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The pseudopotential-total-energy method is used to calculate the phonon frequency, the electron
density of states at the Fermi level, and the electron-phonon coupling constant for the group-1V ele-
ments in the metallic B-Sn structure. For these elements, the normal-state behavior is similar to that
found in other simple and transition metals; the phonon frequencies, force constants, and electron-
phonon matrix elements increase with increasing average electron density. With use of a semiempir-
ical treatment of the electron-phonon coupling calculated for one phonon wave vector, the supercon-
ducting transition temperatures at normal and high pressures are examined. The superconducting
transition temperature decreases while the magnitude of its pressure coefficient increases in going to
heavier elements. This behavior is in good agreement with experiment. For Si and Ge, the super-
conducting behavior is similar to that of white tin. Because of competition and compensation be-
tween the cutoff in the phonon spectrum and the electron-phonon matrix element, the electron-
phonon coupling A’s are similar for the three elements. Hence, the Debye temperature, which is the
prefactor of the McMillan equation, dominates in determining the superconducting critical tempera-
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tures.

I. INTRODUCTION

High-pressure metallic phases of Si and Ge have at-
tracted considerable attention since the transition from co-
valent to metallic bonding occurs at accessible pressures.
Unlike carbon, Si, Ge, and Sn crystallize in the tetragonal
B-Sn structure when they are first metallized. For Si and
Ge, this transition occurs at pressures around 100 kbar
(Ref. 1) while the B form (white tin) of Sn is stable at nor-
mal pressures and temperatures.2 In contrast, for carbon,
theoretical calculations indicate that crystal structures>*
such as body-centered cubic with 8 atoms per unit cell
(BC-8) and simple cubic are more stable than the B-Sn
structure at high pressures.

The structural tendency of the group-IV elements are
closely related to the details of their atomic properties
which play an important role in determining the nature of
the crystal bonding. At atmospheric pressures, Si, Ge,
and a-Sn have strong covalent bonds. At high pressures
in the metallic 8-Sn phase, the covalent bonds coexist
with metallic bonding and these systems become supercon-
ducting.’ The superconducting transition temperature 7T,
is highest for Si and decreases in going to Sn in this series.
Usually, superconductors having high T, are transition
metals or transition-metal compounds with a high density
of states at the Fermi energy arising from d electrons.
For covalent systems, it was sugg&ete:d6 that electron-
phonon interactions can be enhanced by local-field effects
resulting from covalent bonds and soft phonon modes. In
fact, the T,’s found in the group-IV materials are reason-
ably high compared to other simple metals, and the recent
discovery’ of superconductivity at 8.2 K in simple hexag-
onal Si has motivated a search for higher T,’s in high-

34

pressure metallic phases of strongly covalent materials.
Because Sn is stable in the B-Sn structure at normal
pressures, more experimental data for the phonon spec-
trum®® and the heat capacity'®~!? are available compared
to Si and Ge. Hence, there have been several calcula-
tions!'*~ !¢ to compute electron-phonon couplings in this
element. For Si and Ge, a lack of experimental data for
the phonon spectra makes it difficult to use previous
methods which involve a calculation of the band mass, a
force-constant model for phonons, and an electron-
phonon calculation based on the rigid-ion'” or the rigid-
muffin-tin'® approximations. Recently, a new method!’
has been proposed to calculate wave-vector-dependent
electron-phonon interactions in metals. This approach
uses a self-consistent change in potentials caused by a
phonon distortion. Applications of this method to Si
(Refs. 7 and 20) and Al (Ref. 19) have been successful.
Here we extend the calculations for the electron-phonon
interactions to the group-IV elements Ge and Sn and com-
pare their results for normal and superconducting states
with the previous calculations for Si.””?° To calculate the
phonon frequency, the density of state at the Fermi level,
and the electron-phonon coupling, we use an ab initio
pseudopotential-total-energy method.?! For the calcula-
tions of the phonon frequencies and electron-phonon cou-
plings, the phonon wave vector is chosen along the [001]
direction. Because of computational difficulties in using
supercells, we limit the wave vector to the edge of the -
Sn Brillouin zone. Based on the computed electron-
phonon couplings and scaling them by the constant factor
obtained from the measured superconducting critical tem-
perature for Sn at normal pressures, the superconducting
critical temperatures are estimated and their pressure
dependences are calculated by varying the size of the unit
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cell. For different elements in the same structure, phonon
frequencies, electron-phonon matrix elements, and
electron-phonon couplings are compared as a function of
the average electron density. Furthermore, the valence
wave functions are decomposed into angular-momentum
states to compare physical properties of the group-IV ele-
ments.

