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We study the dynamical susceptibility X of spin glasses above the critical temperature using a
fractal cluster model. We derive scaling relations for the zero-field limit of the real and imagi-
nary parts of X which are general since they do not depend on a particular relaxation model.
Comparison to data on Eug4SroeS yields critical exponents in good agreement with independent
determinations. We discuss the different criteria which have been used to extract the critical re-
laxation time 7; from experimental X’s. The smallness of the ratio B/vz between critical exponents
in the spin-glass problem justifies the approximations used to interpret and relate experimental
data, for example, with the equation X" = — zd ¥/2d Inw.

The dynamical susceptibility has been one of the most
widely studied physical properties of spin glasses.! It was,
in fact, the very discovery of a cusp in the ac susceptibility
of Au-Fe alloys as a function of temperature that suggest-
ed the existence of a phase transition in these systems.?
Ironically, it was also the observation of a frequency
dependence of the cusp temperature that started a long-
stancging controversy about the nature of the freezing pro-
cess.

In the last few years, however, scaling analysis of the
field- and temperature-dependent magnetization of dif-
ferent spin glasses made possible the calculation of critical
exponents which exhibit an impressive degree of universali-
ty.* On the other hand, the success of dynamic scaling in
describing the critical slowing down of the fluctuations as
one approaches the freezing temperature 7T, provides al-
most unambiguous support for the existence of a phase
transition®® and a critical line in the H -T plane separating
spin-glass and paramagnetic phases. The agreement be-
tween the experimentally observed exponents and those
obtained in sophisticated computer simulations’ lends fur-
ther support to this point of view.

The mean-field theory is capable of describing many of
the features of spin glasses, including the existence of a
field-dependent critical line.®! However, the critical ex-
ponents arising from this theory are quite different from
the observed ones.* Also, certain scaling relations, which
are found to be valid experimentally,>® cannot be obtained
within a mean-field theory;® one example is ¢ =2y, relat-
ing the crossover exponent ¢ to the exponent y which
characterizes the shift (AT «H"¥) of the critical tempera-
ture with applied magnetic field.

An alternative model of the spin-glass phase transition
has recently been proposed and is able to give a unified
description of static and dynamic phenomena in spin
glasses.!®!! This “critical fractal cluster” model also
makes clear the physical significance of scalin§, which has
been so successful in describing this transition.*!1%:1?

In this paper we extend further this model to treat the
dynamical susceptibility X(w) of a spin glass, assuming
power-law dynamics. We derive novel scaling relations for
X as a function of temperature, frequency, and field in the
ergodic region above the transition temperature 7,. We
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compare our results with experiment and obtain critical
exponents in agreement with those found earlier by other
methods. In the context of this model, we can also test a
variety of criteria which have been used in treating experi-
mental data in the past: for example, in extracting lines of
constant relaxation time. We derive an essential require-
ment on scaling exponents for these criteria to work.

The basic assumption of the critical fractal cluster
model is the existence of a characteristic field- and
temperature-dependent cluster size (or number of spins)
s¢, on which all physical quantities depend.!®!! Assuming
power-law dynamics, the characteristic relaxation time of
the system 7 is related to s; by the equation 7= 1os7,
where x =z /D, with D the fractal dimension of the typical
cluster and z the conventional dynamical exponent.'!

The typical cluster size s, is given in terms of the corre-
lation length & by s, =¢£P. Since £ diverges at the transi-
tion temperature like | &| ~, where v is a standard critical
exponent and & =(T — T )/Ty is the reduced temperature,
we get s« |e] "P=]|g|~* as the transition is ap-
proached. The exponent ¢ =vD is the crossover exponent
in the field-temperature plane.'®

We should keep in mind that, in spite of the existence of
a characteristic relaxation time in the system which
diverges at Ty, there is, in fact, a whole spectrum of relax-
ation times, associated with a distribution of cluster sizes,
through the relation z=10s*. A complete characterization
of the system near the phase transition requires a knowl-
edge of this distribution. Within the percolation model of
a ;{l;ase transition, the distribution of cluster sizes is given
by

ng=s""f(s/se) , 1)

where 7=2+67" is another critical exponent, not to be
confused with the relaxation time. The scaling function
f(x) approaches a constant as x— 0 and decays as
exp(—s/s;) for large clusters above the transition tem-
perature.!!!3

In order to derive the scaling relations for the dynamical
susceptibility X(w), we shall start by considering the sim-
ple Debye relaxation form X =X,/(1 +i wt) for this quanti-
ty. Later on we shall discuss to what extent our results de-
pend on the choice of a particular relaxation model. In-
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tegrating over cluster sizes at temperatures above T, we
find!?

