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A quasicrystal may be described by its quasilattice and its atomic decoration. %e discuss two dif-
ferent commonly used methods for decorating quasilattices which lead to inequivalent real-space
structures, the tile-decoration method and the hyperlattice-decoration-and-projection method. It is
shown that diffraction patterns of such quasicrystals cannot be generally split into the intrinsic
structure factor, due to the quasilattice, and the geometric structure factor, due to the decoration.
For the hyperlattice decoration the zero-wave-vector limit cannot separate the quasilattice and the
decoration contributions. However, such separation does occur for certain simple sequences of wave
vectors and the tile-decorated quasilattices. %'e point to the ambiguities in choosing the "unit tiles"
of a quasicrystal and we emphasize that the number of "atoms" per tile can be fractional. %e have
focused on two-dimensional pentagonal quasicrystals but some of our conclusions and results sur-
vive generalizations to other cases.

I. INTRODUCTION

Significant activity was generated among condensed-
matter theorists when the discovery of Bragg diffraction
patterns with icosahedral symmetry was recently report-
ed. ' The discovery called for an explanation of the struc-
ture and the diffraction patterns of a new "quasicrystal-
line" phase of matter. Interestingly, several years earlier
Mackay speculated about precisely such a phase and he
even published optical diffraction from a pentagonal
quasicrystalline pattern. Subsequently, several
groups ' were able, by using different but related
methods, " to construct certain simple quasilattices'
which generated required icosahedral diffraction patterns.
These methods were based on a view of a quasilattice as a
projection (or a section) of a portion of a simple higher di-
mensional periodic lattice (hyperlattice). ' ' This ap-
proach was originally applied to ordinary incommensurate
crystals by deWolff' and Janner and Janssen' who
demonstrated, as emphasized clearly by Bak, ' that a
quasiperiodic structure can be alioays viewed as a cut
through a higher-dimensional periodic structure.

Although it was immediately realized that quasicrystals
of arbitrary symmetry could be constructed and
analyzed, ' most of the recent work inspired by
Schechtman's discovery was focused on icosahedral quasi-
lattices. It was first published by Mackay ' that an
icosahedral tiling (quasilattice) can be constructed using a
pair of "unit cells."' The construction is specified in
terms of division ("infiation") rules. ' ' Later, Kramer
and Neri' showed that an icosahedral quasilattice can be
constructed as a projection from a six-dimensional simple
hypercubic lattice. Subsequently, the diffraction patterns
of icosahedral quasilattices were studied by many au-
thors ' and the diffraction from simple quasilattices
seems essentially understood. It remains to investigate the
effects of the quasilattice decoration on the diffraction
patterns.

Immediately after the experimental discoveries it was
shown that certain icosahedral quasilattices can be related
to one-dimensional quasilattices represented by Fibonacci
sequences of short and long intervals. Ostlund and Pan-
dit 2 were recently interested in the spectrum of an elec-
tron moving in a quasiperiodic potential somewhat similar
to the potential which might be generated by the one-
dimensional Fibonacci quasilattice. i' Later, the Fi-
bonacci quasilattice served as the favored pedagogical il-
lustration of the projection method for constructing the
quasilattices and their diffraction patterns.

Comparatively little attention has been paid to two-
dimensional quasilattices. This is somewhat surprising
since the two-dimensional quasilattices were intensely in-
vestigated in the context of nonperiodic tilings. This
study culminated in the discovery of pentagonal tilings by
Penrose. 26 The Penrose quasilattice2 was subsequently
studied in great detail by deBruijn'i who also showed how
the Penrose quasilattice can be constructed as a projection
from a five-dimensional simple hypercubic lattice. It was
a generalization of the Penrose quasilattice that led to the
construction of the three-dimensional icosahedral quasi-
lattice.

The present paper is devoted to a detailed study of de-
cagonal quasilattices and their diffraction patterns. We
are mainly motivated by Bendersky's recent discovery of a
new quasicrystalline phase of aluminum manganese, the
so-called T phase. This phase, which appears to inter-
polate between an icosahedral phase and a crystalline
phase, is characterized by simple periodicity in one direc-
tion and decagonal quasiperiodicity in the perpendicular
planes. An understanding of the T phase appears essen-
tial for illumination of quasiperiodicity in aluminum-
manganese alloys. However, we shall not attempt to
determine the actual structure of this phase in this paper.
Here, we rather want to do the necessary ground work
which is also sufficiently broad to survive future generali-
zations.

Our motivation is also pedagogical. Two-dimensional
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quasilattices offer a nontrivial example of the projection
technique and they illustrate certain complications which
are absent from previously investigated one- and three-
dimensional cases. Such complications may show up in
cases of more general quasilattices.

Additionally, two-dimensional quasilattices can be used
to illustrate the role played by the quasilattice decoration.
Since the real quasicrystals are hkely to correspond to
decorated quasilattices this role must be elucidated.

In the following section we shall apply the projection
method to construct two-dimensional decagonal quasilat-
tices. This will essentially review the relevant parts of
deBruijn's work. Then, we shall discuss the two common-

ly used ways of decorating (placing "atoms" in) the quasi-
lattices. The first way is to decorate the associated hyper-
cubic lattice and then project, while the second way is to
directly decorate the "unit cells" (or, "tiles") of the quasi-
lattice. We shall so: that the two methods are not general-

ly equivalent although the structures obtained by either
method can be always represented as cuts through higher
dimensional periodic structures. For the tiling-decoration
method the specification of the shapes of the fundamental
tiles is essential. This is in sharp contrast to ordinary
crystals for which the ambiguity in defining the unit cells
is superficial. Another difference from ordinary crystals
will be in that a unit cell of a quasicrystal may contain a
fractional number of atoms.

