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Spectral dimension of a fractal structure with long-range interactions
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By an exact renormalization method three different dynamical regimes are found for a self-

similar structure with long-range interactions. Unlike in translation invariant systems, a transition
from nonuniversal to universal anomalous spectral behavior occurs as the range of the forces in-

creases beyond a certain threshold. The model sheds light on possible qualitative mechanisms
behind recent experimental results for the density of vibrational states of hemoproteins. Problems
of ultradiffusion in hierarchical structures can be solved within similar mathematical frameworks.

Harmonic analysis of structures with a dilation symme-
try, or fractals, ' as well as the related diffusion problems,
are of much interest in connection with several issues rang-
ing from electrical conduction in linear polymers2 to
anomalous temperature dependence of ESR spin lattice re-
laxation times of iron in some proteins.

As a consequence of self-similarity, in a fractal the den-
sity of vibrational states p(ca) at small frequency ca scales
like to4 '. d is the spectral dimensionality, which differs
both from d, the dimension of the embedding Euchdean
space, and from d, the "geometrical*' fractal dimension of
the structure. 4 5

A simple relation, d 2d/d„, connects d with d„, the di-
mension associated with a random walk on the fractal.
Moreover, it has been conjectured that d directly deter-
mines the scaling behavior of various relevant random-
walk properties, like the range, or the probability Po of re-
turn to the original site after time t. The latter is expected
to behave as Po(t ) t "I2 a-s t

Up to now, spectral properties have been studied both on
random fractals, such as percolation clusters, and on
deterministic fractals, such as Sierpinski gaskets.

In both cases only short-range (harmonic) forces, or
hopping probabilities, were considered,

In this article, for the first time, we present and analyze
by an exact renormaiization method a fractal model allow-
ing for long-range interactions.

Besides filling an obvious gap in the literature on the
field, the present investigation was directly motivated by
problems which arose recently in connection with experi-
mental determinations of the fracton density of states in
hemo and other proteins in solution. '

To introduce our model, let us consider a triadic Koch
curve in the plane like the one sketched in Fig. l. Each
point on the curve is free to vibrate perpendicular to the
plane and is connected by spring forces (elastic constant K,
continuous bonds) to its nearest neighbors. In addition to

these, there are other elastic forces of longer range (dotted
bonds, constants K, , K2, . . .), acting according to the
self-similar scheme indicated in the figure.

Such a structure clearly has d ln4/ln3, since the num-
ber of points increases by a factor of 4 whenever the linear
size is multiplied by 3.

Putting 1 Mto2/K and a,. K,. /K, M being the mass of
the points, we get the following set of equations:

Xx, -gp, , (x, —x, )

for the displacements x, , at the various sites, appropriate
to a vibrational mode jxe' 'k The sum over jextends to all
sites interacting directly with site i, and p," is equal to 1 or
tt, when the point j is the nearest neighbor of i or is con-
nected to it by a coupling K, respectively. The low-
frequency scaling properties of the above eigenmodes can
be studied by a relatively simple renormalization-group
procedure. Referring to Fig. 1, we eliminate from the sys-
tem (1) all variables at the vertices of the elementary tri-
angles having the coupling K, associated with one of their
sides. With this dynamical decimation the system is

FIG. 1. Sketch of the fractal structure allowing for interac-
tions at all length scales. The continuous curve represents the
backbone.
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1+a,
I

an 4 1+2 an+i (3)

Equations (2) and (3) allow the discussion of the scaling
of the eigenfrequencies according to a basic relation
which, far our model, becomes

~0.j) -I'-~0.j) (4)

in the limit of an infinite system. Thus d 21/d„can be
determined by discussing the fixed paints ja'j of (3). An
interesting feature of (3) is that it shows a whole line of
physically acceptable finite fixed points, characterized by
the parameter tr', in the range 0«a', & ~. Indeed it turns
out that

'n-1
1+2a)

a„* a&' 4(1+a', )

is a fixed point of Eq. (3). The corresponding d follows
from (2) and (4), and of course depends on a*, . Taking
into account that I 3, we get

1+ai
d 1+ ln

41n2 I+2tr',

As a', varies from 0 to + oo, d varies from 1 to —', .
One can easily verify that initial interaction patterns fuj,

such that lim„(a„+i/a„) C with 4 «C & —,', are all
attracted by the fixed point (S) with a', (1-4C)/
(4C —2). These (aj's, consistent with the fractal geom-
etry, are long-range interactions with power-law decay at
large distance R, i.e., a(R )-R'" ",as R

Long-range forces radically change the spectral proper-
ties and lead to nonuniversal dynamical critical behavior.
Similar effects are also obtained when such forces act on a
d-dimensional regular structure. However, the effect of
long-range interactions cannot be taken into account by
simply interchanging the roles of d and d in the two cases. 9

As we show below, long-range forces combined with dila-
tion symmetry determine a qualitatively new dynamical
regime.

Initial interactions for which C» —,, i.e., forces with rel-
atively long range, are attracted by a "line" of fixed points
at infinity (a,.+, /a, . C, a*, oo), all having the same
d —', on the basis of Eq. (6). This line continues the one
of finite fixed points given by Eq. (5). By increasing
the range of the forces, d has a finite, anomalous satura-
tion value and remains constant, and thus universal, for a
wide class of long-range interactions. This new regime is
the most remarkable difference with respect to trans-

spatially rescaled by a factor I 3. The displacements at
the "surviving" points (which form a structure of the same
type as the original one, after a proper rescaling), can be
seen to obey a system of the form (I), with new, effective
reduced square frequency Z and couplings fa'j.

