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%'e report on a variety of novel features for the distribution of voltage drops across the bonds of a
random resistor network. To describe this distribution analytically, we introduce a simple geometri-
cal model, with a hierarchical structure of links and blobs, which appears to capture the basic
features of random networks near the percolation threshold. On this model, we find that the voltage
distribution is a log binomial, and that an infinite hierarchy of exponents is required to characterize
the moments of this distribution. On general grounds, we argue that this exponent hierarchy
emerges naturally from an underlying distribution which, at the percolation threshold, can be writ-

+la V/ln V )
ten in the form, I. , where I. is the linear size of the system, V is the voltage drop, and
V is the maximum value of this voltage drop. The nonconstancy of P(y) as a function of y is an
unconventional feature in the context of a scaling approach, and a variety of novel properties result.
These are tested by numerical simulations of the voltage distribution for square-lattice networks at
the percolation threshold. In particular, the moments of this distribution are found to scale indepen-

dently, with the exponents of the positive moments in excellent agreement with those of the
hierarchical model. %'e also discuss some intriguing properties associated with the voltage distribu-

tion above the percolation threshold, most notably, that the higher moments of the distribution are
nonmonotonic functions of the bond concentration. Finally, we exploit duality arguments to investi-

gate the voltage distribution of a random superconducting network.

l. INTRODUCTION

The critical behavior of the random resistor network is
a classical percolation problem whose properties have re-
cently been found to be considerably richer and more
complex than previously imagined. ' s Many of these
new features emerge naturally upon studying the underly-

ing distribution of voltage drops across the bonds in the
network. In a previous paper, ' we reported some prelimi-
nary results for this voltage distribution, both from ana-
lytic calculations on a simple hierarchical lattice model,
and from numerical simulations of square-lattice random
resistor networks at the percolation threshold. In this pa-
per, we showed that a conventional scaling approach does
not provide a complete description of the random resistor
network, as an infinite hierarchy of exponents is needed to
characterize the moments of the voltage distribution. The
same result was also found independently by studying the
properties of resistance noise in random networks by
Rammal et al. 2 An analogous behavior was subsequently
found in various growth phenomena, such as diffusion-
limited aggregation, " as well as in the localization
problem, ' and in dynamical systems. '3 The presence of
an infinite set of exponents was erst discovered in the
context of turbulence by Mandelbrot. ' Further work for
the specific problem of turbulence can be found in Refs.
15 and 16 In this paper, our goal is to understand the
properties of the voltage distribution in greater detail, and
to present a general formalism to account for its
anomalous scaling properties.

To construct the voltage distribution, we consider a
random network of bonds in which a unit resistance is as-

sociated with each bond, and a unit voltage is applied at
the opposite edges of the random network. Each bond
can then be characterized by the absolute value of the
voltage drop V across it, or equivalently, by the absolute
value of the current I flowing through it. Alternatively, a
bond can be characterized by its power dissipated, V .
The voltage distribution is built up by recording the abso-
lute value of the voltage drops in all the bonds in the net-
work, and then averaging over a sufficiently large number
of realizations of the network. Our primary interest is in
the quantitative features of this distribution of voltage
drops when the network is strongly disordered, e.g., when
the system is near the percolation threshold.

A few basic properties of the voltage distribution can be
obtained through elementary geometric considerations.
At the percolation threshold, the maximum voltage drop,
V,„,occurs in the links, or singly connected bonds. ' '
These are bonds which would render the entire network
disconnected if they were to be cut. Therefore, these
bonds carry the total current passing through the network.
If the applied potential and the bond conductances are
both defined to have value unity, then V,„=I=6,
where 6 is the conductance of the network. From this
connection, the dependence of V~ on the systetn size
can be inferred. On the other hand, the minimum voltage
drop, V „,will be found in the nearly balanced bonds
embedded within blobs at the smallest possible length
scale.

Complete information about the nature of the voltage
distribution is contained in the moments

M(k)=(V") = gn(V)V',
1nV
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where n ( V) is defined as the number of bonds character-
ized by an absolute value of the voltage drop V, and
where the sum is over all values of lnV, which turns out to
be the natural variable in the problem. Some of these mo-
ments have immediate physical interpretations. For ex-

ample, ( V ) is the average number of bonds in the back-
bone, ' and (V ) is the average conductance. In addition,
other positive moments of the distribution, which may be
less familiar, can be shown to have physical relevance, as
well as providing information on the high-voltage tail of
the distribution. Thus the quantity ( V ) is related to the
ma nitude of noise in the network, z while, as k~ao,
(V ) weights the high-current-carrying or "hottest"
bonds of the network most strongly, so that this moment
is simply related to the number of links. On the other
hand, negative moments weight the low-current-carrying
or "colder" bonds in the network more strongly, and thus
provide information on the low-voltage tail of the distri-
bution whose features are very different from that of the
high-voltage tail. For example, ( V ') can be shown to
be related to the coefficient of hydrodynamic dispersion.
This phenomenon arises when passive tracer particles are
convected through a random network and are dispersed
due to the multiplicity of paths available for the tracer in
which each path has a different transit time. io'z' If
molecular diffusion is neglected, then the time for a tracer
particle to traverse a given bond is proportional to the in-
verse of the current in the bond, while the probability for
the tracer to enter a particular bond at a junction is pro-
portional to the current entering the bond. As a result,
the kth moment of the transit time distribution will vary
as V '" ", and the quantity (t ) —(t), which quanti-
fies the magnitude of the dispersion, will be related to
( V ). In contrast to the conductance, which is limited
by the highest-current-carrying bonds of the network,
dispersion is limited by the lowest-current-carrying bonds
in the network, where the tracer essentially gets "stuck."

To gain some qualitative insights into the voltage distri-
bution, we have previously introduced a simple hierarchi-
cal model which accurately describes the geometrical
features of random networks near the percolation thresh-
old. On the hierarchical model, we found that the voltage
distribution is a log binomial, which leads naturally to an
infinite set of exponents being required to describe the
moments of this distribution. Consequently, the voltage
distribution cannot be characterized by a unique typical
voltage scale. This was confirmed in numerical simula-
tions, 'z and by series and the e expansion, where it has
been found that an infinite set of independent exponents
was required to account for the scaling behavior of the
voltage moments, M(k).

These results are in stark contrast with the conventional
scaling properties of many distributions in statistical
mechanics. For ex mple, consider the cluster-size distri-
bution in percolation, n (s), which is the number of clus-
ters containing s sites. For a finite-size system of linear
dimension L at the percolation threshold, this distribution
can be written in a scaling form,

n (s)-s 'f (s /L I),
with two unknown exponents; ~, the cluster number ex-

ponent, and df, the fractal dimension of the critical clus-
ter. From this functional form, the moments of the dis-
tribution can easily be shown to scale in a simple way,

gs"n(s)-L fL f

The linear dependence of the kth moment of the cluster-
size distribution on k stems from the fact that there is a
single dominant critical cluster size, s -L, that is re-
sponsible for the critical behavior.

Although novel scaling properties are found for the
specific example of the voltage distribution, a much wider
range of applicability has ban discovered recently. For
example, the properties of the growth site probability dis-
tribution in diffusion-limited aggregation are rather simi-
lar to those of the voltage distribution. This is the first-
passage probability for a random walker to land at a given
surface site of an aggregate at some intermediate stage of
its growth Th. e growth probabilities at the fastest grow-
ing tips and the "deepest fjords" of the aggregate are
found to scale quite independently as a function of the ag-
giegate size. In fact, due to the analogy between
diffusion-limited aggregation and dielectric breakdown,
the growth probabilities can be directly related to the volt-
age distribution on the surface of an equipotential aggre-
gate with appropriate boundary conditions. ' ' More-
over, the novel scaling behavior of the voltage distribution
can be interpreted and reformulated on the basis of the re-
cent description of measures on fractal sets. '3 This char-
acterization again stresses the necessity of considering a
spectrum of exponents to describe the scaling properties
of fractal systems, rather than considering only a single
exponent, such as the fractal dimension, which provides
information that is rather limited in scope.