Z(m)mH"‘fo ds ngs2tanh s 2H/kT)/ (1 +iwt) , (2)

where we use the tanh function rather than the Langevin
function because we assume an Ising, rather than Heisen-
berg, spin-glass system. This is also appropriate for
Heisenberg systems with local anisotropy, provided the ap-
plied field is small enough.

Let us first consider the imaginary part of the dynami-
cal susceptibility X'(w) in the limit of low fields. Using
t=14s* for the relaxation time of a cluster, we obtain from
Eq. (2)

oy L e dss' T (s/swres*
O R el 3)

Making the change of variables y =w7os* and noticing
that f(s/s¢) =f1(y/wz¢), where ¢ =105}, we derive the
following scaling relation:

Z"(a))cc-lf(a)ro)” g (wte) . 4)

Here, g,(x) is a scaling function, and we have used the
scaling relations 2 — r=—1/§, vD =¢, and p=¢/8, where
B, 7, 8, 9, v, and D are standard critical exponents.'%!3

For the real part of the dynamical susceptibility X'(w),
including the regular term, we get a similar type of equa-
tion

x(mu%u —(w1)"g (w1)] , (5)

where we have ignored multiplicative constants, and g, is
another scaling function.

It can be easily verified that the scaling relations given
by Egs. (4) and (5) are completely general and do not de-
pend on the particular model susceptibility describing the
relaxation dynamics of a given cluster, as long as @ and
7(s) appear in these susceptibilities multiplying each oth-
er. This holds for all well-known relaxation models, such
as the Cole-Cole, Cole-Davidson, and Havriliak-Negami
equations'# and also obviously for the Debye model.

The form of the scaling functions g;(x) and g,(x) will
depend, in general, on the particular relaxation model, ex-
cept at the critical temperature where both g;(x) and
g2(x) tend to constants, due to the fact that the scaling
function f(x) in Eq. (1) also approaches a constant as
T — T,. As aconsequence, we can write very generally

X' (w)=(wry)?”
X (@)1 — (070)?" (6)

for T =T, independent of the model susceptibility.

Next we obtain the form of the scaling functions g, (x)
and g,(x) in the T > Ty, low-frequency limit @t<1. For
the Debye model, we get for X"(w) from Eq. (3)

2(@)e(w19)”(wte) ~#/T
<(wt)e™ 8T | (¢))

which predicts a linear frequency dependence for ¥'(w) as
@ goes to zero.

Let us verify the generality of this result by considering
as our model susceptibility the phenomenological Cole-
Cole equation'*

o) =X/1+Gowr)! 7] . 8)

Since X must be analytic in @ above Ty, it should be recog-
nized that results based on this ad hoc nonanalytic form
will be invalid at sufficiently low wr. Assuming some in-
termediate range of validity 0 < w7<1 and using Eq. (8)
we obtain for the imaginary part of the dynamic suscepti-
bility

x"(w)o:-;;(wto)ﬂ/”(wrg)l —a=pl/vz
c:LT(w,l‘.o)l—‘czs—vz(l—a)-f-li ) 9)

These expressions relate the frequency dependence of
X'(w) to the exponent a of Eq. (8). One may also easily
derive a similar equation for the real part of the dynamical
susceptibility in the same limit (w7<1) from Eq. (8)

X(w)x[l —(w1g)! "2~ zU—D+8Y/T | (10)

which, as for X"(w), turns out to be different from the De-
bye prediction in the same limit. In principle, relations
like Eqgs. (9) and (10) should allow one to distinguish be-
tween different model susceptibilities.

