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%e develop a theory which concerns how the operation of a vibrating superleak transducer is af-
fected by the nucleation of vortices in the pores of the superleak. At large drive amplitudes a signi-
ficant chemical potential difference is established between the two sides of the superleak. As a re-

sult, both the first- and second-sound waves generated by the transducer show interesting structure.
The study of this structure may provide a useful means of experimentally probing vortex nucleation
processes in superAuids.

I. INTRODUCTION

The process of vortex nucleation is of fundamental im-
portance in the physics of superfluid He. In particular,
the generation of vortices can degrade a supercurrent; this
illustrates the metastable nature of superfiow, and pro-
vides a mechanism to account for the critical velocity of
the fluid. Detailed theories, such as the I.anger-Fisher
homogeneous nucleation theory, ' represent attempts to
make these ideas quantitative. Various experiments have
given support to this theory, but it seems fair to say that
the overall understanding of this phenomenon is far from
complete.

In this paper we explore how vibrating superleak trans-
ducers (VSTs) are affected by vortex nucleation. These
transducers are simple capacitive microphones/speakers,
in which the vibrating element is a superleak. They were
invented a number of years ago, ' and are now widely
used to generate and detect second-sound in superfiuids.
These transducers have recently attracted a good deal of
theoretical and experimental attention, ' and there is
now a fairly complete understanding of how they function
in the limit that the intensity of the generated sound is
small. It turns out that the superfiuid velocity can be-
come quite large in the pores of the superleak membrane
in a VST, and hence these pores are a prime location for
the creation of vortices. Since the region in which the su-
perfluid velocity is large is limited to the pores of the su-
perleak, the vortex nucleation processes are also limited to
this region. This makes VSTs ideal, in some respects, for
the study of these sorts of processes. In this paper we give
a general discussion of how the equations governing the
behavior of VSTs are modified by vortex nucleation ef-
fects; in addition, the limits of validity of the new equa-
tions are carefully assessed. %Guile the new equations are
not terribly complicated in form, it is necessary to solve
them numerically, and we also present and discuss some
illustrative numerical results. We find that when the driv-
ing force on the superleak of the VST is sufficiently large,
several dramatic effects occur. First, the waveform of the
generated second-sound becomes very distorted, and its
amplitude saturates. Second, the generated first-sound ac-
quires a wild oscillation on a very short time scale. These
findings are also compared with some recent experimental

results.
The work presented here is of interest for two reasons.

On the one hand, it is important to understand how these
transducers work, so that they can be used wisely for vari-
ous purposes. Recent research has indeed greatly clarified
our picture of how they function in the limit that the
driving force, and hence the generated sound intensity, is
small. One of the goals of the present work is to extend
this understanding to the regime in which the nonlineari-
ties caused by vortex nucleation processes are important.
In addition, the vortex nucleation processes involved in
the transducer operation are themselves of great interest.
Indeed, VSTs may provide a convenient tool with which
to study these processes.

The plan of this paper is as follows. In Sec. II we
derive the equations of motion for the superleak mem-
brane of a VST, including the effects of vortex nucleation.
In Sec. III we present some results obtained by numerical-
ly integrating the equations of motion. Section IV con-
tains a discussion and summary. We will follow as closely
as possible the notation of Ref. 7. Note that in the
present work we are studying only the generation, not the
detection, of sound. A preliminary account of some of
this work has already appeared. '

II. EQUATIONS OF MOTION

In this section we explain how to incorporate the effects
of vortex nucleation into the equations of motion of the
VST. If we ignore these effects, the two fundamental
equations are (15) and (32) of Ref. 7. These equations
describe VST behavior in the linear regime (i.e., the re-
gime in which vortex nucleation effects are not impor-
tant). In this case the driving force and the amplitudes of
the generated first- and second-sound waves are small,
and these amplitudes are proportional to the driving force.
Equation (15) in Ref. 7 expresses the fact that, in the ab-
sence of any dissipative processes within the pores of the
superleak, the chemical potential is the same on both sides
of the superleak. Equation (32) is simply a version of
Hooke's law, expressing momentum conservation. How
must these two equations be modified for our present pur-
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pose~
We first review our notation. The superfluid and nor-

mal fluid velocities at the membrane are denoted by u,
and u„. The velocity of the membrane is also u„, since we
are assuming that the Poiseuille flow of the normal com-
ponent is negligible. We also define x„and x, „ the dis-
placements of the normal and superfluid components;
these satisfy u, =x, and u„=x„. The first-sound ampli-
tude, U, and the second-sound amplitude w, are given by

y= pn+n +ps+s
(3)

w =—(u„—u, ),ps

p
where p„p„, and p are the superfluid, normal, and total
densities. Finally we define y and z by y =u and z =w, so
that