In the fourth section we shall calculate the scattering
intensity (the structure factor) for decagonal quasilattices.
Using the usual methods, we shall show that the diffrac-
tion pattern consists of sharp peaks which densely fill the
entire space but whose amplitudes are rapidly varying
functions of the scattering wave vector. This dependence
of the amplitudes, which has no counterpart in crystals,
will be characterized by an intrinsic structure factor which
we shall explicitly calculate. Then, in the next section, we
shall investigate the effect which decoration of the quasi-
lattice has on the structure factor. The effect will be dif-
ferent for the two different ways of decorating the quasi-
lattice. However, in either case, only under certain condi-
tions will the effect of decoration be expressible in terms
of a geometric structure factor analogously to the case of
crystals. We shall particularly investigate the structure
factor near the origin and we shall suggest some experi-
mentally observable differences between the two methods
of decorating the quasilattices.

In Appendix A we shall give some details of the
geometry of nonsingular Penrose quasilattices. For one-
two-, and three-dimensional quasilattices, we shall derive
in Appendix 8 certain sequences of wave vectors which
are suitable for investigating zero- and infinite-wave-
vector hmits of the structure factor. In Appendix C we
shall give geometric results necessary for calculating dif-
fraction patterns of a general pentagonal quasilattice.

FIG. 1. Penrose tiling in terms of kites and darts. The
matching rules are enforced by matching equal color vertices.
[co=2m/5, v=(i+i/5)/2. ]

macroscopic (average) tenfold symmetry, long-range de-
cagonal bond-orientational symmetry, and many centers
of local fivefold symmetry; the tiling is self-similar and
can be constructed by an infiation procedure; the ratio of
darts to kites is the golden mean r=(1+v 5)/2
=1.618. . . ; every finite portion of any tiling can be
found in any other tiling with frequency of the order of
its reciprocal area, etc. We shall not attempt to review all
the aspects of the Penrose tiling which can be found in a
review by Gardner. 2s We shall only focus on these aspects
which are most important to us.

An alternative pair of Penrose tiles, to which we shall
later refer, are the two rhombuses, the "thick" and the
"thin, " shown in Fig. 2. The matching rule for these tiles
is usually imposed by oriented edges of two colors. In
Fig. 2 we also show a tiling with the thick and thin rhom-
buses. The vertices of a Penrose tiling form the Penrose
quasilattice.

It will be useful for our future calculations to recall that
eight different types of vertices occur in the Penrose til-
ing. They are identified in Fig. 3. These types of vertices
are in one-to-one correspondence with the types of Voro-

II. PENTAGONAL QUASILATTICES

In 1974 Penrose discovered a pair of tiles, kites, and
darts, which, when combined with a specific matching
rule can tile a plane only nonperiodically (see Fig. 1). The
Penrose tiling has many fascinating properties: it has a

AXX~X
FIG. 2. Penrose tiling in terms of thick and thin rhombuses.

The matching rules enforce the matching of equal color arrows.
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Let R denote a lattice point of a D-dimensional period-
ic lattice. ' Associated with the lattice is the density

p(x)=+5(x —R) .

5&, p=+1, ...,+5

2p, P =+ 3, ,+5

6), p =+1,...,+5

3@ p =+), ,+5

[S5]

Sp, P=+ 1,...,+5

Next, let us decompose the D-dimensional space into a
a~I-dimensional subspace and its orthogonal complement,
D dimensional subspace, D =D~ +D . Then, choose a
window function W(x) which cuts from the lattice a slab
"parallel" to the D~~-dimensional subspace (see Fig. 5).
The window function is usually a function of xi only
(note: x=x '+ x ). Now, place the window at a point y
and define a density in the parallel subspace by

p' (x ') = J dx p(x) W(x —y) . (2)

If W(x) has a sharp cutoff,

FIG. 3. Types of vertices and Voronoi polygons occurring in

Penrose quasilattices. The vertices were identified in Ref. 13
whose notation we give in brackets. Our index p=—ap identifies

by a a particular type of vertex (polygon) while the subscript P
identifies its possible orientations relative to the orientation
shown. Far example, P&0 is associated with the rotation by

(P—1)co, while —P is the same rotation followed by a rotation

by m.

noi polygons associated with the quasilattice. 3c The fre-
quency of occurrence of a Voronoi polygon as well as the
fractional area occupied by its type of polygon are listed
in Table I. They are calculated as explained in Appendix
A. The vertices with fivefold symmetry have frequency
=5.57%. We show in Fig. 4 the Penrose quasilattice and
its tiling by the Voronoi polygons. Vertices of the Voro-
noi polygons also specify a quasilattice with decagonal
symmetry. However, this lattice can obviously be con-
sidered a decoration of the original Penrose quasilattice.

The construction of the Penrose quasilattice by the pro-
jection technique was first described by deBruijn. '3 The
general method for constructing the quasilattices by pro-
jection is the following.

1, xEQ
0, otherwise,

where 0 is the volume representing the window, then the
density p~~ consists of a set of 5-functions of equal magni-
tude (except, perhaps, for the points at the boundary of
the window). If the slab selected by the window has an
"irrational" ("incommensurate") orientation this set speci-
fies a quasilattice; for a rational orientation one would in-
stead generate a lattice. Thus,

pll(xll) y gll(xll Rll) gr(R y)
R

Although we started from density Eq. (1) we note that
this density need not be a set of 5 functions. Also the
window function need not have a sharp cutoff. 2 Howev-
er, since we are interested in quasilattices'i when possible
we shall interpret in this paper such variations as resulting
from a decoration of a quasilattice.

The set of quasilattices obtained in this way (for a given
choice of the window) can be parametrized by y. Since
different y'~ correspond to translations of the quasilattice,
one can set y ' =0 without any loss of generality. The per-
pendicular component y can be obviously restricted to
lay within the perpendicular projection Ui of the unit cell
U of the hyperlattice (see Fig. 5).

