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Gravity effects on first-sound velocity near Ti (P) in liquid 4He
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Near T~, the first-sound velocity is mainly affected by two rounding mechanisms: one, intrinsic,
is due to critical dispersion; the other, nonintrinsic, is due to the spatial inhomogeneity induced by
gravity in a sample of finite height. Here a detailed analysis of the local and nonlocal gravity affects
is made, and a numerical procedure to calculate quantitatively the gravity rounding contribution in
the presence of dispersion is proposed. This method is used to separate for what we believe to be the
first time gravity and dispersion effects in real measurements. In particular, contrary to a widely
held assumption, it turns out that gravity effects appreciably the absolute value of the measured
velocity only in the very-low-frequency range (a few kHz or less), independently of the sample
height and of how close the system is to T~(P). It is also shown that the other main gravity effect,
the temperature shift of the velocity minimum, is also strongly affected by dispersion. The present
numerical procedure permits gravity corrections to (first-) sound velocity in real measurements to be
made in a self-consistent way, with high accuracy.

I. INTRODUCTION

The presence of a gravitational field causes the pressure
in a fluid to vary with height. As a consequence, each
pressure-dependent parameter of the fluid is subject to a
gradient. This is the case, for instance, for density, which
is coupled to pressure through the compressibility of the
system. In general, the coupling coefficients remain fi-
nite, and in a sample of reasonable depth (a few cm or
less) the corresponding gradients are negligible. However,
in the presence of critical phenomena or near phase transi-
tions, the coupling coefficients may suffer very sharp
variations or even critical divergences. In such cases the
spatial inhomogeneity associated with the gravitational
field may be very important. ' For instance, as is well
known, the compressibility of a pure fluid diverges as the
fiuid approaches the gas-liquid critical point. The gravi-
tational effects on density cannot, therefore, be ignored in
the analyses of experiments performed close to this transi-
tion. '

Although conceptually similar to critical points in pure
fluids, the influence of gravity near the A, transition in
liquid helium ( He) arises in a somewhat different and
more subtle way. This is mainly due to the fact that the
normal-superfluid transition is a critical line instead of a
critical point. In addition, this transition does not belong
to the same universality class as the usual critical points
in fluids. The critical behaviors and the corresponding
critical exponents of the various parameters which charac-
terize the two transitions are consequently different. This
situation is particularly well illustrated by the (first-)
sound velocity, u, which may be expressed as a function
of both the pressure I' and the reduced temperaturet:T —Ti(P) wbere Tt„ is t—he critical temperature (see
Fig. 1). In a gravitational field the dependence of u on
the height h along the sample may be mntten

du (h) Bu dP Bu dt
dh BP, dh dt „dh

Bu , Bu

aP ' at

vrhere p is the liquid- He density, g is the gravity accelera-
tion, and we have also used dP/dh =p(h)g, and
Ti =(BT/BP)i. The first term in Eq. (1) is mainly asso-
ciated with the isothermal compressibility ter of the medi-
um. In contrast with critical points, ~~ diverges weakly
near Ti, so the influence of this term must be weak in

TEMPE RAT URE

FIG. 1. Schematic diagram of a typical sample at a tempera-
ture close to Tq(P).
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this transition. The second term is associated with the h

dependence of the distance in temperature from the X line
(Fig. 1). This last term, which will be the dominant one
near Ti„, does not exist for critical points, for which T, is
obviously independent of h.

Both terms in Eq. (1) act as a nonintrinsic "rounding"
mechanism, analogous to those arising from the presence
of impurities, finite-sample effects, or nonequihbrium
behavior. Such a mechanism originates two main observ-
able effects on the first-sound velocity: a displacement of
T;„, the temperature at which the velocity is minimum
[for a sample of zero height and in the zero-frequency
limit T;„coincides with Ti(P) j, and a rounding of this
minimum and, therefore, an increase of the absolute
values of u(t) around T;„. Both effects are relatively
small and occur very close to Ti(P}. Measurements of
first sound precise enough and close enough to Ti to al-
low the observation of these effects were first obtained in
1968 by Barmatz and Rudnick. These data were
analyzed in terms of gravity influence by Ahlers, ' one of
whose basic starting points was the adoption, as local
velocity, of the functional form suggested by thermo-
dynamics, i.e., the zero-frequency velocity. This approxi-
mation, used since then also by other authors, 's allows
straightforward calculations of the spatial averages of the
velocity. However, inspection of Eq. (1}shows that its use
is not valid when there is dispersion of the velocity (an in-
trinsic rounding mechanism), espo:ially if quantitative re-
sults must be obtained: dispersion changes the depen-
dence of u on P and t near Ti (drastically in the case of
t) and hence also the corresponding coefficients in Eq. (1).
It will be seen below that this is so, even at the lower fre-
quencies measured.

