
PHYSICAL REVIEVf 8 VOLUME 34, NUMBER 7 1 OCTOBER 19S6

Jump in current at the gap voltage in a superconducting junction
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For many materials not previously considered, we have calculated the jump, at the gap voltage, in
the quasiparticle current of a tunnel junction. An empirical relationship between the jump and the
effective electron-phonon coupling A,-p previously established is confirmed. Further, a new and

equally as accurate correlation is found with the strong coupling index T, /co]„, where T, is the criti-
cal temperature and m&„a specific characteristic phonon energy. A simple formula for the jump
which includes a strong-coupling correction is derived and found to fit the observed correlation well.

Finally„we study the effect on the jump of unusual values of Coulomb pseudopotential p . Also a
5-function electron-phonon spectral density o, I'(co) is used to help in the understanding of the range
of values that is possible for the jump when a~E(m) is not restricted to realistic shapes.

I. INTRODUCTION
In a previous paper, Harris, Dynes, and Ginsberg'

showed that there exists a simple empirical relationship
between the jump, at the energy gap voltage, in the quasi-
particle current (dd~) of a superconducting tunnel junc-
tion and the effective electron-electron coupling parameter
A,-p'. Here, A, is the electron-phonon mass-renormal-
ization parameter and p' the Coulomb repulsion pseudo-
potential. For many cases p' is small compared with A, so
that an approximate correlation of dd~ with A, is also im-
plied.

In this paper we extend the work of Harris, Dynes, and
Ginsberg' in several ways. First, we calculate dd~,
within Eliashberg theory, for many materials previously
unconsidered, including transition metals, A 15 com-
pounds, and model systems with large values of p,

' or
with a 5 function spectrum. These last systems make it
possible for us to check on the validity of the empirical re-
lationship in extreme situations. All the numerical work
is done using the imaginal-axis formulation of the
Eliashberg equationsz' with Pade approximants ' to
determine the real part of the gap and its derivative at real
frequencies near the gap edge.

In addition to the observed correlation of Mq& with
A;-p' we also consider a possible correlation with the now
familiar strong-coupling parameter T, /co~. Here, T, is
the critical teinperature and r0&„ is a characteristic phonon
frequency first introduced and used by Allen and Dynes
within the context of a discussion of approximate formu-
las for T,. Since a strong correlation between dd~ and
T, /coi„ is indeed established, we proceed to derive, from
the full Eliashberg equations on the real axis, an approxi-
mate expression for bI~ which contains, in a crude way,
strong-coupling effects through a term of the form

2
Tc 1n

6 ln
1n Tc

with a and b constants. It is found that a and b can be
assumed to be material independent with our approximate
formula for Mq& giving a good qualitative flt to the exact
numerical data at the 11% accuracy level for most of the
cases cons1derd.

In the work described so far, we have restricted the
value of the electron-phonon spectra density [a F(co)] to
observed shapes and strengths. To obtain some informa-
tion on how widely M~ might range when such restric-
tions on a Ii(co) are removed, we consider model spectra
consisting of a single 5 function at the frequency QE. In
this case, the jump is completely independent of the area
under a F(co), at least forg'=0. 7 In contrast, the nor-
malized jumP Ja =5~/ddqz (where WC refers to weak
coupling) is found to range from a value near 1 when
QE «» T, to 1.92 at QE ——0.25 meV. While the jump was
still rising with decreasing QE in this region, the calcula-
tions were nevertheless terminated because some numeri-
cal difficulties were becoming apparent and 0.25 meV is
already unrealistically low.

The paper is divided into five sections and an appendix.
Section II deals with the numerical work for observed as
well as some model spectra. In Sec. III the two parame-
ters introduced during the derivation of an approximate
analytic formula for the jump are fixed by comparison
with the exact calculations. The derivation itself is out-
lined in the Appendix. Section IV deals briefly with our 5
function results while conclusions are given in Sec. V.