The outhne of the remainder of this paper is as follows.
In Sec. II, we present a general formalism to describe the
voltage distribution of random resistor networks, and dis-
cuss the anomalous scaling properties which follow. We
contrast these new features with those inherent in conven-
tionally scaling distributions, such as the cluster-size dis-
tribution in percolation. In Sec. III, we calculate the volt-
age distribution on the hierarchical lattice and show that
it is a log binomial. Although the exact discrete form of
this distribution is essentially trivial, its continuum ver-
sion is quite rich, and we shall use it to illustrate many of
the novel scaling features introduced in Sec. II. From the
hierarchical lattice, we can also infer the functional form
of the voltage distribution of a random resistor network
above the percolation threshold, p, . In addition, a gen-
eralization of the model is introduced which suggests that
the log binomial form is a characteristic feature of the
voltage distribution on any hierarchical structure. A simi-
lar logarithmic voltage dependence is found numerically
on percolation clusters. In Sec. IV, we present numerical
data for the voltage distribution. Both exact data from
small lattice sizes, and approximate Monte Carlo data
from larger lattice sizes at p, is considered. We find that
the moments of various voltage moments at and above p,
do indeed scale independently. A scaling analysis of the
voltage distribution is performed in order to test some of
the more striking features that emerge from our theoreti-
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cal formulation of the problem. In Sec. V, we discuss
some intriguing physical features associated with the
properties of the voltage distribution above the percola-
tion threshold. In Sec. VI, we consider the voltage distri-
bution of a random superconducting networks and show,

by duality, that it is related to that of the random resistor
network in two dimensions. Finally, in Sec. VII, we give
some general conclusions.

II. VOLTAGE DISTRIBUTION
IN RANDOM NET%'ORKS

We wish to discuss, in very general terms, some of the
salient and anomalous features of the voltage distribution
in random resistor networks, and contrast these features
with those of distributions which scale in a conventional
manner. Consider an I &(I. square lattice in which the
bonds are either unit resistances with probability p, or in-
sulators with probability 1 —p. If a unit potential,
Ev= 1, is applied across the opposite edges of the net-
work, then the second moment of the voltage distribution
coincides with the conductance G. At the percolation
threshold, p„this moment vanishes as L &~", where g is
the conductance exponent and v is the correlation length
exponent. Since other moments provide useful additional
information about the nature of the voltage distribution,
we are led to consider the statistical properties of the gen-
eral kth moment of the distribution,

W( no ). As k increases, W(k) is sensitive to progressively
finer geometrical aspects of the backbone, and each W(k)
has a distinct scaling behavior (see also Ref. 2). For the
discussion in the remainder of the paper, we shall primari-
ly consider the moments defined by (4a).

If n ( V) were a scaling function of V, then the differ-
ence p(k) —p(k —1) would be a constant proportional to
the "gap" exponent. This standard behavior is what
would be obtained if the voltage distribution had a scaling
form analogous to the one given for the cluster-size distri-
bution in Eq. (3). Let us now study those conditions
under which p(k}—p(k —1) is not a constant, and the
ramifications that such a property would have for the
voltage distribution. We rewrite M(k) as

ln(n( V))+kin V g F( V k) (5)
1nv 1nV

with

F(v, k)=in(n (V))+k lnV.

From (4a}, F( V, k) is expected to diverge logarithmical-
ly for large L, so that we may attempt to evaluate the sum
in Eq. (5) by steepest descents. The value of V for which
the summand is a maximum is given by the condition

V
[ln(n (V))+k inVJ=O,

and this yields for the maximizing value of V

M (k) = y n ( V) V"-L
1nV

n(V')
n'( V') (8)

where the asymptotic relation serves to define the moment
exponents p (k).

Alternatively, we may define the distribution of
currents, or equivalently, the voltage distribution under
the condition that the total current I fiowing through the
network is equal to 1, rather than imposing a unit external
potential drop. From the relation EVG =I, the condition
I =1 corresponds to imposing the boundary condition
b, v=G ' for the voltage drop across the opposite edges
of a given configuration of the network. In this case, each
bond will be characterized by a voltage drop l) = V/G, if
V is the voltage drop across the bond when a unit external
potential is imposed. We now define the following mo-
ments W(k) and the associated exponents g(k) through

W( k) = g n (U)U"-L&(~), (4b)
lnu

with g—:g/v. The moments in (4a) and (4b) are simply re-
lated by W(k) =G M(k) and the moment exponents are
therefore related by g(k)=kg(2) —p(k). At p„we also
have v =V/V, „since 6 = V,„.Therefore n(U) is the
number of bonds in which a fraction U of the total current
in the network flows. In analogy with the moments,
M(k), we deduce that W(0) coincides with the total num-
ber of bonds in the backbone, W(2) scales as the resis-
tance, W(4) is related to the amplitude of the noise, and
W(no) coincides with the number of links. In general,
each W(k) can be regarded as a length measure of the
backbone, which ranges from the total number of bonds
in the backbone, for W(0), to the number of links, for

n( V(k)) =g (k)Lf'"' (9b)

For a conventionally scaling distribution, the exponents a
and f would be independent of k and the amplitudes
A (k) and 8(k) would also be smooth functions of k, so
that there is effectively a unique typical value V' that
characterizes the distribution. However, consider the situ-
ation of the voltage distribution, where the exponents a
and f turn out to be dependent on k. This novel behavior
will be justified, both by analytical calculations on the
hierarchical lattice, and by numerical simulations on the
random resistor network, in later sections. However, let
us now investigate the quantitative consequences of the
scaling ansatz (9) for the voltage moments. From the
steepest-descents approach, we retain only the largest term
in (5), and find

eF( v*,k) n( V(k))[ V(k)]k Lf (k) ka(k)—
and therefore, by comparing with (4), we identify

(10)

=ka(k) —f(k) .

In general, then, for each value of k, there is a corre-
sponding distinct value of V'= V(k) which locates the
peak value of the product n( V) V. In the context of a
finite-size scaling approach, let us now make the follow-
ing scaling ansatz for V(k), and a corresponding one for
n(V(k)):

V(k) =A (k)L



MUI.TISCAI.ING APPROACH IN RANDOM RESISTOR AND. . .

Thus the exponent p(k) characterizing the kth moment
of the voltage distribution decomposes in a natural way
into two factors. From the second line of Eq. (10), we see
that the exponent f(k} represents the dependence of
n{V(k)) on L, i.e., the fractal dimension of the set of
bonds characterized by the voltage drop V(k). A novel
feature of the voltage distribution is that there is a distinct
fractal dimension for the subset of the bonds that have a
voltage drop corresponding to a given fixed value of k.
Similarly, a(k) represents the manner with which V(k)
scales with the system size L, and the independent scaling
of each V(k) is indicative of the fact there is no unique

typical voltage scale that characterizes the distribution.
We also note, from (8), that since there is a unique

value V(k) for each value of k, V' can be considered as
an independent variable V. Using the fact that
a/a V=(ak/a V)(a/ak), then we can maximize (7) with
respect to k rather than with respect to V. We thus ob-
tain

ak a
, InN{ V(k'))+, lnV(k') =0 .

,,
'k'=k

(12)

Then from (9) we have, upon neglecting terms of order
I /InL,

ak af aa
av ak' ak' =0

which leads to

af aa
ak ak

With this result we find, upon differentiating (11),

p(k)=a(k) .1

&ak

Therefore, if we know the exponent p(k), then we can ex-
tract a(k), and subsequently f(k), thereby performing the
decomposition of p(k) suggested by (ll) in a direct
manner. A similar approach leading to (11) and (15) has
been developed in Ref. 13.

Using some very rudimentary knowledge of a(k) andf(k), we can now write n ( V) in a scaling form We kn.ow
that as kazoo, V(k)-+V,„,the maximum voltage drop
in the entire network, a drop which will occur across the
links in the percolating backbone. At the percolation
threshold, this maximum voltage drop coincides with the
conductance G. Since the latter quantity scales as L
with r/v=g in two dimensions, we therefore conclude
that a( oo ) =g. Furthermore, since the number of links is
known to scale as L ' ', we also know that f ( oo ) = I /v.

We now define a quantity x=—lnV(k)/InV, „which
turns out to be a fundamental way of quantitatively
characterizing all the bonds in the network. Vfe shall
show that the voltage distribution is a sealing function of
this basic variable. From (9a), we have

In V(k) =InA (k}—a(k) lnL,

ln V( oo ) =InA ( oo ) —a( oo ) InL .