The central problem created by the presence of the
gravity field, which has been eluded until now, is thus,
precisely, the separation of the two rounding mechanisms:
one intrinsic, associated with (critical or noncritical)
dispersion, and the other, nonintrinsic, due to the spatial
gradients induced by gravity, an external field. In this pa-
per, we report on a systematic analysis of the gravity ef-
fects on first-sound ineasurements near Ti, and a simple
and compelling numerical method to separate gravitation-
al and dispersion effects is presented. In addition to its
formal interest, an adequate approach of the influence of
gravity is crucial for a quantitative comparison between
experiments and recent dynamic scaling results on the
first sound. Until now, such a comparison has been re-
stricted to the high-frequency range (~/2m. &1 MHz)
where, due precisely to the strong critical dispersion, grav-
ity effects have been supposed to be almost suppressed. '

The validity of this assumption will be proved here. The
quantitative confrontation between the very precise first-
sound (attenuation and dispersion) data already available
and, on the other side, the existing theoretical results with
no adjustable parameters, is playing a central role in
some of the most important problems and controversies
still open in critical dynamics near T~.""' Furthermore,
among some of the more practical motivations of our
study, we may invoke two: microgravity experiments, '
and the use of low-frequency first sound as a microdegree
thermometer near T~. This last capability is associated

with the important values of (du/dT)r in this region.
The knowledge of the influence of gravity on this coeff-
icien will also be crucial for this application.

In Sec. II we present a discussion of the different ap-
proximations we need to calculate quantitatively the grav-
ity effects. In Sec. III we summarize the calculations of
the average thermodynamic (zero-frequency) velocity.
Section IV describes the numerical procedure used to
separate gravity and dispersion effects in real (nonzero
frequency} measurements. Finally, the main conclusions
are contained in Sec. V.

II. FRAME%'ORK AND APPROXIMATIONS

A. Local and nonlocal gravity effects

A basic starting point of our approach is the hypothesis
that the local properties of the fluid can be identified with
those of an homogeneous system, i.e., we neglect all possi-
ble nonlocal effects due to the gravity field and arising in
either the first or the second term in Eq. (1). This implies
that the thermodynamic functions vary only because of
their dependence on h, but locally they will keep their
standard functional form. In other words, we will take
into account only the local or implicit effects associated
with the homogeneity breaking produced by gravity, but
we are going to neglect the so-called nonlocal or explicit
effects, which would change the functional form of the
thermodynamic magnitudes even at the local level.

A direct analysis of this approximation, like that pro-
posed recently for the gas-liquid critical-point transition
and based on the so-called squared-gradient theory, ' re-
quires an equation of state. Unfortunately, such an equa-
tion valid around Ti is not available as yet for He liquid.
However, it is possible to define, in analogy with what has
already been done for the gas-liquid critical point, '2 vari-
ous phenomenological criteria. They are mainly based on
two types of qualitative considerations: the apparition of
new lengths associated with the gradients induced by
gravity as, for example, p(Bp/Bh) ' or T(dt/dh) '. The
breakdown of the local homogeneity will occur when one
of these new lengths becomes comparable with some in-
trinsic characteristic length of the system as, for example,
the correlation length of the order parameter or a spatial
dimension of the sample or, in our case, the sound wave-
length. The second type of phenomenological criterion
for the appearance of nonlocal effects is based on the
modifications induced by the external gravity field in the
spectrum of the spontaneous thermal fluctuations of the
system. " For example, the sample may become locally
inhomogeneous when the potential energy of a fluctuation
becomes comparable with its activation energy, k~T,
where kz is the Boltzmann constant.

Let us examine quantitatively some of these criteria in
the case of the A. transition of liquid helium. We may be-
gin with those concerning the most relevant characteristic
length of the medium, namely, the correlation length g of
the order parameter. This is because any inhomogeneity
affecting the order-parameter behavior will not only
modify the functional form of the local fluid properties
but will even change the nature of the transition. A first
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TABLE I. Some of the characteristic lengths arising in a liquid-helium sample near Tq(P) submitted to the standard gravity field
(g=9.8 m/s ) and at saturated vapor pressure and T —T~ ——10 K.