II. NUMERICAL CALCULATIONS OF THE JUMP

To calculate the jump in the current-voltage charac-
teristics of a tunneling junction at zero temperature which
occurs at the gap edge, we use the imaginary axis formu-
lation of the Eliashberg equations. They are

+ iN b(i' )
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where b, and Z are the Matsubara gap and renormaliza-
tion function, respectively, evaluated on the imaginary
frequency axis at the discrete points

i co„=i skr&T(2 n—1), n =0, +1,+2, . . . .

In Eqs. (1) and (2), T is the temperature, ka the
Boltzmann constant, c0, a cutoff on the Coulomb repul-
sion needed to get a convergent sum over m, and p, '(co, )

the Coulomb pseudopotential appropriate to the cutoff
cp, . The electron-phonon function is given by

~( ) 2 j do oa~F(oi
Q +(c0„—cp )

where a F(Q), the electron-phonon spectral density, is
known, in a large number of cases, from inversion of tun-

neling data. We can take a F(Q) as given.
Equations (1) and (2) are solved numerically for a given

a F(co) with (M' adjusted to get the measured T, . Next,
the equations are solved at a low temperature, usually
0.1T, and a set of 6(ic0„) and Z(ice„) obtained. From
this information, the gap at zero temperature is obtained
for real frequencies by a method of Pade approximants
first described by Vidberg and Serene and implemented
by Mitrovic et al. The gap edge Ao is defined as the
value of the real part of the gap b, (co) at co= ho with

ho=Red, (co =bo) —=b t(c(s =ho)

The imaginary part of 5 is zero at cp= b,o and the jump in
the quasiparticle current Mq~ at voltage b,p is obtained
from the formula'

TABLE I. Various parameters characterizing the electron-phonon spectral densities [a F(co)] used in this work as well as the re-

sults of the Eliashberg calculations based on these spectra. The specific quantities considered are the derivative of the real part of the

gap at the gap edge [db((co)/dco]
~ q and the derived quantities Jq and (I+A/)()[db((co)/dco]~q . Js is the ratio of the jump, at the

gap voltage, in the quasiparticle current of a tunnel junction compared to the BCS value. k is the electron-phonon coupling parame-
ter.

Material 1c (K) ut {K} T' /co] co {meV} p (co, )
dh]{a))

dt's

ho
JR

db ]{co)

da) hO

V
Ta
V3Si
Ino 9Tlo (

Nb
Nb(scaled)
Nb(scaled)
V3Si
V3Si
NbN
V3Si{k)
Pbo 4Tlo 6

Pbo. 6T)o.4
Pb
Pb
Pb(anal)
Pb
Pb(anal)
Pb
Pb {scaled)
N13Sn
Hg
Pbo. 68io.2T)o 2

Pbo. 9Bio.(
Nb3Ge
Pbo. sBio.2

5 function
6 function
5 function
Pbo pBio 3

Pbo. 6sBio.s

5.38
4.48

10.1
3.28
9.26
9.26
9.26

13.8
15.4
14.0
18.0
4.60
5.90
7.19
7.19
7.19
7.19
7.19
7.19
7.19

18.05
4.19
7.26
7.65

20.0
7.95
8.09

12.16
4.07
8.45
8.95

171.6
132.
223.6

63
148.9
148.9
148.9
218.7
228.7
174.6
200.9
48
50
56.0
56.0
56.0
56.0
56.0
56.0
56.0

124.0
28.6
47.9
50

125.4
46
46.4
69.6
23.2
47
45

0.0314
0,0339
0.0452
0.0521
0.0622
0.0622
0.0622
0.0631
0,0673
0.0802
0.0896
0.0958
0.1180
0.1284
0.1284
0.1284
0.1284
0.1284
0.1284
0.1284
0.1456
0.1465
0.1516
0.1530
0.1595
0.1728
0.1743
0.1746
0.1753
0.1798
0.1989

33.1
20.9
44.4
16.2
28.3
28.3
28.3
43.5
42.2
60.65
44.5
11.0
10.9
11.0
11.0
11.0
11.0
11.0
11.0
11.0
28.7
14.3
10.2
9.9