DL

FIG. 4. Penrose quasilattice (vertices of Fig. 2) and its tiling

by the Voronoi polygons shown in Fig. 3. See also Fig. 7 in Ref.
2.

FIG. 5. Schematic representation of a slab {unshaded region)

cut out of a periodic lattice. The points inside the slab are pro-

jected onto the
~ ~

subspace to give a quasilattice. (See the text. )
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TABLE I. Frequencies of the vertices in a regular Penrose tiling. The vertices are shown in Fig. 3
which also defines the indices given in the first column. Areas of the Voronoi tiles are given in third
column vrhile the areas in X space shown in Fig. 7 are in column two (arbitrary units). Fourth and
fifth columns give the frequency and the fractional area of the tiles.

P
Jl

~ It

lp, P=+1
2p, P=+1, . . . , g5

3p, @=+1, . . . , +5

4p, P=al
5p 0=+1, . . . , +5

6p, P=al, . . . , g5

7p, P=al, . . . , y5

gp, P=+1, . . . , y5

sr —2

1(h.—5

7T—2

4m+ I

3v'+5

4+5

io (18—11m )=2.0169o

,o {13—Sv) =0.557

]() ( 13' 21 ) 0 344

&o (47 29+)=0 770

io (5&—8)=0.902

&o (5 3r)=1 459

)() (2 v) 3.820

,(, (2w —3)=2.361

—,'(5~—S)=2.254%

(22m —35)=0.597

5o (73—45') =0.377

~ (13m —21)=0.861

;~ (51—31')=0.841

,
' (5 -7)=1.090

&oo
— {7—2v) =3.764

&oo (6r—7)=2 708

We can now explicitly construct the pentagonal quasi-
lattices which, following deBruijn, can be viewed as pro-
jections from a five-dimensional hypercubic lattice. Let
us denote the orthonormal unit vectors generating the hy-
perlattice bytes ej, j=1, . . . , 5, where

A A.ej'ek =&J'k

The fivefold symmetry in this case corresponds to cyclic
permutations of e&'s and its axis is the (1,1,1,1,1) axis.
With respect to this symmetry, the five-dimensional space
splits into three invariant subspaces: the two-dimensional
subspace spanned by the unit vectors

a (~ =&'2/SRe(l, z,z', z',z')

at =—at ——&2/Slm( l,z',z', z,z');
and a one-dimensional subspace spanned by

ao —— (1,1,1, 1,1),

wh~e

a j~=V2/Slm(l, z,z,z,z ),
another two-dimensional subspace spanned by

a i =—a i
——v'2/SRe( i,zt,z",z,z')

l g
~ Il

FIG. 6. Projections of the unit vectors e~ of the hyperlattice
into (t snbspace. The relative orientation of the e, and a vectore
is, of course arbitrary. The orientation in the figure is the same
as in Eqs. (6) and (7).

FIG. 7. Projections of the unit vectors QJ of the hyperlattice
into I subspace. The orientations between the projections and
the basis aj of the space are given by Eqs. (8) to (10). We also
show the projection U' of the hypercubic unit cell as the interi-
or of the rhombic icosahedron. Pentagonal sections of the
icosahedron by the plans xo ——M/V 5, M =1,2,3,4, are em-
phasimx$ in the figure. For clarity, we do not show aH eJ ', only
e ~ is given.
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z =exp(iso)

and co=2m/5. The components of the vectors e& in the
~~

and i subspaces are shorn in Figs. 6 and 7, respectively.

Algebraically, they are given by

CJ P CJ
II Il . (12)

e&
Pi——e, =(1—P~~)e&,

where the projector P~~ is

2

P&k= g(ai ej)(ai ek}=—', cos[(j k)o—i] .
l~l

(13)

X W(Xnjei yi)—.

(16}

As mentioned earlier, the pariimeter y can be restricted
to y~~=0, that is,

y, +(y2+y5 }cosr0+(y &+y4)cos(2ai) =0,

(yq —y5 )sinc0+ (y3 —y4)sin(2') =0 .

Therefore, we are left with a three-parameter family,

(18)

(19)

of possible pentagonal quasilattices. '
It was pointed out by deBruijn' that the Penrose quasi-

lattices correspond to yo ——0, that is,

3'i +Pa+3'3+5'4+Ps =0 . (20)

Equations (17) through (20) specify a two-dimensional

family of Penrose quasilattices which are labeled by

(21)

DeBruijn also showed that this family can be further split

into the ordinary, or regular, Penrose quasilattices and the

singular and the exceptionally singular Penrose qgasilat-
tices. 3s The singular Penrose quasilattices are labeled by y
which in addition to satisfying (21) also satisfies

y" b(ei =ek)+—g m;e;

The window function which leads to the Penrose quasi-

lattice is independent of x~~,

r

pp( ) gq i) Iy if x EP U U

0, otherwise,

where U is the hyperlattice unit cell with a vertex at the

origin and a vertex at (1,1,1,1,1). In Fig. 7 we also show

U as the interior of a rhombic icosahedron. Therefore,

the quasilattice density is explicitly

p (x )= g g 5~~(x~~ —Xn e) )

Ng oo

for some 1+k, some real b, and some integers mi. Note
that (20) implies g. , mj =0. If, in addition, b =0 then

the quasilattice is called exceptionally singular
The exceptionally singular Penrose quasilattices have an

exact C~o„symmetry and the corresponding y is such that
the ~~ subspace, when shifted to y, will contain a lattice
point. Precisely this point becomes the center of the sym-

metry. Similarly, a singular Penrose quasilattice has an
exact mirror symmetry. %e display in Fig. 8 typical reg-
ular and singular Penrose quasilattices and we also show
the extended Penrose quasilattices associated with yo+0.
We see that the main differences are in the exact symme-

try of the quasilattice, in some local variation of the den-

sity of lattice points, and in the types and frequencies of
vertices. Note, however, that in all cases the average den-

sity of vertices is the same

pll lim I pll(xll)dxll

=(2+~)/5=0. 7236. . . ,

(23)

in units of vertex/area of thin rhombus.
In the following sections we shall also see that all types

of Penrose quasilattices lead to the same qualitative
atm& of the diffraction pattern. That is, they all give
rise to Bragg peaks at the identical positions. However,
relative intensities of the peaks although independent of
y will generally depend on yo.