Characteristic
length

Value at t =10 K
and SVP (cm)

Correlation length
of the order

parameter g+

2.4g 16-'

Correlation
difference
length A,~

5&& 10-'

Density
gradient

length A,~

4X 10' A, =1.7&&10'
A,,=0.8

2.2X10-' 0.5—4.5

Reduced temperature First-sound
gradient length A, ~ wavelength Typical

or k, at 1 MHz, A, sample height H

P
Bh

1 »g(t)
pgEy

condition for the onset of nonlocal effects may concern
directly g: the breakdown of the local homogeneity can be
expected when g(t(h)) starts to vary appreciably, due to
the gravity-induced inhomogeneity, over its own length.
%e may express it as'

b,A,
&
——

~
g(t) —g(t+ht(g))

~

& 10-'g(t), (2)

where ht(f)= —(BT/BP)i, pgg' is the shift in reduced
temperature corresponding to a vertical displacement of
extent g in the satnple. Using

Pt)=g,
~
t/T,

~

-'", (3)

with' go ——g+ ——1.4X10 cm (independent of pressure)
and the data of Ref. 17 for the thermodynamic parame-
ters, Q. (2) leads to the absence of nonlocal effects for
t & 10 K (see also Table I). Using the numerical infor-
mation of Ref. 17, we found also that other possible con-
ditions for the applicability of the local homogeneity, as,
for instance,

ktt T. The mean-square fluctuation of the number of mol-
ccules N in a volume Vis given by'

(hÃ)2=
ks TVp Kz.

where m is the He atomic mass. Thus, the gravitational
potential energy of a spontaneous fluctuatjon
volume of the order of gi is

E =mgg(m) ]' i=pg(K K T)'

and we may expect nonlocal effects to be absent provided
that Et is much less than k+T. The limiting condition
Et =kttTis verified for

~
t

~

=7X10 ' K.
In Table I we present an estimate of some of the

characteristic lengths arising in a slnple subject to the
Earth's gravity (g=9.8 m/s ) and for t =10 6 K and
SVP. This reduced temperature was chosen because it is
the smaller temperature distance to Ti in typical first-
sound experiments. 's'0 The main conclusion from this
table is that for attainable temperature intervals there
seems not to exist crossover of the different (gravity-
independent or -dependent) characteristic lengths to cause
the appearance of nonlocal effects.

—T
, »g(t

pg~x

are violated (we work out the limiting conditions
Az r/g= 1) at saturated vapor ~ressure (SVP) for, respec-
tively, t=10 2 K and t=10 ' K. Noteherethatadif-
ferent length associated with the variations of the distance
in temperature to Ti(P) may be obtained by using in Eq.
(5) t instead of T. This leads to

$. First-sound P dependence versus t dependence

In this paragraph we verify that near Ti(P} the t
dependence of first-sound velocity is much stronger than
its P dependence. This fact will allow us to greatly sim-
plify our subsequent calculations. In fact, we want to
show that in Eq. (1) one has

»g(t),

and under the same conditions as indicated before,
A,, =g(t) for t=8X10 K. However, for all three condi-
tions the breakdown of the local homogeneity will appear
for distances in temperature to Ti (P) much smaller than
are usually used in experiments (

~
t

~
& 10 6 K).

Finally, let us check an alternative type of criterion
mentioned before and associated with the modifications
induced by gravity in the spectrum of the spontaneous
thermal fluctuations in the system. For instance, in anal-
ogy with what has been proposed by Sengers and co-
workers for the gas-liquid critical-point transition, " we
may compare the gravitational potential energy of a fluc-
tuation of the density number N with its thermal energy

We analyze this inequality for brevity only at t =0 since
this is the more significant temperature for gravity ef-
fects. As to the P dependence, inspection of first-sound
measurements ' shows that the derivative (Bu/BP), is
maximum at SVP and of the order of 10 cm/sbar. On
the other hand, the t derivative is a strong function of fre-
quency. Thus, using the data of Ref. 7, for instance, we
obtain at SVP (Bu/Bt)p-5 cm/spK at co/2@ =5.4 kHz
and 1 cm/s p, K at 54 kHz. A value of Ti
= —8.88X10 K/bar yields for —Ti(Bu ldt}p,
4.4X10 cm/s bar and 9X 10 cm/s bar at a frequency of
5.4 and 54 kHz, respectively, both values again at SVP
and t=0 In conclusion, .up to some tens of kHz, the
right-hand side of Eq. (7} is at least approximately ten
times larger than the left-hand side. Besides, it is in this
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range of frequency where, as we shall see in Sec. IV, grav-

ity effects are yet appreciable.
Although first sound is not the critical mode of the

normal-superfluid transition in liquid He (the critical
mode is the thermal one}, the privileged role of t may be
seen as a consequence of the fact that in this transition the
thermodynamic variable directly coupled with the order
parameter is temperature, pressure acting as a noncritical
(inert) variable. This situation again contrasts with what
occurs near the gas-liquid critical point, where the order
parameter is precisely the difference between the densities
of the gaseous and liquid phases.