Iherefore for very large values of L we may write

a ( V}-C(x)L~'"',

where

P(x) =f(k (x)), C(x) =8{k (x)),

(18a)

lnV
X =

ln ~max
(18b)

Alternatively, this distribution can be written in terms
of V only. By first taking the logarithm of n ( V) and el-
iminating L through the relation lnV, „=—g lnL, and fi-
nally reexponentiating, we obtain,

n ( V}-V-~"', (18c)

where f(x)=P(x}/xg. Thus we see that the voltage dis-
tribution can be written as a power law in V, but with an
exponent that is also voltage dependent. Equations (18)
represent one of the primary results of this paper. 2" They
express the fact that the bonds in the network are divided
into different sets characterized by the value of
x =lnV/lnV . Each set has an independent fractal di-
mension P(x), and an independent voltage singularity ex-
ponent a=xg. As a result of the voltage-dependent ex-
ponent in (18), an infinite hierarchy of exponents is re-
quired to describe the moments of the voltage distribu-
tion. Similar scaling behavior was also found in growth
phenomena, where the quantity analogous to the voltage
is the probability that a perimeter site becomes part of an
aggregating cluster. ' Note that from (17),

T

P(x)=f k
a( co)

Thus {{}(x)gives the functional dependence of f on
a/a( oo ). A similar function f as a function of a was in-
troduced in Ref. 13.

To appreciate the difference between the novel scaling
of the voltage distribution and the conventional behavior
characterized by a small number of exponents, consider
the cluster-size distribution in the percolation problem.
From the functional form of this distribution given in (2),
maximizing the product s n (s) gives, in analogy with Eq.
(7),

(k —~} f'(s/L ') I

f(s/L ~) L /
(19)

Since f(x) is a rapidly decreasing function of x, the
second term in (19) is less than 0. Now there are two pos-
sibilities: For k ~r, there is no maximizing value of s,
but rather an extremum at the minimum possible value of
s. In this ease, clusters of the smallest size dominate in

a(k)
a(m) '

with correction terms of order I/InL. Thus in locating
the maximum of n ( V) V for large L, i.e., fixing k, the ra-
tio lnV/lnV, „also remains constant, as indicated by
(17). Assuming that a(k) is a monotonic function of k, as
is reasonable physically, we can uniquely invert (17) and
obtain k =k (x). Hence from (9b) we find
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the summand for the kth moment, leading to a finite
value for this quantity. However for k & ~, a maximum
in the summand occurs for a typical size s' given by

s'-A(k)L /, (20)

where A(k) is a nonsingular function of k. Thus when

k ~v, there is a unique typical size, in a scaling sense,

which varies as I. , and this size dominates in the mo-
ments of the cluster-size distribution. To compute the
moments, note that it is not sufficient to merely keep the
largest term in g, s n (s), as was done in Eq. (10) for the
voltage distribution. In the voltage distribution, if one
were to expand about the maximum point to second order
and perform the resulting Gaussian integral, one would
find that integrating over the width of the peak would
lead to logarithmic corrections to the voltage moments.
On the other hand, for the cluster-size distribution, this
same procedure gives a power-law correction, which
represents the necessary shift in the exponent needed to
reproduce the correct scaling of the moments of the
cluster-size distribution given in (3).

In the following section, we explicitly calculate the volt-

age distribution on the hierarchical lattice in order to il-
lustrate its novel scaling features.

dimension of the hierarchical lattice. The backbone of a
finite-size network may therefore be described by a
hierarchical lattice which is iterated to a level where its
length scale matches that of the backbone. For the model
shown in Fig. 1, the criticaI behavior that results provides
an excellent approximation for the exponents of two-
dimensiona1 percolation.

If a unit potential is applied at the opposite ends of an
Nth-order hierarchical lattice, then it is easy to show that
the voltage distribution is

N
n( V(j))=2"

J
(21)

where the voltage V(j) takes on the values 2~/5~, with the
integer index j running from 0 to N, so that the maximum
value of V, V,„,equals ( —', ), while the minimum value
of V, V;„,equals ( —,

'
) . The distribution is therefore a

simple binomial in j, but with j varying logarithmically in
V. Thus we conclude that the voltage distribution is log

binomial (Fig. 2). From this simple discrete form of the
distribution, it is straightforward to calculate the voltage
moments, M(k). Notice that in calculating the moments,
one sums over the index j, which is logarithmic in the
voltage. We find

III. VOLTAGE DISTRIBUTION
FOR THE HIERARCHICAL MODEL

k2(1+2")
5k

(22)

A. Two-dimensional version of the model

To describe the geometry of the percolating backbone
and the properties of the voltage distribution, consider the
hierarchical model shown in Fig. 1. To obtain the struc-
ture at the ¹h level of iteration, each bond in the
(N —1)th level is replaced by the first-order structure, or
"unit cell." The resulting model is self-similar on all
length scales up to the scale of the entire system, and the
hierarchical embedding of the hnks and blobs is a crucial
feature which appears to provide an accurate representa-
tion of the geometric features of a percolating backbone in
all spatial dimensions. One should think of the iteration
index as a parameter which controls the effective linear

Notice, in particular, that the average value of the voltage,
M(1)/M(0) = V,„equals ( —,

' /5), which is very different
from the most probable value of the voltage,
VMp ——(v 2/5), as N~ao.

f Q x)029—

10zs

5x )0~8

N=(

FIG. 1. The first few levels of iteration in the hierarchical
lattice model. The X = 1 level is the "unit cell" which is substi-
tuted for each bond at a given level to generate the next level.
Shown is the ease where A, , the ratio of the number of bonds in
the blobs to the number of links in the first order structure,
Nq /NL, , is equal to unity.

)028

I l l l

1
0 )0 20 50 40 50

FIG. 2. The voltage distribution for the two-dimensional ver-
sion of the hierarchical lattice [Eq. (21}] for the case % =50.
The distribution is plotted as a function of
j =(lnV+N ln5)/ln2. The position of the average value of the
voltage, V,„=( z /5), and the most probable value,

VMp =(V 2/S)~, are indicated.
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p(k) =k —1+[k ln( —,
'

) —ln(1+2 ")]/ln2. (23a)

Thus an infinite set of independent exponents is required
to describe the moments of the voltage distribution„as the
difference, p(k) —p(k —1), depends on k. In Table I, we
give the numerical values of p(k) for a representative
sample of k values, together with the corresponding esti-
mates from the numerical simulations. The agreement be-
tween the two sets of estimates is quite good for k «0,
but there is an increasing discrepancy between the two sets
of exponents as k becomes more negative. This stems
from the pronounced low-voltage tail in the lattice voltage
distribution (Fig. 4), a feature which is absent in the
present version of the hierarchical model. We shall at-
tempt to rectify this shortcoming below.

From (11) and (15), we can easily calculate the ex-
ponents which describe the scaling of V'(k) and
n(V'(k)). We find

va(k) = p (k) =8 ln5 1

(+2—k

k2 " ln(1+2 )

1+2 k ln2

(23b)

(23c)

To find the scaling function for n ( V), we now take the
continuum limit of the voltage distribution in the hmit
N~ ao. To accomplish this, we make use of the relations
L =2 "and V,„=(—', ), in order to write N in terms of
physically relevant parameters. Now, using the lowest-

TABLE I. The exponents p(k) from the two-dimensional
version of the hierarchical model together with the numerical
estimates of these exponents from simulations on the random
resistor network at the percolation threshold. For the cases
k =0 and k =2, the best numerical estimates for the exponents

p (k)/v are —1.58 and —0.973, respectively.

Model

To calculate critical exponents, we need to write a
quantitative relationship between the iteration index X
and a physical length scale L,. A very natural way to ac-
complish this goal is to note that for a finite-size system
of linear dimension L, the number of links varies exactly'
as L '~". Since the number of links also equals 2 in the
¹h-order hierarchical lattice, we can therefore infer an
effective linear dimension, L equal to 2 ". Using this
fundamental relation in (22), we find that the exponent

p (k), defined in Eq. (4), equals

order form of Stirling s approximation, ink! =k ink —k, it
is straightforward to show that n (V) can be cast in the
form

n ( V}=L~'"', (24a)

or, by eliminating the length scale in favor of the voltage,
as in (18c)

n(V)= V-~", (24b)

with x =ln V/lnV, „.In (24), the exponents ((} and P are
given by

((}(x)= 1 —[(1—y) ln(1 —y)+y Iny]/ln2,

P(x) = P(x}
xg

where the parameter y =j/His related to x by

y = [ln5 —x ln( —,
'

)]/ln2 .