111 PENTAGONAL QUASICRYSTALS

Just as in the case of ordinary crystals, a specification
of a quasicrystalline structure requires more than the
knowledge of its (quasi)lattice. Given a crystal lattice one
needs «describe the atomic content, or decoration, of the
unit cell, the unit cell being specified by a tiling associated
with the lattice. Precisely analogous procedure can be
used to specify structure of a quasicrystal. i7'is Qne can
fimt sp~ify a tiling ass~iat~ with the quasilatti~, e.g
the Penrose tiling of the Penrose quasilattice, and then
one can specify a decoration of the different unit tiles.
For example, the two Penrose rhombuses can be given a
decoration. The only requirement on the decoration is
that it respects the matching rules. However, unlike the
ordinary crystals, a Penrose tile can be found in several
different local environments and one would expect that in
a "real quasicrystal" the atoms would relax into new posi-
tions according to the different local environment they
see. This would, in turn, lead to a new varying, decora-
tions of the same tile. It might be, therefore, more reason-
able to consider a quasicrystal as a projection of a hyper-
crystal, that is, to decorate the hypercubic lattice and then
make the projection. The decorations of the quasilattices
obtained in this way are not in general equivalent to any
particular decoration of a finite number of unit tiles.
Since the two procedures of decorating a quasilattice lead
to differences in the diffraction patterns (as will be seen in
Sec. V) we shall describe both of them.
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FIG. 8. Penrose and extended Penrose quasilattices. (a} The exceptionally singular Penrose quasilattice with y=0. Clearly, the
lattice has CIo„symmetry arith the mirror planes indicated in the figure. %'e show also portions of regular Penrose tiling and the por-
tions mth increased local density due to scrambling of the tiles. This scrambling violates the matching rules. By moving y inside the
yo ——0 plane the tiling can be unscrambled leaving only a mirror symmetry, as for the singular tiling in (b) where
y=(0.0533,—0.0533,0,0,0), or no symmetry at all, as for the regular tiling in (c) where y=(0.0111,0.0123,
0,0211,—0.0200, —0.0245). In (d), (e), and (f) me show the tilings resulting by shifting y of corresponding tilings in (a), (b), and (c) by
ys=ao/2~5=1/10(1, 1,1,1, 1). These tilings contain local arrangements of the tiles which would violate the matching rules for the
Penrose tiles given in Fig. 2. Such examples are indicated in the figure. Note, however, that such tile combinations do occur in the
sections of ihe three-dimensional icosahedral tilings. The reader is encouraged to copy the tiles on transparencies and to compare
them. In particular, the reader can verify that tilings in (e) and (fj do not have exact pentagonal symmetry; the center of the tilings is
only a local fivefold center.
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The decoration of the hyperlattice can be described by
the density

p(x) =g g fg5(x —R—g),
R

(24)
Hence, Eq. (26) can be rewritten as

where g' is the position of the /th atom in the hyperunit
cell and f~ is its scattering amplitude. The associated
decoration of the quasilattice is in this case simply
described by

p '(x ~) =y y f 5'~(x ~ —R~~ —g~~) W(R+g —y) (25)
R g'

This follows immediately from Eqs. (2) and (24). In this
expression there are no conditions on fs except that in or-
der to remove redundancy no two different g's should
have identical parallel components.

A direct decoration of a quasilattice can be accom-
plished by constructing at each quasilattice point a Voro-
noi polygon as described in Sec. II. These polygons can be
taken as the unit tiles associated with the quasilattice.
Generally, as in periodic lattices, only a finite number of
distinct polygons vill be generated. For example, it was
mentioned earher and it is shown in Appendix A that
eight Voronoi polygons appear in regular Penrose quasi-
lattices (see Fig. 3). However, in contrast to periodic lat-
tices, every Voronoi polygon will be found in infinitely
many distinct, infinite environments.

It is reasonable to decorate all identical Voronoi tiles in
identical fashion. This should be a good approximation
(to lowest order) since the shape of a Voronoi tile is com-
pletely determined by the immediate surrounding of its
quasilattice point. Corrections may be obtained by distin-
guishing the tiles according to further neighbor environ-
ments. The decoration of the tiles should preserve their
local symmetries and it must be consistent with the
matching of the tiles. This matching condition leads to
an interesting aspect of quasicrystals, namely, the number
of atoms per unit tile need not be integral. For example,
the number of atoms per thick or thin Penrose rhombus,
if they are taken as unit tiles, must be an integer +-,' or
+ —,, respectively.

The resulting density for such decoration of unit tiles
can be expressed as

pal(xll) g g g f Qll(xi) Rll
/II ) W (R y) (2S)

p R g'

For example, in case of Penrose tiles Ri densely figs
equidistant planes separated by 1/v 5 and perpendicular
to the ao axis. The Penrose window 0= U cuts four of
thee plan~ into pentagonal regions shown in Fig. 7. The
intersections of these planes with the windows Q„=U„
corresponding to different Voronoi polygons have been
also determined by deBruijn' and they are shown in Fig.
9. They are all filled with equal, uniform density of Rt's.
This last fact is useful for calculating frequency of vari-
ous subpatterns of Penrose quasilatticesss and, in particu-
lar, for the frequency and fractional area of different
Voronoi tiles calculated in Appendix A.