=(mu „/d) +(np/H), where p, m, and n are "quan-
tum" numbers labeling the mode, d is the cavity radius,
and a „are numbers of order unity. This same relation is
used in the case of nonuniform media to define the aver-
age measured velocity (u )RF for a given mode. In order
to relate & u )RF to the local velocity u (h), we follow the
approach proposed by Hohenberg and Barmatz in their
analysis of the gas-liquid critical point. 2 In fact, when
u(h) does not vary appreciably between the top and the
bottom of the sample, which is our case, application of
perturbation theory leads to

1/2

C. Measured, local, and average velocities

H
(«)««=« ~ ) — I u (h) i mph

cos
Q~V

H
where u,„=(H ' —u (h)dh)'~ .

0
Our task here will be twofold: to compare the two

preceding averages with each other, and to compare both
of them with the standard spatial average

1 H
&u)s~= f u(h)dh

which has already been used first by Ahlers ' and then by
other authors. 7's The more direct way to do that is to use
as local velocity the isentropic velocity, for which its
functional form (see below) is known. The integrals in h

must be transformed, prior to their evaluation, into in-
tegrals in t. This is immediate1y done by using the rela-
tion (see Fig. 1} t(h) =t +ah, where a = pgTi and —the
superscript S stands for the top of the sainple. In this
way, for instance, the standard average becomes

( « )s«()«) = f, « ())d) . (8)
aH ~S

In the second method, the sound velocities are found by
measuring the resonant frequencies (RF), usually of
plane-wave modes, in cylindrical cavities. For uniform
systems and with such a simple geometry, there exists a
straightforward relation between the velocity u ( = & u ), in
this case} and the eigenfrequencies, i.e., to& „/u

The numerical results for the different averages and
their t derivatives at various temperatures close to the }(,

line are displayed in Table II, for a sample depth of H=2
cm and SVP. The pertaining thermodynamic parameters

The measured velocity of first sound propagating along
the vertical direction in a sample of depth H will be an
average of the local velocity up(t(h), co). The kind of
average depends, in principle, on the experimental pro-
cedure used. In the audio and the ultrasonic frequency
ranges (t0/2ir & 100 MHz), there are, basically, two such
techniques: the pulse propagation and the acoustic reso-
nance in a cavity. I.et us write formally the expressions
for the averages to be used in both cases. In the first tech-
nique, the measured parameter is the (average) flytime T
of the pulse throughout the known distance H. In this
case, the average velocity can be defined as (u )rT=H/T. —
In this expression, T may easily be related to the local
velocity u (h) =dh /dt (here t is the time) to obtain

1 H dh'"' = a} .(a)

TABLE II. Different velocity averages and their t derivatives at various temperatures very near the
A, line obtained using the isentropic velocity as local velocity: Flytime average (FT), resonant-frequency
average (RF) for the two first plane-wave modes (noted by p=1 or 2), and standard spatial average
(SA). See text for detailed definitions. Velocity values are in cm/s and t derivatives in cm/s pK.

t (pK)

&u )RF {p=(}
&u)RF (P=2)
&u )s~

ct
d&u )RF (p=1)

dt
1'( Q )RF (p=2)

d&u)sA
ct~

21 761.37

21 761.31

21 761.46

21 761.37

—1.46

—1.46

21 765.23

21 763.26

21 765.62

21 765.24

7.31

7.31

7.31

7.31

21 773.30
21 772.36
21 772.61

21 773.31

31.20

31.05

31.05

21 778.83

21 779.28

21 778.51

21 778.83

3.10

3.09

3.09

3.09

21784.86

21 784.78

21 784.95

21 784.86

1.42

1.42

1.42

1.42
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for the isentropic velocity are from Ref. 17. We may see
that the differences among the distinct averages and their
temperature derivatives are less than 0.01% at any tem-
perature. We have checked that this result is also valid at
higher pressures. Due to the rounding of the velocity
caused by dispersion, these differences will even decrease
for real measurements (co&0).

The conclusion from this comparison is that in the
presence of inhomogeneity, the experimental velocity in
the audio and ultrasonic frequency ranges is, independent-
ly of the experimental method used, very accurately
represented by

t +aH
( u )p(t &co)= f up(t, cip)dt,

where we have rewritten Eq. (8) taking into account the
local functional form obtained in Sec. II B.

For measurements in the hypersonic range (to/2ir= 1

GHz), as for those carried out with light scattering tech-
niques, ' ' it is precisely the presence of a very important
velocity dispersion, as we shall see in Sec. IV, which
guarantees the suppression of all measurable gravity ef-
fects. Note also that in this type of experiment peiformed
in He liquid, the laser beam propagates horizontally.
Other gravity corrections affecting directly such a propa-
gation, as those analyzed by Canellzo in other experiments,
are also, with respect to first sound, negligible.