Section II describes the theoretical approach and
discusses the accuracy of the calculation. In Sec. III, the
results of the calculations are presented and discussed.
Conclusions are given in Sec. IV.

II. THEORETICAL METHOD

The present calculations are based on the ab initio
pseudopotenital-total-energy approach.?! The structural,
electronic, and vibrational properties are calculated self-
consistently using only information about atoms, i.e., the
atomic number and atomic mass. The exchange-
correlation potentials are approximated using the Wigner
interpolation formula.?? Angular momentum dependent
pseudopotentials are generated from the scheme proposed
by Hamman, Schliiter, and Chiang.> For Si and Ge, the
potentials were tested previously and found to be success-
ful in predicting the structural and vibrational proper-
ties."2* The pseudopotentials used for Sn include a partial
core correction,”® and they are able to reproduce the
ground-state properties. The computed equilibrium lat-
tice constant of 5.80 A and bulk modulus of 628 kbar, are
in reasonable agreement with the experimentally measured
values of 5.812 A (Ref. 11) and 579 kbar (Ref. 26) at 4.2
K. Relativistic and spin-orbit effects are not included
here since the structural properties change slightly with
these modifications.

The superconducting transition temperature T, is es-
timated using the McMillan equation.* The electron-
phonon interaction parameter A in this equation is the
average of the coupling A, for a phonon of wave vector q
and phonon mode v over the entire Brillouin zone (BZ),

__1 3
=0 f;kq,d q, (1)

where Qg7 is the volume of the BZ. The wave-vector-
dependent electron-phonon coupling A,, is proportional to
the phonon linewidth®” y,,

Yaqv

Agy=—o, (2)
¥ aN(Ep)iwy,

where N(Ep) is the density of states (DOS) per atom and
per spin at the Fermi level, Er, and @, is the phonon fre-
quency for wave vector q and branch v. The calculations
of the electron-phonon coupling A4, are based on the
method described in Refs. 19 and 20. This approach goes
beyond the rigid-ion or rigid-muffin-tin approximations,
and the crystal potentials are fully relaxed and calculated
self-consistently. The coupling A4, is related to the
Fermi-surface average of the electron-phonon matrix ele-
ment'’ g,

({|g(nk,n'k’,qv) IZ))

Aqu=2N(Er) o,

(3)
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where (( |g|?)) represents a Fermi-surface average of g.
In a crystal with several ions per unit cell, the electron-
phonon matrix element is defined by

#Q 172
BZ
glnk,n'k,qn) =3 | = | 8(k—k'—q)
T | 2M g,
X<¢2k ?:;v 8R ¢nk> (4)

where M, is the atomic mass of the 7-type atom in the
unit cell, €g, is the polarization vector, and P2, and Y2
are the electron Bloch wave functions for states k and k'’
in bands n and n’', respectively, for the undistorted crystal
lattice. For the B-Sn structure considered here, all the
atoms are the same type and M,=M. The change of the
potential caused by a phonon distortion is replaced by the
finite difference between the self-consistent potentials of
the distorted and undistorted crystals,

Af SV qu - VO

qv - ’
T SR Ugy

where Vg, and ¥V, are the distorted and undistorted po-
tentials, respectively. The average of the square of the
frozen-phonon displacements per unit cell is defined by

(5)

a; '——Zu,smz[q (R, +R,)], (6)

where unit cells are indexed by a, N is the total number of
unit cells, and the u,’s for the normal modes are

v— (—1)"u for acoustic modes 7)
" |u for optic modes .

