and p', of the soliton pair
involved and by an energy (relative to the ground state)

e, (p) = —2t cos(2p) . (4.28)

C. Strongly interacting fermions

If V& 2t, the half-filled infinite system (4.1) exhibits a
charge-density-wave (CDW) ground state. ' For t=0,
the Hamiltonian becomes site diagonal. The ground state
is then a configuration of alternatingly occupied and emp-

ty sites, and, as shown in Fig. 8(a), there are two
equivalent, energetically degenerate ground-state configu-
rations, A and 8, say. The lowest excited state con-
sists '9' of a pair of domain walls (soliton-antisoliton
pair) separating segments of A- and 8-type ground-state
configurations, as shown in Fig. 8(b). The single-pair
state is highly (appraximately Nz-fold) degenerate and has
an excitation energy V (relative to the ground state}.
Analogously, n-pair states with energies n V

c0 (k) &E(p, k —p) (co+(k)

where

(4.29)

Note that, different from the free-particle band (4.19), a
factor of two occurs in the argument of the cosine of
(4.28), reflecting the fact that the soliton is located in the
CDW superlattice with a lattice constant twice that of the
underlying chain: As indicated in Fig. 8(b), the soliton is
transferred by twa lattice sites, due to the transfer of a
fermion by one site. Combining (4.28) and (4.27), one
finds that the excitation energy needed to create a
soliton-antisolitan pair with total momentum k=p+p'
from the ground state is limited by energy and momen-
tum conservation, namely

to (k) = V—
i
4t cos(2k) i, (4.30)

t0+(k) = V+ i
4t cos(2k)

i
. (4.31)

(c) At low temperatures, ksT « V, the spectral function
P"(to, k) should therefore exhibit an absorption peak
around co- V, spread out over a width

I (k)=co+(k) —co (k)=
i
8tcos(2k)

i
. (4.32)

L J ~r
(b)

0--
O&t«v

FIG. 8. (a) Ground state, (b) soliton-pair, and (c) two soliton-
psir configurations of the strongly coupled half-filled fermion
system (V/t~ce); 0, occupied; J, empty lattice sites. In (d)
and (e) the excitation energies and, respectively, the broadening
due to intersite transfer, are indicated.

Note that I is maximal (I -8t) both for small (k —+0)
and large (k~~) wave vectors and exhibits a minimum,
at k =m/2: In the lowest-order approximation (neglecting
interband mixing), the soliton-pair states with total wave
vector k =m/2 do actually remain degenerate and I =0.
However, taking the corrections due to the admixture
from higher bands into account, these states will also be
broadened (over a width of the order I -t /V). A de-
tailed lowest-order calculation of the contribution,
P'i'(to, k), to the spectral function, arising from the single
pair creation, has been carried out by Ishimura and Shi-
ba. '0 They find, in agreement with our qualitative
kinematical arguments, that for k((T=0 and N~ 00
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t sin (k/2)
V' I'(k)/2

2 1/2
N —V

I(k)/2

(4.33)

no(()o(co) —=uo5() (4.35)

for co (k)&co&co+(k) and vanishing otherwise. Note
that the total intensity of (() (ro, k ) is stxongly k dependent:

I i (k) = J doiP'i'(k, oi) ~ sin k/2 . (4.34)

In addition, we expect to see similar absorption peaks
around ~-2V, co -3V, . . . , corresponding to the
creation of two pairs, three pairs, and so on. However,
the total intensity of these contributions should be smaller
than that of Pi'(oi, k) by factors of the order (t/V),
( t/V)2, etc.

Finally, let us point out that the spectral function will
exhibit a "Bragg" peak at k=n and oi=O, due to the
"long"-range order of the CDW ground state: Although
the 1D system cannot exhibit true long-range order for
kz T & 0, the correlation length g of (n&n, +()
-exp( —1/g) is typically of the order g-exp(V/k&T) for
t, k&T« V and hence, at our parameter values, large
compared to the system size N. To allow for such a
Bragg peak in the spectral function, we have included in
the trial function (3.1) a term

with adjustable amplitude ao, in addition to the rectangu-
lar blocks (())(co), (3.20).

In Figs. 9 and 10, we display our fit result, obtained
from MC data for V=6t and V=12t, respectively, at
k&T=0.2t on a half-filled 16-site chain. Also shown is
the strong-coupling result (4.33).' The MC result shows
the expected behavior: an absorption peak around co- V
with an intensity that increases with k. For certain k, an
additional peak around co-2V is also visible. In contrast
to the free fermion spectrum [Fig. 4(a)], the peak position
(ro- V) is roughly constant for all k. Also note the differ-
ence in frequency scale and intensity between Figs. 4, 9,
and 10. The peak width of the MC result in Figs. 9 and
10 is generally smaller than that predicted by (4.33). This
should not be too surprising, since, for our parameter
values, the width I, Eq. (4.32), is typically of the same or-
der as the interband spacing V: The lowest-order strong-
coupling result is therefoxe, at best, qualitatively correct.
For a quantitative description, the interband mixing
would have to be taken into account.