III. GRAVITY EFFECTS ON THE
THERMODVNAMIC (~=O}VEI.OCITV

A. Local thermodynamic velocity

In this section we shall write the expressions for the lo-
cal thermodynamic velocity in order to make the quanti-
tative evaluations of the gravity effects formulated in Eq.
(9). The study of this case (to=0) is interesting in that it
is, as was argued above, the upper limit of the gravity ef-
fects in real (co+0) measurements.

We begin with the basic expression for the isentropic
first-sound velocity '

(12b)

where we have used the notation E,'= (B—F/BP), . Substitu-
tion of Eqs. (11)and (12) into Eq. (10) gives

u = T,'S,' V,
' —— (S,')

V2

When applied to t= 0, we obtain

TA.
u ~ =

z TiSi. —Vi. — (Si ) (14)

for the velocity at the X line. The notation is
Ei —=E(t =0) and Ei„=—(BF/BP), 0. Equations (13}and
(14) are exact, on the same basis of Eq. (10). Equation
(13) for first sound is made more tractable upon the well-
known cylindric approximation, 22 which can be stated as
follows. Any magnitude can be expressed in the general

At this point, note the advantage of these manipula-
tions: the only t-dependent magnitude is Cp, which is a
very accurately measured quantity. However, there are
two functional current

representation
for the specific heat

at constant pressure ' the power law Cp, for which
Cpi is finite, and the logarithmic Cp representation, for
which Cpi is infinite. In any ease, from reference to ther-
modynamic data, '7 we find T/Cpi. , TjSi.((—Vi, , w»ch
allows us to obtain the simple relation

F(P,t}=Fi„(P,t)+Ed (P, t) .

The content of the cylindrical approximation is to assume
that for the entropy and volume, M and hV are indepen-
dent of P. This amounts to admitting S,'=Si, and
V,'= V~. With these assumptions along with the approxi-
mation V = Vi, Eq. (13}results in

1 1u(t)= 2 ui — +ui . (15)

=Pcs (10) o Ti,(Si)' 0, 1uk=uk+ 2 (uA)3 (16)

(1 la)

Cpy=
Cy

where Ks p (Bp/BP)s is the isentropic compressibility.
Next, we use the thermodynamic relations '

a VT
Cs —Cv=

ET

~here

Substitution of Eq. (16) into Eq. (15) gives

u(t)=A +ui,1 0

Cp t

(17)

(18)

where a= —p '(Bp/BT)p is the thermal compressibility,
Cp and Ci the specific heat at, respectively, constant
pressure and volume, and V the specific volume.

Application of directional derivatives and the Maxwell
relations yields

(12a)

with A —=Ti (Si ) (u i ) /2 Vi and u i being only functions
of pressure. The velocity ui is consequently the velocity
at t=O if 1/Cpi ——0, i.e., for the logarithmic Cp. The
difference between the A, velocities for the power-law and
logarithmic Cp, respectively, computed from Eq. (16) and
using thermodynamic data' is of the order of 20 cm/s,
nearly independent of pressure. In order to obtain the
pressure-dependent coefficients A and ui, two methods
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TABLE III. Values of first-sound velocity at the A, line assuming a logarithmic Cq and obtained

from Eq. (17) using three difference thermodynamic data sources (noted I, II, and III), also directly
from first-sound data.

P
(bar)

u~ (m/s)
From Eq. (17) using different data sources

p IIb III'
Direct first-
sound data

0.06
5.01
9.21

15.24
20.4
25.46

'References 17 and 27.
Reference 26.

'Reference 23.
Reference 8.

217.1
253.9
278.1

304.6
321.5
335.2

217.4
254.7
278.7
305.0
322.0
334.3

241.0
269.5
293.6
313.0
328.3

217.3
255.6
279.6
307.0
325.4
339.9

are available: from thermodynamic measurements and
from the fit of Eq. (18) [or an extended version of it with
an additional term linear in r valid for higher values of t
(Ref. 25)] to first-sound velocity data at low frequency
near the A, line. In this respect, we present in Table III a
numerical comparison it different pressures for ui ob-
tained from thermodynamics according to Eq. (17) and
from the fit to experimental velocity data. In the first
three columns the values of Vi, and Ti [see Eq. (17)] are
common and taken from Ref. 26. The two other magni-
tudes, namely Si and Vi, are taken from the original
measures of the corresponding authors, except for the
data of Kierstead. This last author did not measure Si,
so we have taken it from Ref. 17. However, we point out
that the important parameter in ui is Vi, TiSi being
about 40 times smaller. The velocity values of Carey
et al. (fourth column) are normahzed at P=0.06 bar to
the value 218.08 m/s at t = —40 pK, and in the corre-
sponding fitting a logarithmic Ci with parameters of Ref.
17 has been used. Note firstly from Table III that among
the values derived from thermodynamics, those of Okaji
and Watanabe are discordant: we believe them to be
somewhat undervalued. Secondly, the agreement between
the values of Ahlers or Kierstead and those of Carey
et al. at SVP worsen with increasing pressure. There is
no explanation for this progressive discrepancy. It is of
interest to point out that, although in any case the values
in Table III are globally in agreement to within 4.5%,
these differences can make up a much higher percentage
(even more than 100%) when calculating, for example, the
critical dispersion at t=0, where a precise background
velocity must be known.