34.4
10.97
11.0
11.0
11.0
10.4
10.1

3
3
6
6
3
3
3
6
6
4
5

6
6

10
6
6
3
3
6
6
6
6
6
6
6
6
6
6
6
6
6

0.2025
0.1195
0.1093
0.1323
0.1749
0.0
0.75
0.1268
0.1018
0.3522
1.3
0.1149
0.1252
0.1508
0.1438
0.1438
0.1308
0.1308
0.0
0.75
0.1576
0.1244
0.1525
0.1054
0.0878
0.1116
0.1

0.1

0.1

0.1095
0.0913

0.8013
0.6923
0.7494
0.8503
1.009
0.6241
1.8132
0.9186
0.9017
1 4731
2.2849
1.1459
1.3813
1.5477
1.5477
1.5477
1.5477
1.5477
1.0802
2.5748
1.7005
1.6241
1.8142
1.6629
1.6000
1.884
2.0
2.0
2.0
2.0145
2.1320

0.0078
0.0074
0.0098
0.0162
0.0209
0.0152
0.0283
0.0193
0.0203
0.0393
0.0489
0.0376
0.0537
0.0621
0.0623
0.0623
0.0636
0.0635
0.0501
0.0804
0.0730
0.0750
0.0811
0.0775
0.0770
0.0931
0.1017
0.1025
0.1020
0.1026
0.1145

1.0078
1.0075
1.0098
1.0163
1.0210
1.0153
1.0285
1.0194
1.0204
1.0397
1.0495
1.0380
1.0544
1.0631
1.0633
1.0632
1.0646
1.0645
1.0507
1.0820
1.0743
1.0764
1.0827
1.0790
1.0785
1.0952
1.1043
1.1052
1.1046
1.1053
1.1178

0.0174
0.0182
0.0228
0.0353
0.0416
0.0397
0.0439
0.0403
0.0428
0.0660
0.0703
0.0705
0.0925
0.1022
0.1026
0.1025
0.1046
0.1045
0.0964
0.1116
0.1159
0.1212
0.1298
0.1241
0.1251
0.1425
0.1526
0.1538
0.1530
0.1535
0.1682
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dd~ 1 dpi(co)
~wc

2

where we have normalized L/~ to its weak-coupling
value. We sce from (4) that Jx depends only on the first
derivative of the real part of the gap evaluated at h.o. The
required derivative is obtained from a knowledge of b, , (ap)

at three frequencies near Q through the fitting of a para-
bola.

In Table I we present our results for a large number of
superconductors. References to the source of a E(co)
(electron-phonon spectral density) are given in Refs. 9—19
as well as Mitrovic et a/. ' and Daams and Carbotte.
Along with dpi(co)/dci~ a,, from which Jz follows

[Eq. (4)], additional useful physical data was given in
Table I. They are the critical temperature T„ the Allen
and Dynes6 phonon energy cot„defmed by

~I„—exp — ~ P ~ ln ~2 ~ dr0

the ratio T, /cubi„ the maximum phonon energy co

IIIE(r0), the cutoff co„ in units of co, the corresponding
p, '(r0, ) chosen to get the measured„critical temperature,
the mass renormalization A, =2 f [a Pro)/c0]dc', and

0
db, i(cI)/dao

~ „a,. The two final columns of Table I give

the right-hand side of (4) denoted by Jz and (I+A, }/A,

times db, i(cI)/dro
~ „a. This will be useful later on.

Four of the materials in Table I have also been con-
sidered by Harris et a/. ' They were chosen to check the
analytic continuation technique at low, medium, and high
values of T', /cii, . They are In() 9T10 1, Hg, Pbo ISIO I, and
Pb. With the exception of Pb, the agreement with Harris
et a/. is within 2% for the derivative db, i(ci)/dec

~ „
This is very satisfactory since our method of calculation 1s

so very different from that of Harris et u/. While we
work on the imaginary axis, they use the real frequency
axis Eliashberg equations which yield directly 6(co }
without the intermediate step of using Pade approxi-
mants. It should be noted that we cannot expect perfect
agreement since )M' is treated somewhat differently in the
two approaches. In both cases, a sharp cutoff is used on
co but a sharp cutoff on the real axis does not correspond
to a sharp cutoff on the imaginary axis and vice versa, as
described by Leavens and Fenton. i