In Fig. 1 we present a scaling plot of the data on
X'(w,T) obtained by Paulsen, Williamson, and Maletta'®
on the Eug4SroeS spin glass according to Eq. (4) for
T =T,. The exponent vz =9 X 1 obtained from the scal-
ing plot is in good agreement with that obtained through a
scaling of the phase of the dynamical susceptibility on the
same system® in the low-frequency limit. The exponent
B=1.17%0.1 is rather large compared with what would
be expected from the computer simulations on an Ising sys-
tem,” although it turns out to be similar to the value ob-
tained through a static scaling analysis of a Cu-Mn spin
glass.* The error bars on the exponents are rough indica-
tions of the range of values within which the quality of the
scaling does not noticeably degrade.
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FIG. 1. Scaling plot, according to Eq. (4) of the text, of the
lossy part of the susceptibility of Eug4Sro¢S from the data of
Paulsen et al. (Ref. 15). T is temperature and f is frequency.
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From Egs. (7) and (9) we see that the inclination of the
scaling curves for small values of w7, allows one to probe
the frequency dependence of X'(w) for T > T,. The re-
sults are consistent with X"(w)«<w'/2, which on the basis of
Egs. (7) and (9) would rule out a Debye susceptibility in
favor, for example, of a Cole-Cole equation with a=-.
Nevertheless, we believe that the data do not probe suffi-
ciently small values of w7, so as to convincingly establish
the limiting inclination. We point out that a linear fre-
quency dependence of X'(w) above Ty, consistent with the
Debye model, has been observed'® in the insulating spin
glass (TiogVo.l)zOg.

Recent dynamical studies of spin glasses have deter-
mined the lines of constant relaxation time in the magnetic
field versus temperature plane.>® These lines, which in our
model represent contours of constant sg, are important
since they allow for the determination of the critical line in
the H-T plane.>® Essentially two different experimental
criteria have been used to determine these lines, and we
shall discuss them based on our fractal cluster model.

In the first method, which can be called the constant
phase method, one defines an average relaxation time t,,,
for w71, through the phase of the dynamical susceptibil-

ity

01, =X"(0)/X () . an

It can be easily seen using the Debye model susceptibility
and the normalization condition!® for the number of clus-
ters J sny(s)ds =1 for T > Ty, that the average relaxation
time in the limit w71 is given by

= (vz )y

(12)

Tav® Té —[i/vz‘xg

As a consequence, the effective dynamical exponent
which is obtained from this analysis is (vz)er=vz (1
—PB/vz). This was, in fact, already noticed by Ogielski,’
and if we assume the validity of hyperscaling in spin
glasses, one can easily check that his exponent x =(d
—2+17)/2z is identical to B/vz. Since B/vz is of order 0.1
in most cases studied experimentally or theoretically so
far,’~7 this correction is a small one in practice. The most
serious problem with this criterion is that it relies on the
validity of the Debye model susceptibility to describe the
data as can be seen, for example, if one uses the Cole-Cole
equations(9) and (10) in Eq. (11).

In the second method, lines of constant relaxation time
are obtained from the inflection points of X"(w) as a func-
tion of temperature.® Starting with the general scaling
form of X" in Eq. (4), we find it advantageous to consider
the inflection point of TX". After some algebra, we find
that this inflection point is determined by the condition

(13)

This simple but general result, valid for the limit of low
field (e*/H?— o), allows a straightforward determina-
tion of the critical exponents independent of any particular
model for the dynamical relaxation. For the Debye model,
the constant in Eq. (13) can be evaluated exactly by mak-
ing a simple approximation for the cluster distribution
S(x =s/s¢) in Eq. (1), namely, by taking it to be a step
function which is f(x) =1 below x =1, and f(x) =0 above

w7 =const .

x =1. Differentiating for the inflection point, one finds
ote=[(vz+1—-p)/(vz —1+p)12 . (14)

For typical parameters with 8 close to 1 and vz large, the
constant in Eq. (14) turns out to be close to 1. This means
that, in fact, the inflection point of TX" corresponds quite
closely to the sample intuitive condition wz,=1, and so
gives directly the relaxation time of the characteristic cut-
off cluster size as the inverse of the known experimental
angular frequency w.

In practice, this criterion has usually been used without
taking into account the regular term of the susceptibility,
that is, by using the inflection point of X” rather than of
TX'. We can test the validity of this approximation in the
context of the Debye model and the step function approxi-
mation for f(s/s¢). Differentiating X of Eq. (2), we ob-
tain two terms: The first term gives —X"/T and represents
the effect of the regular term in the susceptibility. The
second term comes from differentiating the integral in Eq.
(2). Evaluating these expressions in the limit §x>1 or
equivalently B/vz <1, we find the first term proportional
to #/4 and the second to ¢x =vz. Thus, provided B/vz is
small (as is usually the case in simulation and experiment)
it is reasonable to ignore the T factor and determine the
inflection point simply from X”.