The functional form of the velocity in Eq. (18) is valid
(its basis is the cylindrical approximation) in the tempera-
ture range —t & 5 & 10 K for He I and t & 10 K for
He II. We shall see later that gravity effects are well
within these temperature ranges, so that Eq. (18) will suf-
fice for all our purposes.

8. Average thermodynamic velocity (~=0)
in a nonhomogeneous sample

We review here the infiuence of gravity on the isentro-
pic velocity as detailed in Eq. (9). For C~, we shall most-

ly adopt the simplified logarithmic expression
Ci ———Acln

~
t/Ti

~
+Bc, with coefficient values taken

from Ref. 17 (nevertheless, the following results are in-
dependent of the detailed form adopted for Cz). The
average velocity (ic ) can then be calculated straightfor-
wardly according to Eq. (9). An example is shown in Fig.
2. The more relevant features of these calculations are as
follows.

(i) The temperature at which the velocity is minimum is
shifted by gravity from t;„=0 to t;„=—(1 5)aH. —
The correction 5 depends on the two possible representa-
tions of Ci. This might, in principle, allow one to
discriminate between the two representations, an impor-
tant problem of critical behavior near Ti still open. "
Unfortunately, we found the 5 correction too small to in-
duce observable effects: for the logarithmic Cp, 5=0.01
and for the power-law Ci, 5=0.02. Note also that,
through a, t;), has a weak pressure dependence, as can be
seen in Fig. 2.

(ii) The difference between (u ) and u is only appreci-

150—
E

50—
~ IVY

0t i i i i 1» i i i i ) i l i i i i 7
-10 -5 0 5 10

t (pK)

FIG. 2. Examples at various pressures of the gravity influ-
ence on the thermodynamic (co=0) first-sound velocity. The
dashed curves are the gravity-free velocity differences
u~(t, 0)—u~(0, 0), and the solid curves are the corresponding
gravity-affected velocity differences ( u )z(t, 0)—u~(0, 0).
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able in the range
~

ts
~

& 5 p, K, and has a sharp maximum
at t =0. This difference, i]],u, depends weakly on the
sample depth and on the Cp representation. Thus for
H=0.5 cm, oui(t =0) ranges from 66 cm/s at SVP to
100 cm/s at the highest pressures, and for H=2 cm the
variation over the same range of pressures is from 73 to
113 cm/s. These differences inake up less than 0.4% of
the total velocity, whatever the pressure or depth, but are
nevertheless well within the precision of both velocity and
temperature measurements. It must be also emphasized
that they are of the same order of magnitude as the criti-
cal dispersion predicted by critical dynamic theories. 9

It is worthwhile to remark that the above results cannot
be directly tested. The reason is that within the tempera-
ture range of gravitational effects there is also, even for
the lowest frequencies used (some few kHz), critical
dispersion, an account of which will be made in the fol-
lowing. Certainly, low-frequency experimental velocity
curves show a trend towards the above features, and this
fact was actually a main motivation for the pioneering
work of Ahlers on gravity effects.

IV. GRAVITY EFFECTS ON THE DISPERSIVE
VELOCITY (m+0)

A. Qualitative discussion

We analyze here to what extent the previous results on
gravity effects are modified in real measurements, mainly
due to the presence of dispersion. Unfortunately the in-
fluence of gravity in this case (o]&0) cannot be calculated
by the same direct procedure as for e]=0 because, due
precisely to dispersion, the local velocity is now unknown.
Therefore, we will proceed in the opposite way for co=0.
In particular, instead of using Eq. (9), we start with the
derivative version of it, i.e.,

d(u)p (t,co) = [up(t +aH, e]) up(t, a))j—,aH
(19)

as a first step to relating the unknown local velocity
up(t, co) to the measured velocity (u )p(t, co)