The frozen-phonon approximation requires supercells
to calculate the phonon frequency and the finite differ-
ence of the potentials. For phonon displacements given
by Eq. (6), the force constant g, is obtained from the
difference of the total energies

2[Er(u£0)—Er(u= O)]
v= Nil av

(8)

The phonon frequency wg, is calculated from the force
constant using

Wqy=Kq,/M)'/* . ©

By choosing the wave vector q commensurate with the
lattice such as nq=G, where n is an integer and G is a
reciprocal-lattice vector, a supercell for the phonon wave
vector q becomes n times larger. Thus, the electron state
k' +q is folded back into k and then the & function in Eq.
(4) is eliminated.

In the present calculations, we choose the wave vector q
to be 27(0,0,1)/c. Since the supercell calculations of A,
and g, for q inside the BZ require considerable comput-
ing time and memory capacity, we are limited to only one
wave vector with n=2. Hence, only a limited knowledge
of Aq, over the BZ is obtained and we cannot accurately
determine the average A in Eq. (1).

Within the Debye model, wg, is proportional to g. Al-
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though the phonon linewidth 7, in Eq. (2) is affected”’
by the geometry of the Fermi surface, for small g it de-
pends linearly on wg, for longitudinal phonons screened
by a jellium."” Hence, the parameter A,, is a decreasing
function of ¢ with Aqv~q_1, and the value of A4, at the
Debye wave vector gp is usually smaller than the average
A. To make contact with experiment, A, is multiplied by
a scaling factor to produce the measured superconducting
transition temperature for Sn (Ref. 5) at normal pressures
and then the same scaling factor is used for Si, Ge, and Sn
at high pressures. One justification for this approxima-
tion is that A is dominated by couplings at the BZ edges
because of the g2 weight in the spherical approximation
of Eq. (1). We note that the same structure is involved in
all three materials and their normal and superconducting
properties behave in a similar way.

A uniform grid of 75 k points in the irreducible BZ is
used for the summation over the BZ of the supercells con-
structed for evaluating the longitudinal and transverse
modes at 27(0,0,1)/c. The axial ratio c/a is optimized
using energy minimization. The Fermi-surface integrals
in Eq. (3) are calculated with use of a Gaussian broaden-
ing of the 8 functions to ensure good convergence.

III. RESULTS AND DISCUSSIONS

The electronic and vibrational properties, and the
electron-phonon interactions are compared in Table I for
the group-IV elements Si, Ge, and Sn with the same 8-Sn
structure. For Si and Ge, the calculated pressures of 110
and 100 kbar, respectively, are used for the 8-Sn structure.
Although the atomic mass and lattice constant increase in
going from Si to Sn, for all three elements the axial ratio
¢ /a lies around 0.55. The density of states at the Fermi
level N(EF) is calculated using the tetrahedron method;®
for Sn it is 2.85 states/Ry per atom per spin and is the
highest among the elements considered here. This com-
puted value per atom per spin is in good agreement with
the Heine-Animalu model pseudopotential calculation'’ of
2.88 states/Ry and is slightly smaller than another calcu-
lated result® of 3.1 states/Ry using a relativistic
augmented-plane-wave method. From the measured
specific-heat coefficient'® y=1.75 mJ/molK?, we can
derive the value of N(Ep); the electron-phonon coupling
A=0.72 measured from the tunneling data'® produces
N(Er)=2.94 states/Ry while the McMillan electron-
phonon coupling!* A =0.6 gives N(Er)=3.15 states/Ry.

The calculated phonon frequencies for Sn are compared
with experimental measurements.>® The longitudinal op-
tic and acoustic (LOA) and transverse-acoustic (TA)
modes have relatively larger errors compared to the
transverse-optic (TO) mode. This discrepancy is expected
for two reasons. Since the frequencies for the LOA and
TA modes are small, they have relatively larger calcula-
tion errors; these are less than a few percent for semicon-
ductors and insulators while for metals they are within
10% (Ref. 30). Also, the phonon frequencies for S-Sn
vary rapidly with temperature since the temperature in-
duces the structural phase transition.*"3? Thus a direct
comparison of the frequencies calculated at zero tempera-
ture with experiment at higher temperatures should intro-
duce differences. However, the overall agreement of the
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phonon frequencies for Sn with experiment is reasonably
good, and this suggests that reasonable accuracy can be
expected for Si and Ge where experimental data are not
available. The Debye temperature ®p for Sn with the B-
Sn structure is reported to be 195 K (Ref. 10) and this
value is close to the transverse-optic (TO) frequency 208
K. By using the maximum TO phonon frequency as the
cutoff in the phonon spectrum, we estimate the Debye