The other basic equation we need concerns the momen-
tum conservation law for the superleak. This is not af-
fected by vortex nucleation effects, and thus Eq. (32) of
Ref. 7 remains unchanged:

M'v„+M, 'u, =—Kx„—Ap y+ciu +f(t) .
L

Here, f(t) is the applied driving force, 3 the area of the
membrane, ci the first-sound velocity, K the spring con-
stant of the membrane, and the two effective masses are
given by

M' = V [(p —p, )(1—a)+p„a],
Ms'= ~~ps

where V is the membrane volume.
Our final set of coupled equations, in terms of the vari-

ables U, w, y and zis

z= (x„—x, ) .ps

p
(4)

We now argue that the main effect of vortex nucleation
processes is to create a nonzero chemical potential differ-
ence between the two sides of the superleak membrane.
We model this effect by modifying Eq. (3}of Ref. 7 to

Z=W,
2 2

Pn p~C2Z C g
C2W —CiU+

ps pL L

(12)

p, 8a= —sgn(w)Dexp, (13)
p'kT iw [

—Ba
5p& —5}u,=sgn( v, —u„)Dexp (5)

ps

which is essentially the Langer-Fisher result. Here,

h

cg= —K(y+z) —Ap +civ +f(t) . (14)
L

where Vz is the volume of a pore in the membrane, fo is
the number of nucleation attempts per unit volume per
unit time, h is Planck s constant, a is the porosity, and M
is the He mass. The parameter fo is difficult to estimate
theoretically, and we will rely on previous experimental re-
sults'6 to select an appropriate value. The quantity 8 ap-
pearing in the exponent is given by

8= ', (7)
pkT

where 8 is a parameter we will also take from previous ex-
periments. '

The specific expression for the chemical potential
difference is taken from the Langer-Fisher homogeneous
nucleation theory, and one might therefore ask how sensi-
tive our results are to uncertainties, assumptions, etc., in
the Langer-Fisher theory. Langer and Reppy' have
shown, using very general arguments, that the functional
forms in (5) and (7}, and in particular the dependence of
5p, on both p, and

~
u, —u„~, follow quite naturally from

any homogeneous vortex nucleation type of theory.
Moreover, we would expect that any mechanism which
yields a critical velocity should lead to a result quantita-
tively similar to (5). Hence, our calculations should give a
good indication of the behavior to be expected, regardless
of the details of the dominant dissipative process.

~~ max
C) C2 C4

(15)

Features we find on time scales shorter than r may still
represent real effects, but these equations cannot provide a
complete description of the behavior on such time scales.

Here cz is the velocity of second sound. In the next sec-
tion we will show some representative numerical solutions
to the above set of coupled equations; in particular, we
will show u(t) and w(t} for sinusoidal driving forces of
various amplitudes. We conclude this section with a dis-
cussion of the limits of validity of our equations.

Because various quantities, such as p, U, and w, were
taken to be spatially uniform in the backplate region, we
must have the wavelengths of first- and second-sound
larger than L, the distance between the membrane and the
backplate. 6 This means that our equations are strictly
valid only for time scales longer than either L/ci or
L/cz. In addition, we have ignored the possibility of
fourth-sound propagation through the pores; this implies
that our equations are valid only for time scales longer
than L /c4, where L is the thickness of the membrane
and c4 is the fourth-sound velocity. Thus, we can only
study phenomena with a time scale r satisfying
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Parameter

TABLE I. Values of VST parameters.

A (cm)
K(gs )

fo {cm 's ')

8(g em's 3)

p(gcm 3)

I.~ (cm)

p (g cm )

1.77
10'

5x10"
1.3x 10-"

0.14
~x 10-'

0.95

III. RESULTS

TABLE II. Parameters for data sets A, 8, and C.