Before summarizing our numerical procedure, it is use-
ful to make some geometric and intuitive considerations
based on Eq. (19). Firstly, note that d(u)/dt is the
slope that governs the variation in u over a temperature
step of aH. In particular, the maximum fall in u for a
temperature increment of aH occurs where this derivative
is most negative, and it can be easily deduced from Eq.
(19) that for o]=0 this occurs at r = aH, a typical val—ue
being —24 cm/s]MK for H=2 cm and SVP. Surprisingly,
graphical or numerical calculations of the minimum
slopes d(u ) /dt for any nonzero frequencies show them
to be very much smaller in absolute magnitude than the
corresponding zero-frequency slopes. For the SVP and
H=2 cm case mentioned above, for instance, the value
obtained using the data of Ref. 7 is —0.5 cm/s]Mk, and
this difference by a factor of 50 between corresponding
slopes is quite systematic. In other words, the u curves
for even very low frequencies are some 50 times flatter
than the corresponding zero-frequency u curves. The
maximum difference between (u ) and u should therefore

be reduced by approximately the same factor, which in
view of the result for co=0 means that the maximum
value of (u ) —u should range from about 1 cm/s at SVP
to about 2 cm/s at the highest pressures. Of course, this
difference will fall even lower at higher frequencies.

The same kind of qualitative reasoning can be used to
analyze the other main gravity effect, the temperature
shift of the velocity minimum: All experimental (u)
curves undergo a minimum near the k line at t ~0, pro-
gressively less sharp as frequency increases. This means
that (u ) curves can be approximated, over a temperature
interval of about aH (less than 15 ]MK except for atypical
sample heights) around their minima by a parabolic pro-
file, so much more accurately as frequency grows. Now
then, if (u ) is a parabole (it suffices to be over a t inter-
val of aH around its minimum) and regardless of its
opening, it is easily derived from Eq. (19) that u is also a
parabole whose minimum is placed aH/2 temperature
units to the right of that of (u ), i.e., nearer the )], line.
The partial conclusion is consequently that, whereas the
gravity-induced temperature shift of the velocity
minimum is aH K at o]=0, this value should tend to
aH/2 at higher frequencies.

B. Quantitative treatment

In order to obtain quantitatively u from (u ), we have
implemented a numerical procedure based on the follow-
ing points. We have used polynomials of low degree (less
than 5) to flt the experimental (u ) curves over tempera-
ture intervals of about 3aH. The resulting deviation is of
the order of the experimental velocity resolution (-0.2
cm/s). From Eq. (19), as can be easily deduced, u will be
another polynomial of the same degree, the coefficients of
the u polynomial b lng simply and un~blguously related
to those of the (u) polynomial. Let us illustrate these
points with an example. Writing for (u ) a polynomial of
degree 5, for instance, in the form (u ) =ao+a]t
+ait +a3t +a4t +a5t, we find that u =bo+b]r
+b2t +b3t +b4t +b5t, where

b, =a, ,

b4 o4 —,a 5 (aH)——, —15

b&
——a3 2a4(aH)+ —,

' a5(aH)—

bg —op g Q3(aH)+a4(aH)

b ] —a ] —a 2 (aH ) + , a 3 (aH ) —,a s ( a—H)—
bo ——ao ——,

' a] + ,' a2(aH) ,0 a—4(aH)——
satisfies Eq. (19). The difference in the values of both po
lynomials is a measure of the gravity effect in the con
cerned temperature region. We proceed then in that way,
covering successive temperature intervals until a systemat-
ic evaluation of the local velocity (affected by dispersion,
but without rounding gravity) is achieved. The main
quantitative results, obtained applying this method to the
existing measurements, and which confirm the qualitative
conclusions mentioned in Sec. IVA, are as follows: (i)
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The difference between the temperatures at which the
measured and local velocities are minima changes from
almost aH at co =0 to aII/2 at a few tens of kHz, whatev-
er the height of the sample and the pressure. (ii) Contrary
to a common assumption, the difference between the
measured and local velocities at t =0, which is of the or-
der of 100 cm/s at co =0 for a sample of a few centimeters
in height, drops sharply to below 10 cm/s in real measure-
ments, even at frequencies of no more than a few kHz and
whatever the (reasonable} depth of the sample or the
pressure. An example of these temperature-shift and
velocity-rounding features at t =0 is shown in Figs. 3(a)
and 3(b}, respectively, where the pronounced decrease of
both effects as a function of frequency can be followed.
The numerical results, noted by solid circles and triangles,
have been processed from the data of Ref. 7. The solid
lines are a guide for the eye. Both vertical axes are nor-
malized to the corresponding thermodynamic limits
(marked by arrows) with values b,t;„( 0)= 26 pK and
oui(0)=73 cm/s, computed according to Sec. IV and
with the necessary parameters from Ref. 17. To further
enlighten the finite-frequency influence on gravity effects,
refer to Figs. 4(a} and 4(b). This figure shows a compar-
ison between (u) —u at a)=0 and co/2m=6. 6 kHz,
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FIG. 4. Gravity effects on first-sound velocity as a function
of the reduced temperature in a sample of 0.5 cm in height and
at P=15.24 bar. t,'a) In the thermodynamic limit (co=0). (b) In
a real measurement, for a very low-frequency case (using a first
resonant mode, ~/2m =6.6 kHz). This last curve is obtained by
processing as indicated in the text, the data of Ref. 8. Note the
different velocity scale in the two figures.
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respectively, as a function of temperature. To obtain the
curve in (b) following the procedure outlined above, the
information from Ref. 8 was used.
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FIG. 3. A typical example showing the dramatic inAuence of
dispersion on the gravity effects. (a) Temperature shift of the
velocity minimum ht;„—:t;„(H}—t;„(0). (b) Absolute value
of the measured velocity minus the local thermodynamic veloci-
ty, both at Ti, oui, = ( u )q —ui. Both. curves in (a) and (b) are
normalized to their corresponding thermodynamic (~=0) limit.