For the case of Pb we have varied both the cutoff and
the temperature used for the analytic continuation. Refer-
ring to Table I, we note entries for three different cutoffs,
namely, r0, =10', 6'~, and 3' . As the cutoff is in-
creased there is a small reduction in J~ going from 1.0646
to 1.0631. This is considerably larger than the 1.056 quot-
ed by Harris et a/. ' To make sure that the difference can-
not be due to the temperature used in our analytic con-
tinuation, we have recalculated everything at a new lower
temperature, namely t =0-05' rather than t =0.1Tc
The results are entered as Pb(anal). It is clear that
I=0.1T 1s low cIlollgh to gct thc Iiornlallzcd jllIIlp with
sufficient accuracy.

Other data entered in Table I that should be mentioned

Pbp.658 i p
~ r

I.05-

Pbp gBlp g

'Ph (g 0.75)
t~

Phg C+&
vs

x. ~
~ PCNbN

Nh (g~0.75)

I

2Q 2.5

FIG. 1. Plot of the calculated values of J~, the jump ratio at
the gap voltage in the quasiparticle current of a tunnel junction
versus the effective electron-phonon coupling A,-p . The dashed
line is the empirical curve of Harris et al.

explicitly are the results for NbN and for V&Si. Note that
the entry under V,Si(k) has a p'=l. 3, which is enor-
mous, while the value for NbN is more modest but still
large at 0.35 compared with most other entries. These
data can be used to help us understand the effect of p' on
the current jump as can the entries under Pb(scaled) and
Nb(scaled). In these last two cases the electron-phonon
spectrum a F(co) for Pb and Nb were rescaled without
changing their shape so as to retain the same T, value
with p'=0 and 0.75, respectively. It is seen that under
these circumstances, Jz increases quite substantially with
increasing /1'. For example, for a spectrum having the
shape of Pb it can range from 1.051 to 1.082. To make
further comparison, it is best to plot the data of Table I.

In view of the work of Harris et a/. we show, in Fig. 1,
Jx versus A,-/I'. The dashed line is the emPirical curve of
Harris et a/. for their data which was read from their fig-
ure. It is seen that our new data confirms the established
trend, although only few data fall at large values of A,-p'.
Some deviations from the general trend which are worth
mentioning have been labeled explicitly in the figure. It is
seen that the case of our scaled spectrum Nb(scaled) and
Pb(scaled) with unusual values of p', the trend given by
the dashed line is violated. This is also so for the V&Si
data labeled VISi(k). This spectrum was derived from
tunneling data by Bangert et a/. ' but has an unreasonably
large Coulomb pseudopotential value /I'=l. 3. It has
bcisi shown that it does not lead to a good fit to the ob-
served thermodynamics or to some optical properties. On
the other hand, the more conventional spectra for similar
samples of VISi by Kihlstrom' do fall close to the dashed
line. We can conclude from all this that the relationship
between JII and A,-p' is more complicated in cases when

p,
' is unusually large, but that for most of the real materi-

al cases known at present the empirical relationship of
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Harris et al. ' is rearmnably valid and can be used with
confidence.

For thermodynamic properties, there exist in the litera-
ture approximate azutlytic formulass' ' ' derived from
the full El'iashberg theory, wlttch contain a rough correc-
tion for strong coupling of the form

III. AN APPROXIMATE ANALYTIC FORMULA
FOR THE JUMP

To better understand the approximate correlations
found in Fig. 2, we now derive an approximate formula
for JR based on Eliashberg theory. It is most convenient
for this work to begin with the Eliashberg equations on
the real axis. The derivation, as outlined in the Appendix,
follows the method used by Mitrovic, Zarate, and Car-
botte in deriving an approximate result for 2b,elk&T, .
The result is