(25)

(26)

Notice that P(y) is a peaked function that is symmetric
about y = —,, as is expected in forming a continuum ap-
proximation to the symmetric binomial. If one were to
keep only the first two terms in the power series represen-
tation for (()(y) about y = —,, one would obtain the familiar
Gaussian approximation, leading to a log-normal form for
the distribution. This feature is a general consequence of
the scaling form (24a), since, as L~oo, only a small
neighborhood in the vicinity of the maximum of (!)(x}will
dominate in the distribution.

However, the Gaussian approximation, though familiar,
is inadequate, since the tail of the distribution dominates
in the calculation of the higher moments. This stems
from the fact that voltage moments are actually exponen-
tial moments when all quantities are written in terms of
the fundamental variable x =ln V/ln V,„.That is,

g V'n(V)= geki""n(V)
lnV

= g exp[ —ka( a) )x +P(x)] lnL,

where we have used lnV,„=—a(oo)lnL. This shows
that for each value of k, the maximum of the combina-
tion (()(x)—ka(oo)x, which is located at x,„(k)dom-
inates in the moments, rather than the maximum of P(x)
itself, which is located at x,„(0).Thus the Gaussian ap-
proximation of expanding (!)(x)about its maximum value,

$(x)=$(xm,„(0))+—,
' [x —x~,„(0)]P"(x)+

—1.0
—0.8
—0.6
—0.4
—0.2

0.0
1.0
2.0
3.0
4.0
5.0
6.0

—5.70 +0.30
—4.61 +0.15
—3.34 +0.25
—2.47 +0.07
—2.00 +0.05
—1.58 +0.04
—0.22 +0.05

0.976+0.01
2.07 +0.02
3.12 +0.02
4.14 +0.02
5.15 +0.02

—2.930
—2.634
—2.343
—2.057
—1.776
—1.500
—0.197

0.991
2.097
3.150
4.174
5.182

is clearly inadequate, since the dominant contribution
arises from x,„(k).

Equations (24) show that the functional form for n ( V)
in the hierarchical model is as predicted from the general
arguments of Sec. 11. We now want to demonstrate how
one can obtain the exponents p(k), a(k), and f(k), by
first taking the continuum approximation for n( V) and
then following the approach outlined in Sec. II. The ex-
ponents obtained in this way, will coincide with the exact
expressions already obtained in (23).

In terms of the continuum form of the voltage distribu-
tion, we compute the moinents, M(k), by replacing the
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sum for M(k) by its maximum value, as in Sec. II. That
1S,

M (k) = g n ( V) V =n ( V') V'",

where V' satisfies

(27)

Bin(n(V))
BlnV

(28)

From (25) and (28), we find that V" is given by choosing
the value y'=y(k) with

Substituting this value of y' in (26},we finally obtain

(30)

0.8
I & I

1.2 1.6
X

2.0

with

vu(k) = ln5

1n2

1

1+2—k

FIG. 3. The fractal dimension P(x) of the set of bonds

characterized by the value x =ln V/ln V, plotted as a function

of x. The value of x ranges from x =1(V=V,„)to x=1.7
(low-voltage region).

In addition, by substituting the value of y' in (24), we

find

with

( Ve) L f(k)

k2 " ln(1+2 ")
ln2

Now by combining (29) and (31), we find

p(k) =(k —1)+[A ln( —,
'

) —ln(1+2 ")]/ln2,

(32)

(33)

nection with the spatial dimension that is plausible quali-
tatively. Furthermore, by using the connection between
the number of links and the effective linear dimension of
the system, (2/k) =L'~", as in the two-dimensional ver-
sion of the model, an excellent quantitative description of
the geometrical features of the percolating backbone in ar-
bitrary dimensions is obtained.

The results obtained for A, = I (corresponding to d =2)
can now be straightforwardly generalized to any value of
A, , yielding

which is identical to (23a). Thus we have shown that the
moment exponent p (k) can be obtained correctly from the
continuum form of the voltage distribution, when the gen-
eral formalism of Sec. II is employed.

In Fig. 3, we plot P(x) as a function of x. This func-
tion is identical to the functional dependence of f on
a/a(ao), as noted in Eq. (18). The latter function is ob-
tained by eliminating the k dependence in (33}in favor of
the a/a( eo ) dependence by using (31). The quantity P(x)
gives the fractal dimension of the set of bonds having a
value of the voltage drop which is characterized by x.
The symmetry of this plot indicates that the fractal sets of
hottest and coldest bonds, which are symmetrically relat-
ed with respect to the most probable value of the voltage,
have the same critical behavior.

B. Generalization to arbitrary dimensions

n(V(j))=

with

'N

gJ
1

N

In the continuum limit we find

In V

ln ~max

with

and

P(y)=1 —[(1—y) ln(1 —y)+y lny —y Ink]/in(2/A, )

(35)

(36)

(38)

The model introduced above can also be generalized in
a simple way to describe the percolating backbone in gen-
eral dimensions. %e introduce a parameter, A, =X&/XL,
defined to be the ratio of the number of bonds in the blobs
to the number of links in the first-order hierarchical lat-
tice. As A. decreases, the role of the blobs also decreases, a
feature which also occurs as the spatial dimension in-
creases towards 6 or decreases towards 1. We have found
that the ad hoc choice of A, =(6—d)/4 for 2&1&6,
A, =d —1 for 1 &1 & 2, and A, =O for d p 6 provides a con-

y= ln
lnV

2(A, +4) ln V,„(A,+4)
+1 —ln

1

ln2

The maximum of n ( V) V" is given by y' =y (k} with

(40}

Finally the exponents a(k), f ( k), and p (k) are given by
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1
1

A, A,2 "ln2
va(k)=1+ ln 1+—+ (41a)

M

gv,
i=)

(44a)

s

vf ( k) =1+ ln 1+1 A, kA.2 "ln2
2" 1+u-' (41b)

p(k)=k —1+ kin 1+——ln 1+

va(k)=vf(k)=1, p(k)=k —1. (42)

Thus in the limit where the backbone becomes strictly one
dimensional, the exponents characterizing the fractal di-
mension of the links and the singularity of V = Vm~ are
both equal to unity, while the moment exponents display
constant-gap scaling.

C. Voltage distribution
of a generalized hierarchical model

In the two-dimensional version of the hierarchical lat-
tice, the voltage distribution can be obtained formally by
considering the binomial

(41c)

Thus we find, just as in the two-dimensional case, that
these exponents are identical with those found from the
exact discrete form of the voltage distribution. Note also
that in the limit A,—bO (d~l or d-b6), the percolating
backbone consists only of links so that we obtain

More generally, one can consider a microscopic voltage
distribution which is generated by any set of voltages,

I V; I; i, and not necessarily a voltage set which are the
equilibrium voltages on a particular small cell. Further-
more, one can also allow for the possibility that there is an
arbitrary ~eight m; associated with each elementary volt-
age V;. For such an arbitrary microscopic distribution,
the resulting iterated distribution will be

g wIvi ~

Because of this multinomial form, the average value of
the voltage on an ¹h-order structure is given by

'N
M

V,„=gw;V; (45a)wt.

/ =1

N

v„,= g v,
'

On the other hand, by locating the peak in the multinomi-
al expression, we find that the most probable value of the
voltage is simply given by the geometrical mean of the
bond voltages on an ¹h-order structure. After a number
of simple steps, this can be written simply in terms of the
bond voltages on the first-order structure as

[2(vi+ V2)P, (43) =exp Ngw;lnV; gw; (45b)

with Vi ———,
' and Vq ———,'. Upon expanding this expres-

sion, we find that the coefficient of each factor of
V=vjivi J (j=0,1,2, . . . ,N) eqi!sh&s the number of
bonds with voltage drop equal to V in the Nth-order lat-
tice. When the distribution is written in the form of (43),
it is clear that the symmetric distribution of an ¹h-order
structure originates directly from the symmetry of the
"microscopic" first-order distribution on the N = 1

hierarchical structure. However, the voltage distributions
of finite-size random networks at the percolation thresh-
old display considerable asymmetry (cf. Fig. 4), and it is
clear that the distribution of the hierarchical model is too
simplistic. Therefore, we now introduce a very simple
generalization of the hierarchical model which provides a
better qualitative description of the voltage distribution of
random resistor networks, as well as providing insights
into the logarithmic voltage dependence of this distribu-
tion.