0

where p indexes different (Voronoi) tiles and g„ is the po-
sition of g'„th atom inside the pth tile (which is centered
at the quasilattice point R„). The corresponding atomic
scattering amplitude is f &~~. Generally, one will be able

Pfp
to define disjoint window functions W„(x) for each type
of tiles (see Appendix A). That is

1, xEQp
W x='

0, otherwise ' (27)

W( x)=g W„'(x),

n= U„n„,

FIG. 9. Division of the pentagonal regions from Fig. 7 ac-
cording to the different types of Voronoi polygons showa in Fig.
3. Note that the bar over a number indicates the negative num-
ber. Also note that the symbols IC and Q should be exchanged
in Fig. 8 of Ref. 13.
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where g' is the position of the /th atom within a unit cell.
In the next section we shall see that for quasicrystals a
decomposition like in Eq. (30) is not always possible and
we shall see to which extent it can be generalized. In the
remainder of this section we shall discuss only the intrin-
sic structure factor of quasilattices.

The Fourier transform of Eq. (4) is

pl'(q' ) =I dq'e '~ p(q) W'(q )

g 5ll(qll Qll) gr+(Qj )e
Q

FIG. 10. A decoration of the Penrose quasilattice of Fig. 2
which cannot be expressed as a decoration of the two rhom-

buses. The decoration is achieved using identically decorated
tiles shown at the right and around a vertex of the quasilattice.
%e also indicate pairs of identical rhombuses which, in contrast,

appear with different decorations.

An alternative to decorating the Voronoi tiling of the
quasilattice is to decorate its dual tiling. In general, the
two decorations are not equivalent. For Penrose quasilat-
tices, it turns out that the decoration of the quasilattice is
more general. Moreover, for Penrose quasilattices one
could also decorate either the rhombuses or the kites and
the darts. Again, the latter decoration would be less gen-
eral. However, this "arbitrariness" indicates possible dif-
ficulties which may arise in more general quasilattices.
For example, any given tiling can be congruently de-
formed to another tiling. Such congruent deformations of
the unit cell of a periodic lattice are inconsequential. In
contrast, decoration of quasicrystalline unit tiles is, gen-
erally, not equivalent to a decoration of congruently de-
formed unit tiles. For Penrose quasilattices we illustrate
this in Fig. 10. Clearly, then, to decorate a quasilattice
one has to consider the shapes of the tiles as well as their
decoration.

IV. INTRINSIC STRUCTURE FACTOR

The scattering intensity from a density p(x) of scatter-
ers is proportional to the square of the Fourier transform
of the density,

where Q is a reciprocal hyperlattice vector and we as-
sumed that the window function depends only on x .
Therefore, the intrinsic structure factor leads to the sharp
Bragg peaks at q'I =Qll whose intensity is

I(Q(l) g e2wig~ y gqQl)
o=e~~+e'

(33)

Unlike ordinary crystals, this set of Bragg peaks is dense
in the whole plane. That is, every neighborhood of each
point in the plane contains a peak. However, the peaks
are isolated in the sense that sufficiently close to a given

peak all other peaks are arbitrarily weak. The reason for
this is that for two close Qll's corresponding Q 's, which
determine the intensities, are far apart.

For the one-dimensional Fibonacci quasilattices and the
three-dimensional icosahedral quasilattices there is a one-
to-one correspondence between the Qll and Q com-
ponents of a reciprocal hyperlattice vector Q. However,
for Penrose quasilattices this correspondence is many to
one. In fact, infinitely many different Q's have exactly
the same Q I component. Explicitly, we write

Q=(n&, n2, ns, nq, ns), (34)

where nJ, j=1, . . . , 5 are integers. Then, according to
Eqs. (6) to (10)

Q =v'2/5+ n (cos[(j —1)co],sin[(j —1)to]}, (35)

Q =V'2/5+ nj(cos[2(j—1)c0],sin[2(j—1)t0]),
(36)

s(q}-
I p (29)

S(q)-I(q)G(q) . (30)

where q is the scattering wave vector. For a crystal, S
splits into two factors, 1Qo= ~ gn,

J
(37)

The first factor leads to identical Bragg peaks located
at the reciprocal lattice vectors. This factor we may cali
the intrinsic structure factor since it is independent of the
specific decoration of the lattice. We shall see that for
quasilattices the intrinsic structure factor is much richer.

The second factor is the geometric structure factor. Lt
accounts for the scattering from the atoms within a single
unit cell, that is,

ere we expressed Qll Q and Qo in the basis (a II a II)
~ j.(a i,a2 }, and ao, respectively. Clearly, if every n. is re-J

placed by n~+N, where N is an arbitrary integer, Qll and
Q remain unchanged while Qo increases by Nv 5.
Therefore, although the correspondence between Qll and
Q is one to infinity, the correspondence between Ql and
Q is one to one and Eq. (33) reduces to

6 ( q) y e 2wici. g'

g'

(31) 2

I(QII)- g e ' W(Q, QO+NV 5)
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Clearly, Qo v 5 =g. nj. need only be specified mod5.
The infinite sum in Eq. (38) can be removed by going

back to the direct space in the j.o variables in which case
Eq. (38) can be reduced to

I(QII)
—idtM gn, ~ i .