Finally, let us turn to the elastic (co=0) contribution
(4.35). We have allowed such a term in the trial function
(()p at all wave vectors. However, for k&m. , the fit pro-
cedure results in ao ——0, indicating that, as expected, no
elastic scattering with momentum transfer k&n occurs.
For k=xr, on the other hand, the elastic intensity ao
under the 5 function (represented by a rectangular block
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FIG. 9. Spectral function (()"(co,k) of a strongly coupled
half-filled fermion system with V/t =6.0, k~ T/t =0.2 at
several wave vectors k; fit result PF ( ), analytical strong-
coupling result (Ref. 10) for S~ce, kqT=0 ( ~ ~ .)~

FIG. 10. Spectral function (()"(co,k) of a strongly coupled
half-filled fermion system with V/t = 12.0, k& T/t =0.2 at
several wave vectors k; fit result (()F ( ), analytical strong-
couphng result (Ref. 10) for N~ ao, k~T=O {- - ).
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temperature excitation spectrum should hence differ signi-
ficantly from that of the half-filled case. Namely,
P"(co,k) should exhibit structure at low frequencies due to
the inelastic scattering from a single soliton as well as
scattering off the soliton pair. '

In Fig. 12 we show the flt result obtained from MC
data for V =6t and ks T=D.2t on a (less than half-filled)
16-site chain with 7 fermions. It indeed differs drastically
from the half-filled case shown in Fig. 9. Although an
analysis in terms of the strong-coupling soliton energy
band, Eq. (4.28), does not seem feasible (again, due to the
substantial interband mixing for the parameter values
chosen), the shift of the spectral weight to low frequencies
co & V is clearly visible.

FIG, 11. Ground-state configurations of a strongly coupled

fermion system; (a} half-filled; (b) less than half-filled {after re-

moving one fermion from the half-filled system).

of width 5W/2 centered at c0 =0}is about 20 times larger
than the total inelastic intensity of P"(co,m). Nevertheless,
the inelastic part can still be measured, since, in the first
and second derivative of G(v;k), the elastic part is filtered
out. In this case, it is hence crucial to take the r deriva-
tive of G(r, k) into account.

If we remove one fermion from the CDW ground state
of the half-filled system, the new system will exhibit a sol-
iton pair already in its ground state (see Fig. 11). Its low-
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FIG. 12. Spectra1 function P"{co,k} of s strongly coupled
less-than-half-Bled fermion system with V/t=6. 0,
k~T/t=0. 2, X =16, and X~——7, at several wave vectors; k; fit
result PF {E=9}{ },analytical strong-coupling result {Ref.
10) for the exactly half-filled system and %~co, kgT=O
(o ~ o o)

V. CONCLUSION

We have proposed a method to extract information
about the real-frequency correlation functions S (co),
X"(co), Eqs. (2.3}—(2.6}, from the imaginary-time Green's
functions G(~), Eq. (2.1), that can be simulated using
quantum Monte Carlo techniques. The starting point of
our procedure is an integral equation (2.13), relating the
real-frequency correlation function P"(c0) to the
imaginary-time Green s function. The difficulty in solv-
ing this integral equation (to obtain P") arises from the
fact that G (~) is fairly insensitive to the detailed structure
of P"(co}. Hence, even small statistical errors in the input
data, G(~), can lead to large errors in the solution P"(c0).

To overcome this difficulty, we propose to measure not
only G(r) but also, independently, its derivatives G' '(r)
[Eq. (3.9)] which contain the same {(}"(c0),weighted, how-
ever, with additional factors c0 under the integral (3.8).
More importantly, we restrict ourselves to self-correlation
functions for which P"(c0)&0 [Eq. (2.14)]. From the MC
data, we obtain P"(e) by a least-squares-fit procedure:
We insert into (3.8) an appropriate trial function
Pp(co;ai, . . . , a~} and vary the fit parameters, ai, . . . , aF,
such as to minimize the sum of the squared deviations be-
tween the MC data for G' '(r) and the corresponding
"fitted curve" (3.8). This minimization is carried out
under the constraint that PF(c0;ai, . . . , a~) &0 at all c0,

thereby taking into account the positivity of P"(co). We
have demonstrated (Fig. 7) that this constraint is essential
in stabilizing the fit result against large, unphysical fluc-
tuations. It is worth mentioning at this point that any
mixed correlation function [Pzs(co),8&A+] can be writ-
ten as a superposition of (at most) three self-correlation
functions. Using our conversion method, it is therefore,
at least in prinriple, possible to obtain mixed correlation
functions as well (if the corresponding three self-
correlation functions can be simulated}.