%'e consider a hierarchical lattice in which the micro-
scopic distribution is not nrmnssriiy symmstric. Such s
construction was already employed in a very simpbfied
form in the preceding section to describe the voltage dis-
tribution in higher dimensions. Thus, suppose that there
are M bonds in the unit ce11, and that each bond has a
voltage drop V& across it. Then for an ¹h-order iterate
of the unit ceB, it is straightforward to show that the gen-
erating function for the voltage distribution, analogous to
(43), is the multinomial

where N'=(N/g, . w;). For a given hierarchical lattice,
therefore, the mean and most probable voltages can be
quite different. This difference stems from the fact that
each bond voltage on an ¹h-order structure is a particu-
lar ¹h-order product of the original V s. The result that
the voltage distribution has a log-multinomial form is a
consequence of the fact that the bond voltages arise from
a multiplicative process. This multiplicative property ap-
pears to be the mechanism responsible for making lnV,
rather than V, the natural variable for expressing the volt-
age distribution of resistor networks on percolating lat-
tices.

With the generalized hierarchical model, we have at-
tempted to mimic the qualitative features of the distribu-
tions from the square-lattice resistor network at the per-
colation threshold, by choosing an appropriate elementary
set of voltages and corresponding weights. We find that it
is possible to reproduce qualitative features of the lattice
data reasonably well. For a given elementary set of volt-
ages I V; I and weights Iw; I, it is possible to construct a
distribution that is asymmetric and discontinuous for
small N, but much more symmetric and continuous for
large N. These features also occur in the voltage distribu-
tion on percolating lattices, lending support for the hy-
pothesis that a hierarchical construction is a fundamental
ingredient that is needed to provide a complete description
of the voltage distribution.
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FIG. 4. The voltage distribution of an L )&1. square lattice random resistor network at the percolation threshold for (a) L, =4 (ex-
act), (b) L = 10 (30000 configurations), and (c) I.= 130 (950 configurations). The distribution has been normalized by the number of
configurations and also by the number of bonds in the backbone. The resulting data are binned and plotted on a logarithmic scale.
The horizontal scales of the examples shown have been adjusted so that the increment in the quantity x = ln V/1n V,

„

from one bin to
the next is the same for every system size. The mean value and the most probable values of the voltage for these three distributions
are indicated. For L =4, a number of peaks, corresponding to simple rational fractions of the external (unit) potential drop, is indi-
cated as well.

IV. NUMERICAL ANALYSIS
OF THE VOLTAGE DISIISUTION

A. Qualitative features

In order to test the predictions for the scaling behavior
of the voltage distribution and its moments, we have per-
formed numerical simulations on L XL square lattice ran-
dom resistor networks with L ranging from 2 to 130. The
distribution is defined with respect to a unit potential
drop imposed across opposite edges of the system, and
free boundary conditions in the transverse direction. For
a given configuration, the backbone of the percolating net-
work is first found by the algorithm introduced by
Herrruann, z5 after which the voltage at each site is deter-
mined by standard numerical relaxation methods. For
L, =2, 3, and 4, we have enumerated all 2~ +' " con-

figurations of the network and thereby found the exact
voltage distribution for any value of p between 0 and l.
For L & 5, an exact enumeration is no longer feasible, and
our distribution is now approximate, being based on the
averaging of 50000 configurations for L =5, to 950 con-
figurations for L =130.

In Fig. 4, we plot the voltage distribution on a logarithto
mic horizontal scale for three different system sizes. For
L, =4, the distribution has considerable discrete structure,
and it is possible to identify a number of peaks which
arise from a preponderance of bonds with voltage drops
which are simple rational fractions of the (unit) imposed
external voltage drop. Notice also that the distribution is
strongly asymmetric: the distribution falls off very rapid-
ly for values of V relatively close to V,„,but decays
slowly on the low-voltage side. As the system size in-
creases, the distribution becomes smoother, and the sup-
port of the distribution increases by many orders of mag-
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nitude. Furthermore, the distribution gradually becomes
more symmetric as the system size increases as the contri-
bution of the low-voltage end of the distribution appears
to become relatively less important,

It is also worth noting that the logarithmic binning of
the voltages, used in Fig. 4, is necessary if one wishes to
obtain a nonsingular shape of the distribution for large
lattices. If the bond voltages were binned on a linear
scale, then one would find that essentially only the first
few bins of the smallest voltages would contain any data.
If one were to decrease the bin width in order to increase
the resolution, then the same phenomenon of data residing
only in the first few bins would still occur. Upon repeated
rescalings of the bin width, the same qualitative situation
would continue to persist until a point was reached where
the resolution is so fine that a smooth distribution would
no longer be found.

8. Voltage moments

From the voltage distributions, we have calculated the
average moments, M(k), as a function of L, for a range
of k values. To demonstrate that each moment scales in-

dependently as a function of L, we consider the normal-
ized moment M(k) =[M(k)/M(0)]'~k. If there existed a
constant-gap exponent in the scaling behavior of the suc-
cessive moments, then all the m (k) should scale identical-
ly. The behavior of a representative sample of m (k), for
both positive and negative values of k is shown as a func-
tion of L in Fig. 5. The very different slopes of the vari-
ous straight-line fits to the data confirm that each mo-
ment does scale independently with L

~Oo

To obtain a more precise estimate of the moment ex-
ponents, p(k)/v, we have plotted the ratio lnM(k)/lnL
versus 1/lnL. If we write for the moments,
M(k) =D(k)L ~' '~", with D(k) an arbitrary amplitude,
then a plot of lnM (k)/lnL versus 1/lnL should asymptot-
ically lie on a straight line of slope lnD(k) which inter-
cepts the vertical axis at —p(k)/v. One gf the striking
features of these plots is that the data for any value of k
appear to form a sequence of points which is horizontal
asymptotically, suggesting the D(k)=1 for all k. From
these extrapolations of the moments, we plot, in Fig. 6,
the exponent p(k)/v as a function of k. We obtain a
second estimate of the exponent p(k)/v by taking the
exact data for L =3 and L =4 and performing a linear
extrapolation of lnM(k)/lnL versus 1/lnL. This is tan-
tamount to performing a renormalization procedure
whereby the 4)&4 cell is rescaled into a 3 )& 3 cell.~s Quite
strikingly, the two sets of exponent estimates virtually
coincide for all values of k studied, indicating that the
cell-to-cell renormalization procedure is exceedingly accu-
rate.

The qualitative form of the p(k)/v as a function of k
clearly indicates that more than one typical voltage is
needed to characterize the underlying distribution. As
mentioned in Sec. II, if the voltage distribution scaled in a
conventional manner, then there would be a unique typi-
cal value of the voltage which dominates in all the mo-
ments. Accordingly, p (k)/v would be a linear function of
k. Clearly, this is not the case in the figure, as there is
considerable curvature in the data, especially in the vicini-
ty of k= —0.5. However, for both large positive and
large negative values of k the data does become rather
linear. This suggests that there is one typical voltage, at
the hot end of the distribution, which dominates in all the

I I I I I
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FIG. 5. Double logarithmic plot of the normalized moments
of the voltage distribution, M(k)=[gn(V)V /gn(V)j' ",
versus I.. Data for a representative sample of k values has been
sho~n. The straight lines represent least-square fit to the data,
and the corresponding slopes are —1.31 for k =2(), —1.42 for
k =1(& ), —1.72 for k = —0.1(Q), and —1.84 for
k = —0.3(o).

FIG. 6. The exponent —p (k)/v plotted versus k, as obtained
from an extrapolation of the voltage moments. The asymptotic
linear dependences for k~ ~ and for k~ —00 are indicated by
dashed lines. From the asymptotic slopes, we can extract a typi-
cal hot voltage which scales very approximately as I. ' and a
typical cold voltage which scales very approximately as I.
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positive moments, for sufficiently large values of k, and a
second typical voltage, at the cold end of the distribution,
which dominates in all the negative moments, for suffi-
ciently large negative values of k. The transition that
occurs when k= —0.5 suggests that there is a relatively
sudden change in the relative importance of the contribu-
tion of the hottest and coldest bonds to the moments in

this regime.
At each point along the curve of p(k) versus k, the

slope of the tangent and the intercept of the tangent with

the vertical axis are, respectively, a{k) and —f ( k), as fol-
lows from the decomposition, p (k}/v= ko, (k}—f(k),
given in Eq. (11). Figures 7(a) and 7{b) show these two
functions as determined by a numerical evaluation of the
derivative of p(k) as a function of k. As mentioned ear-

lier, f(k) represents the fractal dimension of the set of
bonds which have a voltage drop across them equal to
V'. Thus as k~ oo, f(k) gives the fractal dimension of
the singly connected bonds, and f(k) appears to be ap-

proaching the expected asymptotic value of 1/v=0. 75.
In addition, as k decreases towards zero, f(k) slowly in-

creases, indicating that the fractal dimension of the pro-
gressively lower-current-carrying bonds increases. When
k =0,f(k) reaches a maximum which coincides with the
fractal dimension of the entire backbone. Finally, for neg-
ative values of k, f(k) is strongly decreasing, indicating
that the lowest-current-carrying bonds have a negative
fractal dimension so that they contribute negligibly to the
voltage distribution as L~ 00,