(2
JL JJ

e dx e

&8' x —y, —yo
5

where Ix) is the fractional part of x, 0&[xI ~1. For
regular and singular Penrose quasilatticcs yo ——0 and the
intrinsic structure factor, which is independent of y, be-
comes identical for all Penrose quasilattices. Therefore, a
scattering experiment could not distinguish between the
regular and singular Penrose quasilattices. In fact, it
could not distinguish the extended Penrose quasilattices
with integer values of you 5. Generally, the intrinsic
structure factor depends only on [yo V 5j, that is, on the
intersection between the window U and the planes
xo ——(M —{yov 5 I )/~5, M =1,2, . . . , 5. Consequently,
although the real pentagonal quasilattices may be quite
different for different y and o (see Fig. 8), and for
fixed y they depend on jy() / 5), the scattering intensi-

ty can only determine Iyo v 5 I (see Fig. 11).
Since the expression (38), from which Eq. (39) follows,

contains a sum of terms, it is essential that relative phases
of the individual terms are correct. Hence, Eq. (39) can be
checked by evaluating directly the Qll Fourier transform
of pll(xll) [see Eq. (4)]. This gives

(41)

which obviously reduces to Eq. (39).
To summarize, the intrinsic structure factor for Penrose

quasilattices has Bragg peaks at reciprocal" quasilattice
vectors Qll which can be indexed by five Miller indices~
( 5 i n z pt 3 n 4, n s ) according to Eq. (35), and whose inten-
sities are given by Eq. (39) with Q as in Eq. (36). We
show in Fig. 12 the diffraction patterns calculated using
Eq. (39) for Penrose quasilattices shown in Fig. 8.

We shall conclude this section by examining the dif-
fraction near a reciprocal quasilattice point. Since I (Q ')
is a rapidly varying function of Qll it is useful to consider
some special, simplifying sequences of reciprocal quasilat-
tice points. Thus, we shall analyze I(Qll+K "}where
K ~~0 or K ~ ~op as m~ —eo or +ac, respectively,

~ 0
p 0

pll(Qil) g e&4'&Q R ~(Ri yi) 0
0 ~ ~

t ~ ~

1 ~ ~

~ ~ ~ ~

~ ~ O
~ ~

~ ~ ~ ~ ~ Q

y e 2eigi -R~gqRl yJ. )
R

(40) ~ o . t ~

t
~ ~ ~

Q 0 ~

~ ~

~ ~ ~ p
4

~ Q

where Q is the component of any ro:iprocal hyperlattice
vector Q whose parallel component is Qll. As mentioned
above, Q is unique while Qo is specified mode 5. The
last sum in Eq. (40} can be split into a sum over R and a
sum over R(I

—M/v 5. However, we already mentioned
that ponts R are uniformly dense so their sum can be re-
placed by an integral ' resulting in
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FIG. 11. Extended Penrose quasilattice vnth y~~=y =0
and yo ——~5/2. This tiling is quite different from the one in

Fig. g(d) where yll =y =0 and yo ——1/(2t/5). However,
since for both tilings {yoV 5I =0.5 they have identical diffrac-
tion patterns (see Fig. 12).

p ~ ~ ~ ~ ~ t p ~

p ~

0 p

t ~

t 0 p

0

FIG. 12. Diffraction patterns for lattice shown: (a) in Figs
8(a) to 8(c), where yo ——0; (b) in Figs. 8(d) to 8(f) and in Fig. 11,
where {yot/5 J =0.5. Note that there is very little difference be-
tween the two figures although they represent the maximal pos-
sible difference in {yov 5I. (Note that by symmetry {yot/5)
and l —{yoW5j give identical diffraction patterns. ) The fourth
ring of diffraction spots from the center corresponds to the fun-

damental wave vectors and changes very little. The largest
change can be seen in the fourteenth ring. The patterns were
calculated using Eq. (39) as described in Appendix C. Area of
the circles is proportional to the intensity of Bragg peaks at their
centers. Only spots with indices n; =0, +1 are shown.
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following the sequence of reciprocal quasilattice vectors
K defined in Appendix B by

and

K-ll—=WK)l,

KmJL ( )
—rnKJL (43)

KO =(—2) KO,m (44)

where K is an arbitrary quasilattice point.
Clearly, in the limit K~ ll —+0, EiII, (43) implies

K +—mao which in turn implies W(Q +K, )~0.
Therefore, I(Qll+ K ll) will approach zero for every Ql

although I(Q)l}&0. In other words, this shows that the
quasilattice Bragg peaks are indeed isolated. The ap-
proach to zero will be governed by the limit of
8'(Q +K, ) as K ~no. For example, for the

sharp cutoff W oscillates with a magnitude which de-

creases as
~

K
~

' —
~

K ll ~, while for a Gaussian win-

dow, W would decrease as exp[ —const j
~

K l

~

2].
In the opposite limit, K~ll~ao, one has a simple but

somewhat surprising result

where

g(Q)=g fge
g'

(47)

For Fibonacci, icosahedral, or similar quasilattices where
there is a one-to-one correspondence between Qll and Qi,
Eqs (46) and (47) lead to the same expression, Eq. (30),
f« the structure factor as for ordinary crystals, the ap-
propriate geometric structure factor bei~g

In this section we shall investigate how a decoration of a
quasilattice modifies the intrinsic structure factor ob-
tained in preceding section. Since we have seen that a
quasilattice can be decorated using two inequivalent
methods, we shall have to investigate the two cases
separately.

In the first case the quasilattice is decorated by decorat-
ing the hyperlattice. This leads to the density given in Eq.
(25). This density can be Fourier transformed in the simi-
lar manner as the original quasilattice density resulting in

pll(qll} g Pll(qll Qll)e 2+)Q 'i $P'+(Qi )g (Q) (46)

I ( Q ll+ K~ l I ) ~ 1(QI I )
Il

(45) G(Qll) =
) g (Q) (

'= g fge' 'q'& (48)

where it is assumed that Eo ——0modv 5.