V. CONCLUSIONS: AN ILLUSTRATIVE EXAMPLE

In this paper we have presented an analysis of the local
and nonlocal gravity effects on the first-sound velocity
near Ti (P) in liquid helium. Also, a numerical procedure
to calculate quantitatively the gravity rounding effects on
first-sound velocity in the presence of critical dispersion
has been proposed. This method has been used to
separate, for the first time, gravity and dispersion effects
in real measurements. To illustrate the interest and capa-
bility of such a procedure, let us apply it to estimate the
gravity corrections in one of the experimental situations
mentioned in the Introduction of this paper: the compar-
ison between the theoretical critical first-sound dispersion,
D(t,~), and the experiments. As a consequence of very
basic assumptions, ' all the existing critical dynamic
theories do not calculate the local velocity u(t, co), but
rather D(t, co},defined by
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per. The solid line represents the dispersion predicted by
dynamic scaling theories.

D = (u (t co) }~—( u (t 0)} . (20)

An example of such a comparison is presented in Fig. 5.
The solid line is D (t,co) obtained from the dynamic scal-

D(t, t0) =—u (t, t0) —uz(T, O),

where u~ is a local background or noncritical velocity. In
contrast, from experiments one obtains

u =—(u )M ——(u (t,to) )~,
i.e., the absolute velocity affected by dispersion and also
by the gravity inhomogeneity.

To obtain the experimental dispersion one must first es-
timate ua. In general s'0 ua may easily be approximated
by matching the functional form of the local (zero-
frequency) velocity u (t,O) to the experimental ( u }st
curves far away from T&, in a region where (u }st is not
affected by critical dispersion. The second step will be to
introduce the gravity corrections. Until now, s' this was
done by assuming that these corrections for (u )st would
be the same as for u(t, O), so that the "experimental"
dispersion D to be compared with the theoretical one is

ing theory of Ferrell and Bhattacharjee. ' The solid tri-
angles are D(t, co) obtained by applying Eq. (20) to the
data of Ref. 8. The strong disagreement observed must
not be a surprise for us, because we have clearly showed
here that the two rounding mechanisms affecting (u )st,
namely, the dispersion and the gravity inhomogeneity, are
not linearly additives. If the procedure indicated in Sec.
IV is used to find u (t,co) from the experimental
(u(t, to})st curves, and then one subtracts ua(t, O) from
these results, one finally obtains the solid circles, which
are in much better agreement with the dynamic scaling re-
sults. A detailed account of these applications will be
published elsewhere. s

Note finally, that mainly due to the very accurate
theoretical and experimental results available now, the
rounding of the transition produced by nonintrinsic ef-
fects is one of the central problems encountered at the
present time in the study of critical phenomena. As
remarked in the Introduction, these rounding effects
occur in all practical experiments and are produced by im-
purities, finite-sample effects, nonequilibrium behavior, or
inhomogeneities. In general, it is very difficult to separate
or to estimate the magnitude of these effects, mainly in
the case of time-dependent or transport critical parame-
ters, for which intrinsic rounding mechanisms may also be
present. In fact, there exist very few quantitative studies
of these nonintrinsic rounding effects in any system. '

Therefore, the systematic results presented here for first
sound near T~ may provide some grounds to analyze oth-
er rounding effects in other transitions. In particular, the
numerical procedure proposed here to separate the intrin-
sic (associated with dispersion} and the gravity rounding
effects may easily be extended to analyze quantitatively
sound-wave propagation near other so:ond-order phase
transitions.
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