The above results can be extended to finite fields. For
example, in the limit H?/e?— oo, that is, in the field-
dominated critical region of the H -T plane, we can again
evaluate the constant of Eq. (13) exactly by using the De-
bye relaxation and the step function approximation for
f(s/se). We must now start with Eq. (2) and consider the
behavior of the tanh function. This depends on the param-
eter'® p =s)2H/kT, which is a constant independent of
field in the field-dominated critical region since s;=1/H>
A value greater or less than 1 reflects a greater or lesser
tendency of the largest clusters to saturate. In particular,
if p is much less than 1 the tanh function never saturates
over the range of integration of cluster sizes from 0 to s¢.
Then the inflection point calculation gives the same result
as in Eq. (14). On the other hand, if p is much larger than
1 most clusters which contribute to the relaxation are sat-
urated, and one can approximate the tanh function by 1.
The calculation then gives a result identical to Eq. (14),
but with B replaced everywhere by B+ ¢/2. Intermediate
values of the parameter p will give intermediate results.
Since ¢/2 is also small compared to vz in typical cases,
these results lead to the general conclusion that in this lim-
it, the inflection point criterion is a good approximation for
determining 7;=1/w.

The same limit of B/vz <1 also justifies a widely used
approximate relation between X" and the logarithmic fre-
quency derivative dX'/d Inw of the in-phase susceptibility
X. Taking X from Eq. (2) in the limit of zero field, dif-
ferentiating with respect to Inw, and integrating over s, we
find for w7,>1

__x
dX/dInw
==n'/2sin[7c 1-L|plri-L-|r 1+—:B—]. as)
vz 2vz 2vz
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In the limit vz>>p, the right-hand side reduces to /2,
which is precisely thc orlgmal result of Lundgren, Svend-
lindh, and Beckman,!” and which has at least been con-
firmed approximately in experiment.'>!?

The time dependence of the magnetization is, of course,
closely related to the dynamic susceptibility. Treating a
generalized cluster distribution model wnh Debye relaxa-

tion, Lundgren et al. derived the relation!’

:f:t H Lm dlntmo(t)g(t)e ™t/ 1,
where mo(t) is a cluster magnetization, and g(r) is a
weighting factor for clusters with relaxation time 7. As-
suming the distribution function mo(7)g(z) was slowly
varying with 7, they took it out of the integral and so ar-
gued that one could determine the distribution function
directly from the experimentally measured dM/d Int. We
can now test this approximation in our model. In our case
mo(z) and g (t) can be shown to be ¥* and ¢~ &%~ (1/6x),
respectively; so indeed the product, going as 7~ /%%
weakly varying in the limit 1/6x =g/vz <1.

Explicitly, the result for the limit of experimental times
t, short compared to the longest relaxation time, is

1+£
vz

(16)

,1s

LA

dM/dlntoc-%,I-I‘ a7

For increasing temperatures corresponding to decreasing
maximum relaxation times, the integral in Eq. (16) gives a
curve which drops off from the value of Eq. (17) towards
zero, with an inflection point corresponding to t =1;. Thus
such a curve can be described as a smeared-out step func-
tion, or more crudely as a wave, which advances to the
right as the measurement time is shortened. In view of the
measurement-time dependence in Eq. (17), the crest of the
wave is very weakly dependent on this time. These fea-
tures describe the experimental observations quite well.!’?
At longer times, a stretched exponential behavior is ex-
pected to develop, as discussed elsewhere.'!

We conclude that our fractal cluster model is quite suc-
cessful in describing many, if not all, aspects of the
dynamical spin-glass susceptibility and its counterpart, the
time-dependent magnetization relaxation. Typically, these
properties have been previously interpreted in terms of
generalized cluster distributions. The language of those
earlier cluster models often pointed towards the early Néel
cluster-blocking picture, which differs in a fundamental
way from our model by having no phase transition. Our
model shows how the phase-transition picture can, in fact,
incorporate many of the properties previously taken as evi-
dence against a phase transition. In this sense it bridges
between the two early perspectives in the study of spin
glasses to achieve a new synthesis.
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