Parameter 8

p~ /p
cl (cm/s)
c2 (cm/s}
T (K)
L (cm)
a)/2m (s ')

c4 (cm/s)

0.0441
2.2x 104

452
2.17

2x 10-'
4x 10'

4.6x10'

0.8548
2.37X 10'

1855
1.2

2x10-'
4X10'

2.2X10'

0.0441
2.2x 10'

452
2.17

2x10-'
2x 10'

4.6x10'

We have numerically solved Eqs. (11)—(14) for a variety
of cases with a driving force of the form f(t) =Fain(rot).
(See the Appendix for details on how we solved the equa-
tions. ) For small enough F one is below the critical velo-
city regime. In this case vortex creation processes are
unimportant, and u (t) and w (t) were found to be
sinusoidal with maximum amplitudes related by the
theoretically expected ratio:

Umax inc 2
(16)2

Wnax PsC1

Moreover, the overall amplitudes of the generated first-
and second-sound waves were in perfect agreement with
the theory which is applicable in the linear regime. As we
increase I' the quantity

~
u, —v„~ in the pores becomes

very large, and the nonlinear term in the equations be-
comes 1mportant.

A. choice must be made of what values to assign to the
many constants appearing in the equations. We tried to
pick values appropriate for typical experimental situa-
tions. For all of our runs we chose a=0.012 and a pore
diameter of 500 A. The small diameter makes the
Poiseuille flow through the pores negligible, '7's and the
small size of a makes the superfluid velocity through the
pores large. Besides o. and the pore diaIneter, various oth-
er constants were held fixed for all of our runs; Table I
lists their values. These values are appropriate for a VST
which follows the now standard design, 'i' and which em-
ploys a nuclepore filter membrane as the superleak. Fi-
nally, we note that our results are clearly very sensitive to
the size of 8, since it appears in the exponent of the non-
linear term, and essentially determines when the vortex
nucleation processes become important.

The remaining parameters were varied as we did our
calculations. For three different sets of calculations,
which we wiii call A, 8, and C, the remaining parameters
had the values listed in Table II. The parameters for sets
A and C are chosen such that the temperature is very
close to the A, point, while set 8 is chosen such that it is
very far away.

Figure 1 shows w(t) for various values of I', with pa-
rameters from set A being used; Fig. 2 shows the corre-
sponding results for u (t). By about F= 150 (note that the
units here are cgs, so that F is in dyn/cm throughout),
w (t) shows deviations from a purely sinusoidal shape, and
its amplitude is no longer increasing linearly with I'. At
F—=2000, w(t) has become quite close to a square wave.
Figure 3 shows a plot, on a blown up time scale, of the ra-
pid variation in time which occurs in w (t) for F=2000.

The behavior of u(t) is quite different. Its overall
shape is not very distorted at higher values of F, and its
magnitude still increases approximately linearly' with I'.
However, a "glitch" appears near the maximum; on a very
short time scale u(t) attains a very large amplitude, and
then settles back into its smoother overall motion. The
time scales on Fig. 2 are too coarse to show this glitch ac-
curately. Figure 4 displays the glitch's shape on a much
finer time scale.

For data set 8, which has values of the temperature-
dependent parameters appropriate for T far from the A.

point, the nonlinear effect sets in at about F-=30000 .
Figure 5 shows w(i) and v(t) for F=105, while Fig. 6
shows the interesting structure in v (t) on a finer scale.

The large jump over a very short time scale exhibited
by v(t) is clearly of interest. One problem with data sets
A and B is that this fine structure occurs over a time scale
which is shorter than the limits set by (15). The weak
point is that L/ci is too long. Hence it is not clear to
what extent the fine structure could be changed by other
effects.

In an effort to exaniine this problem we chose I. in data
set C to be ten times smaller than in A or 8; for conveni-
ence, we also chose a higher drive frequency. Figure 7
shows v(t} and w(t) with parameters from data set C.
Figure 8 shows the interesting structure in u(t} on a finer
scale. For this data set, the quantity r in (15) is about
4X10 s. An examination of Fig. 8 shows that the
glitch in u(t) occurs over a time longer than this. So we
believe the glitch is a real effect; the fact that it occurs
around the time that w(t) is going through a drastic
change is reasonable, since u(t) and w(t) are intimately
coupled by the equations. The glitch can be understood
quantitatively in the following manner. If we assume a
square-wave-type behavior for w(t) (as seen in Fig. 1 for
large values of I) then the term involving w in (14) will be
extremely large when w(t) passes through zero (Fig. 3).
Equation (14) can then be viewed as an equation of
motion for v(t), with the term involving w acting like a
large driving force. This large force acts over a very short
time, and thus imparts an impulse to u(t). In response to
this impulse u (r) "rings'* at its natural frequency, and this
frequency can be estimated from (14). For the parameters
of data set A, the natural frequency for u(t) is approxi-
mately 1 x10 Hz, and this agrees fairly well with the os-
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FIG. 1. Generated second-sound wave for a series of drive amplitudes. Each unit of time, 5, represents 10 s, and the parameters
of data set A are used. Note that the vertical scale is not the same in each plot, and that m(t) is normalized by I', the drive ampli-
tude. Every hundredth computed point is represented by a 0 (i.e., there are 99 computed points between each plotted point, but for
clarity they are not shown). The time step for this computation was 10 ' s, and hence the total time interval shown is 4& 10 ~ s.