2
~C CiP

Tg d

where c and d are constants and co is an appropriate pho-
non frequency. In the original literature, st 23 c and d are
found to take on definite values fixed during the course of
the approximations, but the precise nature of co remains
ambiguous and several suggestions have been made in the
past as to the most appropriate choice for this parameter.
Very recently, complete numerical solutions of the Eliash-
berg uations have been generated for many materi-
als' ' for which a F(Q) and )tt' are known from tunnel-
ing. It has been found that if ro appettrtng in the form (6)
is chosen to be the Allen-Dynes parameter aii„defined in
Eq. (5), the exact numerical data for several thermo-
dynamic coefficients can be fit qualitatively by an expres-
sion of the form (6) with c and d taken to be material in-
dependent and adjusted to give the best overall agretunent
to the many cases considered. These works on thermo-
dynamjcs suggest we consider platting our data on Jz as a
function of the strong-couphng parameter (T, /oi)„) to see
if a new empirical correlation holds between these two
quantities. This is shown in Fig. 2 where it is seen that
the correlation of J)t with T, /ai&„ is as good as with A, -)it*

in most cases and can be better as in the case of V3Si. The
dashed curve through the points was adjusted by eye to
give a reasonable fit to the data but does not imply any
theory.

1

C ~in
ln

1+A, db, i(c0)

dco
{A10)

1n

where a and b are our fitting parameters.
Recall that in Fig. 2 we plotted Jz against T, /co)„ to

see how good a correlation exists between these two quan-
tities. Formula (A10) suggests that we should instead plot

1+A, dpi(co)

dco

versus T, /nii„. This is done in Fig. 3. Note that the
scatter of data points is much less than in Fig. 2. The
dashed curve in this figure was chosen to conform with
(A10) and the parameters a and b chosen to give the best
visual fit to the overall set of points. Of course, no single
curve can reproduce the entire data set exactly but that is
not the point here. We are willing to sacrifice some pre-
cision in order to get material-independent values for a
and b. We see that in most cases,

Tc
1

ai)n

2Tgdco
=4.6

ol= Ap &n

will give a good first estimate of the slope of the gap at
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FIG. 2. Plot of the calculated values of J~ (dots) and the
data of Harris et al. (crosses) plotted versus the strong-coupling
parameter T, /min. The dashed line is empirical and does not
represent any theory.

FIG. 3. Plot of the calculated values of
(1+A,/A)[dh~(co)/dco]~~ solid circles and the values derived

from the data of Harris et ah. {crosses) plotted versus the
strong-coupling parameter T, /~~„. The gashed line is that of
the approximate formula given in Eq. {7).
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the gap edge and therefore of the jump in the current volt-

age characteristics. To get more precision it is of course
necessary to perform numerical work which can be quite
tedious. For most applications, formula (7) should be suf-
ficient.

2.00-

I 75.-

IV. A 5 FUNCTION SPECTRUM l.50

So far, we have considered mainly realistic forms for
a F(Q) and values of 1M that fall within the conventional
range of 0 to 0.2. A few large values for )M' were also dis-
cussed. At this point we would like to study a related
question, namely: What range of values can we get for J„
when the shape of a2F(Q) is not constrained to be that
observed in tunneling experiments? A complete answer to
such a question cannot be obtained since we cannot try all
possible shapes. This is not necessary for our main pur-
pose here. We can use a 5 function,

a F(Q)=35(Q —QE)

positioned at Q=QE with area under 0;2F given by A.
Such an a F ranges from weak to very strong coupHng as
the frequency QE ranges from large to small values. It is
to be noted that for the spectrum (18) it can be shown
that h(co) scales like A as does T, so that b, (co)/A is in-
dependent of A. This imphes that all properties depen-
dent only on the gap will also scale like A. This scaling is
exact for 1u'=0 and very nearly so for finite p'. The
three 5 function entries of Table I show that this is indeed
true. We find that as A is changed from 2.0 to 6.0 the
correction to Jz due to strong coupling varies by only
0.5%. It is sufficient, therefore, to choose a single value
for A and change QE. Results for the current jump Jz as
a function of QE are presented in Fig. 4. It is seen that as
coi„——Qz is decreased, Jz increases radically from its
weak-coupling limit of 1 to 1.92 at QE ——0.25 meV. The
calculations were stopped at this point for two reasons.
Firstly, the numerical work was showing signs of breaking
down and secondly, QE is already unreasonably small.
No real apex;trum could be close to a 5 function with all
its weight around 0.25 meV. Figure 4, however, does

l.25

0 5.0 IO.O I5.0
col„(mev)

I

20.0 250

FIG. 4. Plot of J& calculated for 5 function spectra of con-
stant area versus the frequency.