V. GEOMETRIC STRUCTURE FACTOR

As mentioned earlier, when a crystal lattice is decorat-
ed, the intrinsic structure factor is modified as in Eq. (30}.

where Q is uniquely determined by Qll

For the case of penrose quasilattices there is an infinite
number of reciprocal vectors Q associated with a given

Q . Thus, the sums over Q and g mix in Eq. (46). Con
sequently, the structure factor, Eq. (39), generalizes to

S(Qll) gf —z '(qll. gll+q ~.g IL
) )m Xn)lM —[g v 5) ) ~ Iyo &' go

g' M=0 5
(49)

where [x] is the integer part of x, i.e., x =[x]+Ix I.
Clearly, when all Ig'ov 5I are equal, the~ just have a

role of redefining Iyov 5) ~Iyo~5] —(goo 5J in Eq.
(39), and the structure factor simplifies to

i„(Q,Iytv 51)= g e'" "~W„Q,

$(Q)l) -G(Q)1(Qll, Iy,'~5
I
—

I g.'~5 I ), (50)

$(Q )- ygp(Q )ip(Q, [yo~5I) (51)

g (Qll)
glI

{52)

where the geometric structure factor 6 is defined in Eq.
(48} and the intrinsic structure factor I, whose explicit yo
dependence is displayed, is defined in Eq. (39).

For a direct decoration of a quasilattice we must start
from Eq. (28). This leads to the structure factor

The two expressions for the stmcture factor Eqs. (49}
and (51) are similar in that the lattice and the decoration
contribution mix. The sum over )u in Eq. (51) is analo-
gous to the sum over go in Eq. (49). Nevertheless, the two
expressions are quite different and it is necessary to eluci-
date the difference. Therefore, we shall investigate the
behavior of the structure factor along the sequence
${Qll+K ll) defined in Appendix B and in Eqs. (42) to
(44) at the end of the preceding section.

As K ~~~0, we showed that K ~ao. Thus, the
structure factors, Eqs. (49) and (51) are driven to zero by
8'(Q +K, . ) and 8' (Q +K, ), respectively.~P
In the case when Qll=Q =0, the decoration contribu-
tion disappears for Eq. (51) since g&(K ll)~1 and only
the quasilattice contribution remains (and approaches
zero). However, for Eq. (49) the decoration contribution
does not disappear even in this limit. Formally, the
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reason is that the term g' .K diverges. Physically,
this is caused by the fact that the projection of a hyperlat-
tice decoration cannot be in general reduced to a decora-
tion of any finite set of finite tiles that is, there is no
natural cutoff separating the small wave vector, quasilat-
tice dominated behavior from the large wave vector,
decoration dominated one. Accordingly, as K ~~ ac the
structure factor S(Q~~+K ~~) is in both cases dominated
by the geometric structure factor as can be easily verified
from the fact that W„(Q +K +, ) and
8'(Q +K, ) both have well defined limits as
Km Jl.~(}

The essential difference between Eq. (49) and Eq. (51)
remains even when there is a one-to-one correspondence
between Q~~ and Q (like for Fibonacci and icosahedral
quasicrystals) in which case one finds

(54)

(55)

respectively.
This difference can be most easily observed in experi-

ments on different quasicrystalline materials which only
in the case of Eq. (55) should all have the identical Q~~~O

diffraction pattern
VI. SUMMARY

%e have seen that the most general quasicrystal struc-
tures based on projected quasilattices can be constructed
in two ways: by decorating the tiles of the quasilattice or
by decorating the hyperlattice which is projected. An
unusual and important feature of quasicrystals in the case
of the tile decoration is that, unlike the ordinary crystals,
the information about the shapes of the tiles is essential.
We demonstrated this in an example.

We calculated the intrinsic structure factor for Penrose
quasilattices. For the two methods of decorating a quasi-
lattice we also calculated the total structure factor. In
contrast to ordinary crystals, we showed that in general
only the hyperlattice-decoration-and-projection method
leads to a structure factor which may split into an intrin-
sic and a geometric factor. For both methods the
infinite-wave-vector limit is governed by the decoration.
On the other hand, for the tile-decoration method the
zero-wave-vector limit depends only on the intrinsic struc-
ture factor while for the hyperlattice-decoration-and-
projection method the zero-wave-vector limit does not ex-
tract the intrinsic structure factor information. The
reason is that the latter method of decorating does not
lead to a natural definition of a finite number of finite
tiles whose size would determine a "boundary" between
the intrinsic and the geometric structure factor dominated
regions.

Since the icosahedral qvasicrystals have been reported
in several different compounds, the tile-decoration
method could be verified experimentally by finding a
universal structure factor behavior near the origin. We
pointed out to some characteristic sequences of Bragg

spots which are most useful for examining the structure
factor. Our specific analysis of pentagonal quasicrystals
should especially prove useful in the analysis of the T
phase which also occurs in several alloys.

We shall conclude with several remarks. Further eluci-
dation of the effect of tile shapes on the structure factor is
necessary. It would be useful to study pentagonal quasi-
lattices which can be obtained as projections from four-
dimensional periodic lattices. For such quasilattices the
one-to-one relationship between Q~~ and Q is recovered
but an additional complication is created since the explicit
symmetry is lost.

The effects of thermal fluctuations in quasicrystals are
the same as in ordinary crystals —namely they are mani-
fested through the usual Debye-Wailer factor
[=exp( ka T —

~
Q'

~
/3m coo), in three dimensions at high

temperature]. However, different kinds of thermal flu-
ctuation, fluctuations of the window, or of the "atoms, " in
i ("phason") directions probably also occur in quasicrys-
tals. These fluctuations would lead to another factor pro-
portional to exp( —c

~ Q ~
) where c is a function of tem-

perature which depends on whether phasons are annealed
or quenched. ' Finally, the finite sample size of a quasi-
crystal has the same effect as in ordinary crystals, it
broadens otherwise sharp Bragg peaks.