cillation frequency seen in Fig. 4. In addition, the damp-
ing can be estimated from the imaginary part of the
natural frequency, and from (14) we find that the imagi-
nary part is about half the size of the real part. Thus we
expect the ringing to last for about two periods before it is
damped out, and this is also in good agreement with the
behavior seen in Fig. 4.

Our calculations aHow us to study the maximum dis-
placement of the membrane, &&; the membrane displace-
ment is given by y(t)+z(t). For data set A the mem-

brane displacement, even deeply into the nonlinear regime,
is very small. For example, at I' = 2000, ~~-/1. is of the
order 10 . However, at the lo~er temperatures it takes a
larger I' to see the vortex creation effects. The ratio
~I- /I is then quite a bit larger w'hen we enter critical
velocity region. For data set 8, at E=50000,
&L/I. =—0. 14. We also note that if we double F to 10,
~L/I. only increases to about 0.16; as expected, vortex
nucleation makes the transducer much stiffer. Finally,
for data set C and F=2000, /)~. /L-=3X10 . Figure 9
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FIG. l. (Contitttted).

shows a plot of the membrane displacement versus time
for data set 8 and F= 10 .6

Again, we should stress that effects such as the flat top
developed in tu(t) are not put in by hand, but emerge
naturally from our coupled set of equations.

IV. DISCUSSION

Our goal in this work was to examine the effect of vor-
tex nucleation in the superleak on the behavior of a VST.
To this end we developed the relatively simple set of equa-
tions, (11)—(14). The chemical potential difference be-

tween the front and back of the membrane grows as the
quantity

~
u, —u„~ grows. This chemical potential differ-

ence feeds into the equations of motion, and leads to in-
teresting effects in both the first- and second-sound which
is generated. The "flat-topped" structure appearing in
tu(t) is what one would intuitively expect as a critical
velocity effect. In our work, this structure is not put in by
hand, but emerges naturally from the equations. The
glitch which develops in u(t) is more difficult to under-
stand physically, although as noted above, the
"mathematical*' origin is not hard to see.

In comparing our theory with experiment, several
points should be borne in mind. The extent to which oth-
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FIG. 2. Generated first-sound wave for a series of drive amplitudes. All of the parameters are the same as in Fig. 1. The time
scales in Figs. 1 and 2 have the same zeros, so the relative sizes of v(t) and m(t) at various times can be compared directly. As in

Fig. 1, only every hundredth computed point is shown. The glitch appearing at large drive amplitudes is not accurately represented
on the coarse time scale of this plot, because the time interval between neighboring points is comparable to the total duration of the
glitch. When examined on a very fine time scale (as in Figs. 4, 6, and 8) the glitch is found to display the expected symmetry with
respect to the period of the driving force.

er nonlinear effects are important is not clear. These oth-
er effects could include, for example, terms in the hydro-
dynamic equations which are second order in the devia-
tion of the fluid from equilibrium. In addition, forms
other than the Langer-Fisher form for the chemical po-
tential difference are conceivable; for example our vortices
are nucleating in the finite-sized pores, so the homogene-

ous nucleation theory may not be totally appropriate. "
Finally, most of the experiments are performed with the
VSTs located at the ends of a resonant cavity, but the ef-
fects of such a cavity are not included in our theory.

Experimental results" are available for parameters
similar to our set A. The calculations indicate that for
this case the nonlinearities set in at about F=150. The
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FIG. 2. (Continued)

experiments" find that this occurs at about 8= 10. Given
all of the uncertainties in the parameters which are in-
volved in both the experiments and the theory (especially
in the parameter 8 in the latter), this level of agreement is
probably all that could be expected. Note that the experi-
ments were performed in a resonant cavity geometry, al-
though it has been argued" that this should not affect the
relationship between I' and w(t). An interesting finding
in the experiments was that the generated second-sound
wave possessed harmonic components at both odd and
even multiples of the driving frequency. Our calculations
yield essentially "square'" waves for io, and these contain
only odd multiples of the drive frequency. This is a po-
tentially serious discrepancy whose origin is not under-

stood. It could conceivably be due to the effect of the
resonant cavity on the experiment. However we have per-
formed some prehminary calculations which include these
effects, and which still yield only odd frequency com-
ponents. The discrepancy could also be due to a funda-
mental problem with the form of the dissipative term in
our basic equations, but as we have argued above, it is
hard to see how any mechanism which yields a critical
velocity would lead to a term with a significantly different
form. Further work on this problem is certainly of in-
terest.