The behavior of a(k) can be interpreted similarly. As
k~ ao, a(k) approaches a value which is approximately
equal to unity, and this is close to the value of the ex-
ponent g/v, as expected by the equality of V,„atthe
percolation threshold, and the conductance of the net-
work. The value of u(k) is slowly varying for all positive
values of k, but then varies rapidly once k becomes nega-
tive. This indicates that the qualitative shape of the posi-
tive and negative sides of the voltage distribution as a
function of L will be quite different. For positive k
values, sets of bonds characterized by nearby values of k
will have relatively large fractal dimensions and also fair-
ly similar values of a(k). This is consistent with the dis-
tribution having a well-defined peak. On the other hand,
for negative values of k, sets of bonds with small or nega-
tive values of the fractal dimension have very different
values of a(k). This is consistent with a very long tail
that is increasing in length while rapidly decreasing in rel-
ative importance as the system size increases.

Further evidence for this general picture of the voltage
distribution can be obtained from an analysis of V' as a
function of k [Fig. 7(c)). As previously discussed, the
value of V' locates the maximum of the function
n(V)V". This typical voltage is slowly varying with k.
However, as k becomes negative, V* rapidly decreases
over several orders of magnitude, and approaches the
minimum value of the voltage drop over all bonds in the
ensemble. The mechanism causing this sharp transition
can be seen from the behavior of the voltage distribution
itself. Upon varying the value of k, one can follow a con-
tinuous variation in the location of the maximum of
n ( V}V", i.e., in the location of V'. However„as k is de-
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FIG. 7. The functions (a) a{k), (h) f(k), and {c) lnV~{k)
versus k for the case L =80. The three plots shoe that a sud-
den transition in behavior occurs for k in the vicinity of —0.5.
The dashed line represents the expected behavior from the
asymptotic behavior of p(k) of Fig. 6.
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creased to a value near 0, a second peak in n ( V) V" begins
to form which is located at a smaller value of V relative
to the primary peak. Due to the presence of a zero in the
second derivative of n(V} on the low-voltage side, the
function n ( V) V will develop two well-definixl peaks for
more negative values of k; this is especially apparent for k
in the vicinity of —0.5. As k continues to decrease, the
secondary peak gradually box&mes larger than the primary
peak, corresponding to a sudden jump in the value of V'.
For more negative values of k, the original primary volt-

age peak becomes negligible compared to the secondary
peak. This apparent discontinuity in the behavior of V'
is the source of the sudden transitions in a(k) and f( k}as
a function of k.

C. Scaling analysis

Next we wish to test whether the voltage distribution is
consistent with the scaling form for n{V) given in Eq.
(18b). The results of one fairly sensitive test are shown in
Fig. 8, where we compute the exponent P{x}in two in-
dependent ways. In one method, we start with the esti-
mates of the moment exponents, p(k), and extract the
values of a(k) and f(k), as previously discussed. Then,
by eliminating the variable k, we finally plot the quantity
(()(x)=f(k (x) ) as a function of x =n/a( ao ). On the oth-
er hand,

,
we can obtain (()(x) by independent means. A

straightforward way to accomplish this would be to fix a
value of x =lnV/lnVm, „,and calculate the corresponding
value of n ( V) for various system sizes and thereby obtain
P(x) by extrapolating 1n(n (V))/lnL to L~ ao. In prac-
tice, this method converges rather poorly, and we have
adopted the following procedure, which becomes identical

I l I l

1.4

to the previous one for very large L. For a given value of
k, we locate the maximum of the function n ( V) V, i.e.,
V = V(k), for different system sizes. The data for V'
and n ( V') for various system sizes are then extrapolated
to L~oo in order to infer the values of f(k) and a(k)
from the asymptotic values of ln(n ( V' ) )/lnL, and
lnV /lnV, respectively. From f(k) and a(k), we then
obtain P(x). The data of P(x) versus x that results are
shown in the figure. The agreement between the two sets
of independently obtained data confirms the general valid-
ity of the scaling hypothesis for the voltage distribution
and its moments.

A final test of the scaling hypothesis is to perform the
classical data "collapsing" analysis. From Eq. (18a), the
distribution n(V) divided by L&' ' should be a function
only of the amplitude, C(x). Such a scaling plot is shown
in Fig. 9. For system sizes L =40, 60, 80, and 130, the
scaled distributions do appear to lie on a single universal
curve as required by our scaling hypothesis. For smaller
system sizes, there is a systematic deviation of the data
from the universal curve which would arise if there were
correction terms to n ( V) in (18a).

V. VOLTAGE DISTRIBUTION
ABOVE THE PERCOLATION THRESHOLD

The behavior of the voltage moments above the percola-
tion threshold, and the form of the voltage distribution
can be easily obtained using a conventional scaling ap-
proach. First, we construct an intensive quantity for the
voltage moments by defining m(k, p)=M(k, p)/L
where M(k,p) are the moments defined in (5), except that
they are now generalized to any value of p. At

p
=1,

V L ' and n(V)=L, so that M(k, l)=L and
m (k, 1 )= 1 for all k. Precisely at p„since
M(k,p, )-L P' ' ', we have rri(k, p )-L
By scaling, we then have for p ~p„

m (k p) L —P(k)/v —(d —k)g (46)7
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FIG. 8. The quantity t))(x), obtained by two independent
methods, plotted as a function of x. (0): Values obtained by
first taking the data in Fig. 6 and performing the decomposition
of p {i)/v into f( k) and a(k), as indicated by Eq. (11), and fi-
nally eliminating the variable k to obtain $(x)=f(k{x)),with
x =a/o. ((x}). (+ ): Values obtained by fixing a value of
x = ln Y/1n Y, and taking the corresponding value of n ( V) for
a sequence of system sizes L in order to obtain P(x) from the
extrapolated value of inn ( V) jlnL as L~ 00.
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FIG. 9. Data collapsing of the amplitude function, C(x)
from the voltage distribution for four different system sizes,
I.=40, 60, 80, and 130. The quantity n( Y(k))/1. ~'") is plotted
versus x =lnV/In( V ) on a semilogarithmic scale to isolate
the amplitude C(x).
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where g(z)-const for z «1, and g(z)-z
for z»1. We therefore find for the critical behavior
above p„in the thermodynamic limit,

m(k, p)-(p —p, )" ',

d

n(V)„,= (51)

where

t(k)=(d —k)v+p(k) . (48)

where the parameter A, can be related to the spatial dimen-
sion d, as in Sec. III8, and the voltage V(j} takes on the
discrete values

Above p„it will be convenient to work with quantities
which are independent of L in the L~ oo thermodynamic
limit. Therefore we define a new voltage variable V= VL.
Thus for p &p„we have V(k)-L' I' 'g(g/L), where
g(x)-x' ~' ' for x &&1 and g(x)-const for x &&1.
Then for p &p, and for L —m oo, we have V(k)-g'
Similarly to (18b},let us now define the quantity

.
)

2J

(x+4}"
(52)

which are indexed by the integer j=0, 1,2, . . . , N. Since
each hierarchical lattice has a linear dimension g, N and g
are related by

'N

lnVx=
ln ~max

1 —a(k}
1 —a(oo)

(49)

The voltage distribution per unit volume is given by
p(V,p)=n(Vp)/L", where n(Vp) is the number of
bonds with voltage drop V at bond concentration p. Since
n( V(k},p, )-Lf "', we have for p &p,

( V p) L —d+Qx)h
L

where h(z)-const for z» 1 and h(z)-z "+@ ' for
z «&1. In this equation, P(x) =f(k(x)), and k(x) is ob-
tained by inverting (49). We therefore find for the critical
behavior above p, in the thermodynamic limit

p( V,p)-(p —p, )@"', (50b)

with P(X)=[d —P(X)]v. Thus for a given value of V,

p(V,p) can be regarded as the order parameter corre-
sponding to a given fractal set of bonds which is charac-
terized by the value x, and p(x ) is the corresponding criti-
cal exponent. Thus p(k =0}is the usual critical exponent
relative to all the backbone bonds, p(k =2) is the ex-
ponent relative to the fractal set contributing to the resis-
tance, and p(k = oo)=dv —1 is the exponent relative to
the hottest bonds.