In the ro 0 (L 0) limit these become simply

1+a)
iL' 16

1+2ai

lation-invariant cases, and should always be expected
when long-range forces act consistently with a dilation

symmetry, as in our model.
A third regime is finally obtained when C & —,', i.e., for

finite range or rapidly enough decaying forces. In this
case the fixed point is always given by a,'. 0. We thus
learn, in particular, that all situations, in which nearest-
neighbor bridges are not extending to all scales (finite
range), are finally mapped into the dynamics of a nearest-
neighbor model, with the consequent result d 1 (see Fig.
2). Of course, the crossover to this situation will be the
slower, the longer the (finite) range of the bridges.

Regarding the problem of continuous-time random-walk
diffusion on our structure, we remark that the above re-
normalization approach actually allows a direct check of
the scaling of Po(r ), the quantity associated with renewal
theory on the fractal. ' When dealing with diffusion, a
system like (1) is satisfied by the Laplace transform P,(e).
(replacing x,.) of the probability that the walker is at site i
at time r, after starting at site 0 at t Q. The only differ-
ence is that the equation for Po(co) has a 1 added on the
right-hand side to satisfy the initial condition. In this case
iL r0 and the various a,.'s are hopping rates. The same re-
normalization procedure outlined above applies again,
and, if site 0 survives decimation, we obtain the following
relation for tu 0:

2a)+1P,(I "ro,ja'j) - ' P,(a),[uj), (7)
4 I+ai

where d„' 2d/d', with d' given by Eq. (6), with ai replac-
ing a*, .

The fixed-point analysis above leads to the conclusion
that indeed Po(co)-rod» i, with d-as obtained above.
This is in agreement with a general conjecture by Rammal
and Toulouse, s which was tested by simulation on Sier-
pinski gaskets. " Using our approach, a formula analogous
to (7), and thus a direct analytic test of the scaling
behavior of Po, can be obtained in the case treated numeri-
cally by the authors of Ref. 11.

On the basis of Eq. (7) and of its analog for the generic
site i, it is also possible to establish directly the scaling
behavior for the average square distance traveled by the

particle on the fractal, R -r, as r
2/d.

In a spirit close to that of Ref. 12, one can consider a
resistor problem associated with our diffusion model. At

FIG. 2. Qualtitative plot of d vs C.
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each bond, characterized by a hopping rate u, , we associ-
ate a dimensionless resistance r, /ro. 1/a, , i «1. The
resistance of the structure is expected to scale like L~, if L
is the spatial distance between the points considered. We
could indeed compute g, which is also nonuniversal and
turns out to satisfy the Einstein relation g d —d.

The simple model presented here may shed some light
on the possible mechanisms leading to the relatively high
values of d (d 1.3-1.7) measured in some hemoproteins
and ferrodoxin. s It has been suggested that such values of
tf should be explained on the basis of crosslinking bonds
(e.g., 0 bridges) between different segments of the fractal
folded-chain backbone of the protein. '3 While there is
general agreement on the importance of such bonds, there
is considerable controversy about the specific mechanism
by which they could affect d. '4 ts In particular, recent nu-
merical simulations of diffusion on self-avoiding chains
clearly indicate that d stays equal to 1, the value without
crosslinking bridges, if these are assumed to be short
range. '7 '9 In our model, the Koch triadic could represent
very schematically the backbone of a protein. The elastic
couplings K,. could simulate crosslinks between different
parts of the backbone. The behavior discussed above sug-
gests that a definite deviation of d from 1, strictly speak-
ing, can be produced only by bridges of infinite range. In
proteins, long or infinite range forces can be provided by
salt bridges (i.e., weakly screened Coulomb farces) or by
effects of elastic distortion of the surrounding frozen sol-
vent. Qn the other hand, on the scales actually tested by
the experiments, the observed d*s could be preasymptotic
and thus indistinguishable from those which would result
from crossovers such as those taking place in our model for
long but finite range jaJ's.

It would be tempting to think of the d's measured for
proteins as manifestations of saturation phenomena such
as occur in our model for sufficiently long-range forces.
Only in this way the d values could show some degree of
universality. We just mention, as a curiosity, that ap-
propriate d 3 generalizations of this model (e.g., with
tetrahedra replacing the triangles in Fig. 1), with d close
to the actual protein values, 's yield saturation d's in the
appropriate experimental range. 3'

The nonuniversal scaling behaviors found above can also
be seen as a consequence of the infinite hierarchy of time
scales present in the model. Considering diffusion and as-
suming a thermal activation mechanism across energy bar-
riers, we can think of C as a function of temperature, e.g.,
C-exp( —const/T). The above results thus lead to a
temperature dependence of the diffusive exponents in the
intermediate region.

Behaviors of the same type have been recently studied
with approximate methods by Huberman and Kerszbergio
on a particular (nonfractal) model of diffusion with a
hierarchy of energy barrier scales, and are expected to be
relevant for a variety of physical situations, ranging from
molecular diffusion on complex macromolecules, 2' to
spin-glass systems2223 or computing structures. 24 A simi-
lar, but more simple problem of ultradiffusion has been
considered more recently by Ogielski and Stein 5 and by
Paladin, Mezard, and de Dominicis. i6 The main differ-
ence between the present model and those mentioned
above lies in the fact that in the former the hierarchy of
time scales coexists with a nontrivial fractal structure, and
long-range forces are allowed. The two types of problems
have many similarities also from a formal point of view:
This should not surprise us, if we think that also for our
model an ultrametric distance can be easily defined. 27

In this respect, it is worth remarking that the methods of
the present article can be properly adapted to solve2s the
model of Ref. 20, providing an exact confirmation of some
approximate predictions produced there, 20 but also further
results, 2s 29 which could not be derived with extensive per-
turbative and numerical investigation of the same model. M

In particular, a peculiar dynamical regime, very similar to
the one in our model for C» 2, could be exactly estab-
lished and understood. 29
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