V. CONCLUSIONS

The jump (Jx) in the quasiparticle current at the gap
voltage has been calculated numerically from a (co) data
for many materials not previously considered. A correla-
tion previously found between Jz and the coupling pa-
rameter A,-p' is confirmed. An additional correlation
with the much used strong-coupling parameter T, /co1„ is
noted and an approximate analytic formula is derived that
fits the numerical data at the 11% level well. Using a 5
function for a2F(co) with all the weight at a single fre-
quency Qz it is found that JR can become very large for
such an unconstrained spectrum compared with the values
found for real spectra.
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show clearly that Jit can get very large if the shape of
a2F(Q) is allowed to vary beyond the expected physical
region.

APPENDIX: JUMP APPROXIMATE ANALYTICAL FORMULA DERIVATION

We begin with the Eliashberg equations on the real axis. As a first approximation we ignore the imaginary part of
b (co). The real part will satisfy the equations, s

T

b, i(a))Z1(co) = f dao'Re [K~ (co,co') —1M (a), )8(co—co, )],&(~')
i)2 g2( i)]1/2 + (A la)

Ce AP
Zi(co) = 1 —— dpi)'Re

2 2,i2 K (co,co'),
(g ao [(~1)2 +2(~&)]1/2

where

(A lb)

K+(co,a)') =2 f dQa E(Q)
0 (Q+co') —co

(A2)
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(A3)E (co,co')= —2 I dQa F(Q)
(Q+co') —co

with Zi the real part of the renormalization function. Taking the derivative of hi(co} with co and evaluating it at co= +p,
we get from (Ala) and {Alb}with reference to (A2) and (A3)

db, i(co) b,(co')
8N Rc

dco a=a, Z(Qp) & [(co') —&'(co')]' '
c}E~(co,co')

c}co op =ao

b, i(Qp} cidco'Re
Z(b, ) ap [(co')i—Q2( ')]'~i c}co

E (co,co'}
(A4)

To proceed further, we will assume that in the integrals h(co )=hp and that all the important phonon frequencies in
a F(Q) are much larger than the gap. With these assumptions, Eq. (A4) takes on the simpler form:

dpi(co) 4b,p 1dQa F(Q) dco'
dco =h, Z(dLp) o ao [(co')~ gp2]' 2 (co'+Q)

dQa F Q) dco'
Z(bp) o a&& [(co') —b, ]' (co'+Q)

(AS)

which can be further reduced to

dpi(co)
dco

4~p
& 3 1 1 ~p 4~o "

2 13 1

Z(~p) ' 2 Q' Q' 2& Z(&p) ' 6 Q' (A6)

2a F(Q) ~p A, 2~p
dQ

~
ln =—ai 2 ln0 20 ~&„co]„ (A7)

Following Marsiglio and Carbotte, ' we approximate the
final integrals over a F(Q) by

T

A
2cx2

cu=a 1+A,

be consistent, we replace Z{hp) by its approximate value
1+A, . This leads to a final formula of the form

db, i(co) ~p 1n
1n

dco 2~p

I"dQ
2a F(Q)

0 Q
(A8)

Ap22+ —,a&
1n

(A9)

with ai and a2 to be treated later as parameters to be fit-
ted to our exact data for Jz.

An expression for Z(b, p) has been worked out in the
paper by Mitrovic, Zarate, and Carbotte which contains a
strong-coupling correction but this is not needed here
since in Eq. (A6) each term is already proportional to a
strong-couphng correction which we take to be small. To

(A10)

which is our final expression.

Finally, in Eq. (A9) we change from b,p to T, using the
BCS relation 26+k& T, =3.53 and introduce two new pa-
rameters a and b, to get the simple form

1+3 dpi(co) T, coi~=a ln
dco au=ap coi„&T~
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