The same result can be obtained from the hierarchical
lattice, in conjunction with the nodes and links picture of
a random network. In the nodes and links picture, a ran-
dom network has the form of a superlattice with an aver-
age spacing given by the correlation length g. The new
feature in our representation of this picture is that the
links of the superlattice are not of the forra of linear
chains, but rather, each link is a hierarchical lattice whose
iteration index N is such that the effective linear dimen-
sion of the hierarchical lattice equals the correlation
length.

Accordingly, the voltage distribution above the percola-
tion threshold in a d-dimensional system of linear size L
will be given by the voltage distribution on one hierarchi-
cal lattice, with an appropriate value of the iteration in-
dex, times the number of these lattices in the complete
network. Thus we have, from (35),

In analogy with the scaling form given in (37) for p =p„
one can use (51)—(53) to show that the scaling form of the
voltage distribution for p &p, is given by (49).

From the voltage distribution given in (46), it is
straightforward to show that the kth moment now varies

'd —k

M(k) (1+2k)N (54)

Using (53} to eliminate N, we can directly write that the
intensive quantity, m(k)—=M(k)/Ld "scales with g as in
(46) and (47). Thus we see that each moment vanishes
with an independent exponent as the percolation threshold
is approached from above.

In addition to the novel critical behavior of the mo-
ments of the voltage distribution, we have also found the
very intriguing feature that the higher moments are non-
monotonic as a function of p, with a peak located away
from the percolation threshold (Fig. 10). To appreciate
this phenomenon, consider diluting a network, starting
from p =1. As p decreases, less total current will fiow at
constant external voltage because the conductance is de-
creasing. On the other hand, there will be an enhance-
ment of the local currents flowing in those bonds which
form "bottlenecks" in the network, and a sufficiently high
moment of the voltage distribution will be extremely sen-
sitive to these bottlenecks. The competition between these
two effects is the apparent source of the striking non-
monotonicity in the higher-voltage moments. In the case
of the second moment, the former effect dominates, and
this quantity therefore decreases monotonically with p, as
it must, on the basis of elementary considerations. How-
ever, there is no such restriction on the higher moments, a
priori.

From the exact distribution for systems of linear size
L =2, 3, and 4, we find that the normalized moments,
m (k },are monotonic for k & 6, but that there is a dramat-
ic peak in the higher moments for values of p in the range
0.8—0.9. Furthermore, by examining the slopes of m (k)
versus p at p = 1, we observe that both the second and
fourth moments appear to decrease progressively more
strongly as the system size increases. This suggests that
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mental ramifications for physical realizations of the ran-
dom resistor network. At some value of p, which should
be near to the location of the peak in the average value of
V,„,there will be a local maximum in the heating of
resistors in the bottlenecks. Suppose now that each bond
is a resistor and a fuse in series so that when the current
limit of the fuse is exceeded, it burns out and becomes an
insulator. If the applied potential is high enough, the net-
work will be susceptible to a failure which is initiated
when the highest-current-carrying bond will burn out.
The point of maximum susceptibility is not at the percola-
tion threshold, as one might naively expect, but is close to
the point where the average value of V,„attains its max-
im uIIl.

VI. VOI.TAGE DISTRIBUTION
OF THE RANDOM SUPERCONDUCTING

NET%PORK

10—
k =16

l2

0
0 1.0

FIG, 10. Plots of the exact normalized moments of the volt-
age distribution, m (k,p) = ( V~ ) /L i, as a function of p for (a)
a system of linear dimension I. =2 and (b) I.=4.

both functions will decrease initially at p =1, and that
they will also be monotonic in the thermodynamic limit.
However for the sixth moment, the initial slope is posi-
tive, but decreasing as L increases. This suggests the pos-
sibility that m(6) will be either slowly varying or non-
monotonic as a function of p for larger values of L. Fi-
nally, as is clear from Table II, all the moments beyond
the sixth are strongly nonmonotonic. Corresponding to
this nonmonotonicity in the moments, we also find that
Vm, averaged over all configurations, is also strongly
nonmonotonic.

This phenomenon has potentially interesting experi-

Now we consider the voltage distribution in a random
superconducting network. In this problem, superconduct-
ing bonds are present with probability p, and normal
bonds are present with probability 1 —p. For small values
of p, there are finite superconducting clusters in a back-
ground of normal resistors. As p~p„the conductivity
diverges due to the formation of a superconducting cluster
which spans across the finite-size system. For a system of
linear dimension L at the percolation threshold, the non-
superconducting, or normal, configurations are character-
ized by very large clusters of resistors which are almost
touching each other (Fig. 11).

If a unit voltage drop is applied across the opposite
faces of the cell, there will be a distribution of voltage
drops across the current-carrying normal bonds in the net-
work, while there will be no voltage drop across the super-
conducting bonds. The current-carrying bonds exclude
those normal bonds which are entirely embedded within
superconducting clusters, and also those normal bonds
which happen to join two sites in the same superconduct-
ing cluster. In two dimensions, these bonds are dual to
bonds which are in finite clusters and bonds which are on
dangling ends of a percolating cluster, respectively. Of
the current-carrying bonds, a special role is played by the
"bridges. " These are normal bonds between two large, but
nonspaiming superconducting clusters which cause the en-

tire network to become superconducting if any one of
these bonds is replaced by a superconductor. The bridges
play a role analogous to the links in the random resistor
network. Similar to the case of the links, it can be
proved2s that for any spatial dimension, the fractal dimen-
sion of the bridges is 1/v, i.e., that the number of bridges,
Ns, varies as L ' ". These bridges are the highest-

TABLE II. The values of the first derivative of the normahzed moments, ( V )/L, with respect
to p at p = 1 for various values of k for a system of linear size I. =2, 3, and 4.

10

—1.60
-1.818
—1.916

—1.470
—1.769
—1.978

—0.744
—0.434
—0.313

+ 0.47
+ 2.17
+ 3.22

+ 2.3
+ 6.52
+ 9.47
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FIG. 11. Schematic picture of a random superconducting
network just below the percolation threshold. A bridge bond is
indicated.

g'(k) =g(k), (56)

where g(k) is the moment exponent introduced in Eq.
(4b). Equation (56) generalizes to all values of k the well-
known result for k =2, namely that the conductivity ex-
ponents of a random resistor network and a random su-
perconducting network coincide. Thus the moments of
the voltage distribution for the random superconducting
network are also described by an infinite set of indepen-
dent exponents.

It is also interesting that this qualitative picture can be
obtained by considering the dual of the two-dimensional
version of the hierarchical model (Fig. 12). At the Nth
level of iteration, the dual of the hierarchical model is a
parallel array of bridges of various lengths j, running
from 1 to %+1, with the number of bridges of length j
equal to 2 (J ). This model provides a useful intuitive pic-
ture of the geometric structure of the normal bonds which
intervene between superconducting clusters just below the
percolation threshold. Furthermore, the exponents on the
dual model also satisfies the identity (S6}.

Above two dimensions, the duality relation (56) no

current-carrying bonds in the network and they are
characterized by the maximum value of the voltage drop,
~max = l

In close analogy with the definition given for the ran-
dom resistor network in (4b), we now introduce the volt-
age distribution, n(V) and the corresponding moments,
W'(k), by

W'(k) = y n ( V) V"-L& '"' (55)

where the sum is over all normal bonds in the network.
As in the case of the random resistor network, the second
moment gives the conductance of the superconducting
network. Thus g'(2) =g„the critical exponent related to
the divergence of the conductivity, s =2—d+(, . In ad-
dition, g'(4) is related to the magnitude of the noise in the
network, while g'(oo) give the fractal dimension of the
bridges. In the Appendix we prove that for two dimen-
sions,

FIG. 12. The dual of the two-dimensional version of the
hierarchical model (solid lines), while the original hierarchical
model is indicated by the dashed lines. Shown is the particular
case where the iteration index X= 1.

longer holds. As a result, there appears to be no simple
correspondence between the voltage distributions of the
random resistor network and the random superconducting
network. In particular, in the mean-field limit, the infin-
ite exponent hierarchy for the random resistor network
reduces to a single exponent because of the predominant
role played by the links. On the other hand, a very dif-
ferent behavior occurs for the superconducting network.
From the mean-field value of the superconducting ex-
ponent, s =0, we deduce that

g '(2}=4,
while for the bridge exponent we have

g'(oo)=2.