To test our method, we have applied it to a simple 10
model of spinless fermions (4.1): Using the "world-line"
MC algorithm, we have simulated the (imaginary-time)
density correlation function, G(~,k) (4.4) and, indepen-
dently, its first and second r derivative for all relevant
wave vectors k of the {finite) system.

For the case of noninteracting fermions, we have shown
that the fit result is in qualitative agreement with the ex-
act spectral function P"(co,k) (Fig. 4}. We have demon-
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strated that the fit result is (at least qualitatively) stable
against variations of certain "arbitrary" parameters (F, $Y)

that enter into the trial function P~ (Fig. 5), provided the
positivity constraint (3.12) is taken into account (Fig. 7).

Furthermore, we have compared our procedure to other
possible methods of converting imaginary-time MC data
into real-frequency spectral functions, natnely analytical
continuation via Pade approxim ants and analytical
guesses. Based on our experience, we conclude that the
recently proposed Pade approach and its equivalents are
not feasible for many-particle systems, given the limited
statistical accuracy that MC methods typically allow one
to achieve. On the other hand, an educated guess of the
analytical form of the spectrum with only a few adjust-
able parameters may well provide additional insight into
the problem.

In this connection it is worthwhile to discuss the possi-
bility of a direct simulation of real-time correlation func-
tions that has recently been proposed for simple model
systems. i Attempts to implement such an approach for
many particle systems have not been successful. " Due to
certain strongly fluctuating phase factors that enter into
the MC summation, the "measurement" of the real-time
quantities converges very slowly and hence requires pro-
hibitively long simulation times. " Very similar problems
arise in direct simulations of the real-frequency spectra
which, again, have so far only been successful for very
simple (one degree-of-freedom) systems.

We have also treated the case of strongly interacting
half-filled systems, exhibiting a CDW ground state and
soliton-antisoliton pair excitations (Fig. 8). ' ' The ab-
sorption peaks corresponding to the creation of one and
two pairs, respectively, are clearly visible in the flt result
for P"(k,to) (Figs. 9 and 10). They occur in the expected
frequency regions co- V and co-2V, and their intensity
shows roughly the expected wave-vector dependence.

Finally, we have considered the case of a strongly in-
teracting, less-than-half-filled system, containing one soli-
ton pair ("immersed" in the CDW ground state). Again,
the expected behavior ' [namely, the existence of low-
frequency excitations due to scattering from the soliton
(pair)] is realized in the flt result.

Considering the lack of detailed quantitative agreement
between our flt results and the exact solution (e.g., for the
noninteracting Fermion case), the question of how to im-
prove these results arises. First of all, one should, of

course, try to enhance the resolution of the trial function
Pp, by increasing the number of blocks F. Using the MC
data underlying Fig. 4 we have carried out such fits with
block numbers up to F=8. The results for the intensity
distribution P~(co), are very similar to those shown in Fig.
4 (where F=4). However, they do not show substantial
improvement in their quantitative agreement with the ex-
act results. Also, the minimized value of the sum of the
squared deviations Eq. (3.10) decreases only by a few
more percent as we increase the number of blocks from
F=4 to F=8. This indicates that most of the informa-
tion about P"(co) contained in the given set of G(r) data
has been exhausted by the "F=4"fit. Nevertheless, it is
encouraging to see that the results with different F values
are at least stable, i.e., qualitatively in agreement with
each other.

We therefore believe that better results for the spectral
function P"(co) will necessarily require an improved sta-
tistical accuracy of the input data G(r), in addition to an
enhanced resolution of the trial function PF. For exam-
ple, we have applied our method to G(r) data that were
obtained by randomly superimposing a certain 'noise level
on the exact G(r) values that are readily available for the
noninteracting system. Indeed, we find a significant im-
provement of the fit results if the noise level b,Gg~z is re-
duced by factors of 3—10 from that present in our MC
data. It is not unrealistic to assume that such an im-
proved accuracy of the MC data can be achieved within
reasonable time by use of faster computation facilities.
Nevertheless, we feel that even with the given level of ac-
curacy, our method can provide useful insights.

In conclusion, we have demonstrated that our method
allows one to extract qualitative features of real-frequency
spectra of many particle systems from imaginary-time
data, simulated within reasonable amounts of computa-
tion time.
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