Note added. Recently Henley analyzed disk (sphere)
packings and local environments in regular two- (three-)
dimensional Penrose quasilattices. His Table I agrees
with our Table I. Other recent work also analyzes the
statistics and decoration of two-dimensional Penrose
quasilattices. Its Table I is also in agreement with our
Table I.
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APPENDIX A

Following deBruijn' we recall that eight different types
of vertices occur in regular Penrose quasilattices. They
lead to eight Voronoi polygons, two of which are identical
in the shape but different in the local environments in
which they can be found. They are shown in Fig. 3.
DeBruijn also showed that different types of vertices filI
disjoint, uniformly and equally dense portions of U . The
vertices of type p fill the sections U& shown in Fig. 9.
Therefore, we can immediately determine the frequency of
vertices of type p, , which we denote p „,

(Al)

where A & is the area of U„, i.e., the area occupied in the
Jl . IL

perpendicular space by vertices p. Corresponding fraction
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For Fibonacci and icosahedral quasilattices one has

2+ 'T 27 —I
pII

2v —1 3—~ (84)

b = (2-~)0
c =(r-))0

1 /yt'+P
0

R= 4"'a
5

A(cbc) =
& /Or+3 b

A(cac) = z gr+2' ae

A(RaR)= ~i g4'as a'

FIG. 13. Geometry of a pentagon.

5 2v —1 2v —1 2~—1

2v —1 5 2v —1 1 —2v.

2w —1 2w —1 5 2r —1

2~—1 1 —2v 2v —1 5

2v —1 1 —2~ 1 —2v 2w —1

2v —1 2~—1 1 —2~ 1 —2w

1 —2~ 2z —1

1 —2v 1 —2v

2&—1 1 —2w

5

21 —1

(85)

respectively (note, Pi= 1 —P~~}. This leads to the follow-
ing solutions of Eq. (83) (with D =2 and 6, respectively):

b=r, c= r——1

of the area occupied in the
~ ~

subspace by polygons of type

p Snd I'cR A~ 18

tlA„Aq

A„A„
(A2)

b=r, c= r— (87)

respectively. These solutions correspond to (bP~~+cP )
given by

r

Formulas (Al) and (A2) are easily evaluated using simple
geometric relations shown in Fig. 13 and 1 —1

(88)

1
cos(2ai) =—cosai ——= ——,

2 2
' (A3)

1 (a+b} b

a+br a2+ab bi a2+ab b— —(A4)

The results following from Eqs. (Al) and (A2) are sum-
marized in Table I of the main text.

APPENDIX 8

where r=(1+v 5)/2 satisfies r r 1=0—a—nd, conse-
qQently,

2 1 1 1 1 1

1 2 I 1 1 1

1 1 2 1 1 1

1 1 1 2 1 1

1 1 I 1 2 1

1 1 1 1 1 2

respectively.
In the case of Penrose quasilattices Eq. (83) has to be

slightly generalized to yield

In this appendix we shall determine certain simple se-
quences of reciprocal quasilattice vectors K~~ whose per-
pendicular partners K form equally simple sequences.
This is essential for the analysis of structure factors which
are functions of K~~ implicitly through K which is a
highly irregular function of K~~. The simplest approach is
to look for a scale change K~~~bK~~ such that there is a
corresponding simple scale change also for the perpendic-
ular component, i.e., K ~cK . Formally, we start from
any K

bPi'+cP +dP', CGL(S,Z),

where

z—1
1

5

(810)

(811)

K=K~~+ K"=(P~~+P')Ke ZD

b K~~+cK' =(bP~~+cP')K eZD

(81)

(82)

—T 2
1I' =—v —1
5

v —1 ~—1

r—1 v —1

v —1 v —1

(812)

for every K. That is, b and c must be solutions of
Diophantine equations for the components of the matrix
(bP~l+cP'},

v —1 v—1 —w 2

~d P'. = I P~~ P. A solution-of E—q. (810}is

bP~~+cP'HAGI. (D,Z) . (83) 6=7, c=—'7, d= —2, (813)
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—1 —1 0 0
0 —1 —1 0 0

which gives for the left-hand side «Eq (&10}
r

0 —1 —1 0
0 0 0 —1 —1

0 0 0 —1 (814)

+VI'+3s I ls s ~ ~ s 5

For M =3: irregular decagon with vertices at

e f. +CI+3+V I-+3, / = 1, . . . s 5 .

For M =4: irregular decagon with vertices at

XL 31. JL—e- —e.+3+V +3 l =1 (CS)

Note that for K~~ in some special directions different solu-

tions may exist.

From Fig. 7 we can see that these intersections are the fol-

lowing polygons (projected into the JL plane).
For M = 1: regular pentagon with vertices at

v,
"—=(1—Iy,'v SI)e,", t. =l, . . . , 5. (C2)

For M =2: irregular decagon with vertices at

We shall explain here how the diffraction patterns in

Fig. 12 were calculated. Using Eq. (39) we realize that we

need to determine the intersections of U with the planes

xc=
M —ty V5)

(C1}
5

2~iq I, zstq aqq'( 2& —S)e
X +I

q (a~ —az}
(C7)

for the two-dimensional Fourier transform of the triangle
formed by a~ and a2 radiating from the origin.

For M =5: regular pentagon with vertices at

—e;+v;, i=is ~ ~ 0/5 t

ln all of these equations the indices should be taken mod5.
The Fourier transforms of these polygons, which enters

Eq. (39), can be evaluated by breaking up the polygons
into triangular sections and using the formula

P(q.a a )
— dzxe2~iq x

det(aia2)

(2~) at qq. a2
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