(57a)

(57b)

Thus instead of having a single exponent in the mean-field
limit, there is still a spectrum of exponents. This stems
from the fact that the voltage distribution remains broad
as the bridges do not entirely dominate.

In the random resistor network, it proved useful to use
the voltage moments as a geometrical measure of the
backbone, as in (4b). The insights gained from this for-
mulation can be used to discuss conductivity and other
physical processes on the percolating backbone. In the su-
perconducting network, current flow is limited by the
geometrical properties of the surface of a superconducting
cluster. It is therefore of interest to define the voltage dis-
tribution for the normal bonds on the surface of the su-
perconducting cluster in order to characterize its geome-
trical features. Thus consider the following moments:

W"(k}=g'n(V)V"-L~ '"' (58}

where the asterisk indicates that the sum is restricted to
only the normal bonds on the surface of superconducting
clusters. Since W"(k) & W'(k), it follows that
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This inequality becomes an equahty, at least for k —+ no,

since both moments reduce to a sum over the bridge
bonds in this limit.

In two dimensions, we can use the inequality (59) to ob-

tain useful information about the surface of large per-

colating clusters. The external surface of a large percolat-

ing cluster has been iecently studied and its fractal dimen-

sion has ben estimated to be dH-1. 75. On the other
hand, in the limit k~0, Eq. (SS) describes only the un-
screened part of the external surface, i.e., the portion of
the superconducting surface where the voltage drop is not
identically equal to zero. This part of the external sur-
face, whose fractal dimension is given by g "(0+), ex-
cludes portions of the surface inside of the crevices, where
the surface is completely screened from the electric field.
Clearly we have

g "(0+)&dH ——1.75 .

It is of interest to know whether the unscreened surface
has the same fractal dimension of the external surface,
namely whether (60) holds as a strict inequality, since the
former quantity is more amenable to external probes.
This information can be obtained from (59) in the limit
k~0+, yielding g "(0+)&g'(0+). From (56), we also
have g'(0+) =g(0+)=df, where df, the fractal dimension
of the backbone, has been estimated to equal 1.66. '

Therefore g "(0+)& 1.66 and comparison with (60) shows
that g "(0+) is strictly less than dH. This is in agreement
with recent numerical findings that g "(0+)=1.34.

VII. DISCUSSION AND CONCLUSIONS

In this paper, we have presented a completely new ap-
proach for studying the classical percolation problem of
the random resistor network. By focusing on the distribu-
tion of voltage drops acmss the bonds in the network, we
have found a wealth of new phenomena. The moments of
the voltage distribution all scale independently, so that an
infinite hierarchy of exponents is needed to characterize
the scaling of the voltage distribution. This result is a
direct consequence of the fact that there is no unique, typ-
ical value of the voltage in a random resistor network. In-
stead, we argued that the voltage drops in a random net-
work originate from a multiplicative process, which leads
to an underlying distribution that can be naturally written
in terins of the logarithm of the voltage.

As a consequence of this line of reasoning, we argued
that the backbone of a percolating cluster contains an in-
finity of fractal sets, each with a distinct value of the frac-
tal dimension. A particular fractal set contains the subset
of all the bonds in the backbone which are characterized
by a fixed value of the fundamental parameter
x =In V/ln V . Sets characterized by different values of
x are sensitive to different geometrical features of the
backbone. For x~—co, the corresponding fractal set of
bonds are those embedded within blobs at the finest length
scale where the voltage drop is a minimum, while as
x —+1, the corresponding set of bonds are the links, i.e, the
highest-current-carrying bonds in the network.

A number of extensions of the voltage distribution were
also considered. Above the percolation threshold, mo-

ments of the voltage distribution also scale independently,
but now as a function of the scaling field p —p, . We also
found that sufficiently high moments are nonmonotonic
functions of p, a feature that stems from the competition
between a globally reduced current flow and a locally
enhanced current flow in the vicinity of bottlenecks, as p
decreases from unity. We also considered the voltage dis-
tribution for the random superconducting network. By
duality considerations, we showed that the distributions of
the randoin superconducting and random resistor net-
works are simply related on the square lattice. Thus, in
close analogy with the conducting backbone of a random
resistor network, an infinite hierarchy of exponents is
needed to characterize the geometrical properties of the
surface of large superconducting clusters.

There are a number of interesting possibilities for fu-
ture work. It would be worthwhile to study the voltage
distribution of the random superconducting network
above two dimensions, where we can no longer exploit du-
ality arguments to make a relation with the random resis-
tor network. From such a study, one might hope to
develop a better intuition for the relevant surface geome-
trical properties which strongly influence and limit
current flow between superconducting clusters. It should
also be interesting to consider the voltage distribution for
the general two-component composite, in which each lat-
tice bond may have a conductivity equal to

vari

with proba-
bility p, and conductivity o2, with probability 1 —p. This
would provide a very general description of the voltage
distribution in which the random resistor and random su-
perconducting networks are merely special cases.

Most importantly, perhaps, the voltage distribution ap-
pears to provide a valuable conceptual framework, on
which further developments can be based. On the theoret-
ical side, the "multifractal" aspect of the voltage distribu-
tion gives rise to a variety of novel scaling phenomena
which have drastic quantitative consequences in a wide
range of problems, such as growth phenomena, dynamical
systems, and turbulence. In the context of random net-
works, potential applications include crack propagation,
dielectric breakdown, and hydrodynamic dispersion in
disordered media. The former two processes are sensitive
to the high-voltage tail of the voltage distribution, while
hydrodynamic dispersion is limited by the low-voltage
tail. The insights gained from the general study of the
voltage distribution should therefore prove useful in these
more applied probleins. Finally, in the context of non-
equilibrium processes, the analog of the voltage distribu-
tion is the first passage probability distribution for a ran-
dom walker to reach a growing fractal structure. The de-
tailed properties of this distribution provide both deep in-
sights into the geometry of growing fractal aggregates, as
well as offering potential applications for understanding
fundamental chemical processes, such as catalysis, on the
surface of these structures.
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We prove here the following equality for the square lat-
tice

W( k,p) =W'(k, l —p),

W(k,p)= g ({
~

V~ —VJ ~
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is the kth moment of the voltage distribution, normalized
by the conductance 6, in the random resistor network
where each bond is a unit conductor with probability p or
an insulator arith probability 1 —p. Similarly,

W'(k, l —p)= g (
~

V —
Vp ~

"}-L '"' (A3)
&eP&

is the kth moment of the voltage distribution in a random
superconducting network in which each bond has an in-
finite conductance with probability p or a unit conduc-
tance with probability 1 —p. In (A2} and (A3}, the aver-
age is over all bond configurations when a unit voltage
drop is applied across the opposite edges of the system.
From (Al) to (A3}, it also follows that

g(k) =g'(k) . (A4)

To prove the abave results, consider a square lattice A
and its dual A (Fig. 13). Assign to each bond ij in the
original lattice a conductance o',J, and apply a unit voltage
drop, EV=1 across the lattice. If V; —VJ and IJ are,
respectively, the voltage drop and the current across the
bond ij, then we have

FIG. 13. The square lattice A {solid lines) and its dual A~
(dashed lines).

V~ —Vp ——Ig)o.
g~

. (A7)

Using (A5), this voltage difference can also be written as

V —Vp=(V —V )cr;

Following Straley, 29 it is easy to show that the difference,
V —Vp, satisfies Kirchhoff's laws for the dual lattice in
which each bond ap has a conductance cr p

——otj', when
the external potential drop b, V =I=G. As a conse-
quence, Ve —Vp ——( V, —Vp) !6is the voltage drop across
bond ap in the dual lattice when the external potential
drop EV=1.

Therefore for each configuration Itr pj, the kth mo-
ment of the voltage distribution is given by

VI —Vj ——I)JO,)
' .

Due to the boundary condition 6V = 1, we also have

I=6,

(AS}

(A6)

(A9)

where I and 6 are, respectively, the total current and the
conductance for each bond configuration.

In the dual lattice, for each bond ap which is dual to ij,
we define the following quantities:

If oep ——1 with probability 1 —p, and os= ao with proba-
bility p, then by averaging (A9) over all bond configura-
tions, we obtain (Al) for a lattice which is self-dual, such
as the square lattice.
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