It is appropriate at this point to discuss the work of
Grabinski and Liu, ' who also have considered critical
velocity effects in VSTs. While their paper contains an
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gime. For example, for data set A it is roughly 10 for
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for example, the parameter 8 has a much larger value

than we have assumed (and has been found in previous ex-

periments' ). It seems more likely that other effects, such

as non-idealities present in real VSTs, ' are important,
and make terms of order (&&./L) appreciable.

Our work represents a first step towards understanding,
in a quantitative way, the effects of vortex nucleation on
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the vortex nucleation region large increases in the force
cause only very small increases in the membrane displace-
ment. Enormous, and perhaps impractically large (and of
course, extremely non-sinusoidal) forces would be required
to carry out such a scheme. It is also hard to see how the
approach of Grabinski and Liu could be used to study
critical velocity effects quantitatively, since their calcula-
tions, at least in their present form, do not include the
u, (5p) relationship at all.

We should also note that Grabinski and Liu have attri-
buted the presence of both odd and even overtones in the
experiments (as discussed above) to effects nonlinear in
hL/L, which senna quite reasonable. They have also
proposed that this quantity becomes large in typical VSTs
so that terms of order (&&/L)1 must be included in the
equation of motion. Such effects are not included in our
calculations. However, as mentioned in Sec. III, our re-
sults indicate that at least in VSTs with the "ideal"
geometry which we have considered in our calculations,
~I'. /L is generally quite small, even in the nonlinear re-
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TABLE III. Eigenfrequencies {in units of s ') of the VST for
data sets A, 8, and C, in the limit of low drive amplitudes (i.e.,
when nonlinear effects are negligible). The normal modes are
assumed to have a time dependence of the form e' —+'~
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FIG. 7. (a) Second-sound and (b) first-sound waves for data
set C with F=2000. One unit of time, 6, represents 10 s.
The glitch appearing at large drive amplitudes is not accurately
represented on the coarse time scale of this plot, because the
time interval between neighboring points is comparable to the
total duration of the glitch. %'hen examined on a very fine time
scale (as in Figs. 4, 6, and 8) the glitch is found to display the
expected symmetry with respect to the period of the driving
force.
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FIG. 8. Fine structure in the first-sound signal for daf rdataset C
with F=2000. One unit of time, 5, represents 3X10 s. is

e rained v(t),fine structure occurs in the region w'here the coarse g
shown in Fig. 7, is at its minimum.

FIG. 9. Membrane displacement for data set 8, with'th F=10.
One unit of time, 5, represents 10 ' s, All the variables were
started at zero, and one can see the membrane relaxing to its
steady-state motion as the initial transients die away.

the operation of VSTs. While our results agree, at least
qualitatively, with experiments, a great deal more remains
to be done. Most notable is the appearance in the experi-
ments of even overtones of the driving frequency. t is
not at all clear how to account for these theoretically. i-
ther we do not yet understand how to treat the dissipative
effects with regards to VST theory, or perhaps current
ideas concerning the dissipative processes (i.e., vortex nu-
cleation processes) are somehow incorrect. Indeed, one
might hope that further experiments could, in conjunction
with the theory, be used to test the validity of the precise
f f th dissipative term, and determine the values o
the various parameters which are involved. ence, s
may well provide a very useful tool with which to study
vortex nucleation effects.

It should also be noted that our basic VST relations are
a coupled set of nonhnear differential equations, which
are similar in form to those which have attracted a great
deal of attention in the theory of chaotic systems. We

have searched for chaotic solutions to our equations, but
have so far been unable to find any. However, it seems
entirely possible that such solutions may exist, and hence
that real VSTs might exhibit chaotic behavior under the
appropriate conditions. If so, VSTs may prove to be a
convenient system in which to study such effects.
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APPENDIX

To numerically solve Eqs. (11)—(14), we eliminated u,
and thus got the following set of three coupled first-order
equations:

3'2~ & &3' Dy=yw+ — +sgn(w) expL L C)

2
C

'

ye2Z e&y D —ce w+ — +sgn(w) expN= ' ' —&(y+&)—&p y+ (M, +M~) —Apc~ e ywL S

yC2+f(t) (M,'+M*) w—
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where

M=M +y(M,'+M') — M,
'

ps
(A4)

(M,*+M' )cD
+

—C

P~C2y—
Ps&]

(A5)

HaT' (A6)

We then used a fourth-order Runge-Kutta technique to
integrate forward in time, setting all the variables initially
to zero. Typical step sizes in time were 10 s to 10 s.

After initial transients had died away, we were left with
the steady-state variation of U(t) and w(t). Integrating
the equations through about ten periods of f (t) was usu-
ally adequate to determine the steady state of U and w.

If we omit the nonlinear vortex nucleation terms from
Eqs. (Al) —(A3), we are left with a linear system. The
eigenfrequencies of this system, for data sets A, 8 and C,
are listed in Table III. As can be seen, for each data set
there are two heavily damped oscillating modes and one
decaying mode. The values of these eigenfrequencies
clearly provide a constraint on how long we can make the
step size.

One drawback of our method is that the right hand side
of Eq. (A2) has several large terms canceling to yield a
much smaller number; this reflects the small size of U.

However, our accuracy was sufficient to handle this prob-
lem.

J. S. Langer and M. E. Fisher, Phys. Rev. Lett. 19, 560 (1967).
2R. Williams, S. E. A. Beaver, J. C. Fraser, R. S. Kagiwada, and

I. Rudnick, Phys. Lett. 29A, 279 (1969).
3R. A. Sherlock and D. O. Edwards, Rev. Sci. Instrum. 41,

1603 (1970).
4M. Liu and M. R. Stern, Phys. Rev. Lett. 48, 1842 (1982); 49,

1362 {1982}.
5D. L. Johnson, Phys. Rev. Lett. 49, 1361 (1982).
6%'. M. Saslow, Phys. Rev. 8 27, 588 (1983).
7N. Giordano, J. Low Temp. Phys. 55, 495 (1984).
SM. Liu, Phys. Rev. 8 29, 2833 (1984).
9N. Giordano, in Proceedings of the l7th Conference on I.ow

Temperature Physics, edited by U. Eckern, A. Schmid, W.
%'eber, and H. Wuhl, (North-Holland, Amsterdam, 1984), p.
307.
N. Giordano and P. Muzikar, in Proceedings of the 27th

Conference on I.ow Temperature Physics, edited by U. Eckern,
A. Schmid, %'. %'eber, and H. Wuhl, (North-Holland, Am-
sterdam, 1984), p. 309.

~~N. Giordano, J. Low Temp. Phys. 59, 247 (1985).
12M Qrabinski and M Liu, Phys. Rev. 8 32, 1856 (1985).
'3G. Zimmermann and F. Pobell, J. Low Temp. Phys. 61, 213

(1985).
~~W. Zimmermann, Jr., Phys. Rev. 8 33, 139 (1986).
' N. Giordano and N. Edison, J. Low Temp. Phys. 64, 29

(1986).
H. A. Notarys, Phys. Rev. Lett. 22, 1240 (1969).

~7J. S. Laager and J. D. Reppy, in Progress in I.ow Temperature
Physics, edited by C. J. Gorter (North-Holland, Amsterdam,

1970), Vol. VI.
' The importance of Poiseuille flow can be estimated from Eq.

(61) of Ref. 7, which yields v„=v +R(5Pb —5P, ). The term
involving R is due to Poiseuille flow, and it begins to become
comparable to v only at the highest drive amplitudes used in

Figs. 1 and 2, but never equals it. Thus it is reasonable to
neglect Poiseuille flow in our calculations. It would, however,
be straightforward to include these effects using the methods
developed in Ref. 7.

' For data set A the magnitude of v (t) increases approximately
linearly with F, even when w(t) varies nonlinearly. However,
the relationship between v (t) and I' depends upon the values

of the VST parameters which are assumed. For data set B it
turns out that the magnitude of v(t) increases with I' much
faster than linearly. This behavior can be understood quanti-
tatively from a detailed consideration of (14). %'e thank M.
Liu for pointing out how this behavior follows from (14).

2Ogee for example, R. J. Donnelly, R. N. Hills, and P. H.
Roberts, Phys. Rev. Lett. 42, 725 (1979).

One possible source of non-ideal behavior is the inevitab1e dust
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