TABLE 1. Comparisons of the structural and vibrational
properties, and the electron-phonon interactions at
q=2m(0,0,1)/c for Si, Ge, and Sn. The symbols a and B denote
the cubic-diamond and white-tin structures, respectively. Re-
sults for Si are from Ref. 7. The N(EF) is in units of states/Ry
per atom and per spin. Ionic masses are 28.086, 72.59 and
118.69 for Si, Ge, and Sn, respectively. See the text for the cal-
culations of T.. The T,’s are measured at pressures of 120 and
115 kbar for Si and Ge, respectively. For Sn, normal pressures
are used.

Si Ge Sn
a® (a.u.) 8.8930 9.272 10.9534
(¢ /a)™*° 0.546 0.552 0.547
P (kbar) 110 100 0
[N(Ep)]=* 2.42 2.17 2.85
TSP (°C) 1430 958 232
5™ (K) 645(a)® 374(a)® 220(a)
195(8)¢
03 (10" rad/sec)
LOA 3.03 1.77 1.03
TA 2.60 1.36 0.74
TO 8.02 4.49 2.73
0P (10%rad/sec)
LOA 0.85 (110 K)¢
TA 0.53 (110 K)¢
TO 2.63 (110 K)*
2.69 (3 K)f
Kf,‘i,lc (eV/a.u.?)
LOA 0.756 0.667 0.368
TA 0.550 0.391 0.192
TO 5.280 4.277 2.586
yae (10 sec™!)
LOA 2.00 0.70 0.37
TA 1.00 0.20 0.11
TO 20.8 5.90 3.20
A
LOA 0.06 0.07 0.08
TA 0.04 0.03 0.05
TO 0.09 0.09 0.10
At 0.38 0.38 0.46
TS (K) 6.53 4.03 3.72
TP (K) 6.38 5.358 3.728
6.7

*Reference 35.
bReference 33.
‘Reference 34.
9Reference 10.

‘Reference 8.
fReference 16.
8Reference 5.
bReference 7.
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temperatures for Si and Ge to be 613 and 343 K, respec-
tively.

Compared to the cubic diamond phase, the Deybe tem-
peratures for the B-Sn structures are slightly lower. The
softness of the 8-Sn phonon modes is particularly impor-
tant for the grey (cubic diamond) to white-tin (8-Sn) tran-
sition of Sn. This transition is induced in Sn by increas-
ing the temperature; however, for Si and Ge, pressure
causes the transition. Since the pressure at the transition
is zero in the case of Sn, the presence of soft phonon
modes in the white tin phase yields a large entropy contri-
bution to the free energy with increasing temperature and
stabilizes this phase at 286 K (see Refs. 31 and 32). Be-
cause the phonon frequencies decrease in going from Si to
Sn, the Debye temperature is also smaller as expected
from the heavier atomic mass. In addition, the force con-
stants increase in going from Sn to Si. This is consistent
with the higher melting point T,, for the lighter elements
as shown in Table I. For Sn, room temperature is about
60% of the melting temperature. Because of the small
bonding distance for the lighter elements, the average
electronic density is higher implying more attractive po-
tentials and stronger bonds. Hence, both the Debye tem-
perature and the electron-phonon matrix elements are
likely to increase with increasing electron density.

The electron-phonon couplings Ay’s are compared for
Si, Ge, and Sn in Table I. At the same wave vector q, the
value of A is larger for Sn while Si and Ge have a similar
value. As discussed earlier, to estimate an average A from
the calculated A, we use a scaling factor of 1.28 for Sn.
This reproduces the measured superconducting transition
temperature of 3.72 K (Ref. 5) at normal pressures when
the McMillan equation'* is used with the Debye tempera-
ture approximated by the TO phonon frequency and the
Coulomb interaction parameter u*=0.1 obtained from
the tunneling data.!® With the same scaling factor for A,
the calculated T,.’s for Si and Ge are 6.53 and 4.03 K,
respectively, and are reasonably close to the measured
values of 6.3 to 6.7 K for Si and 5.35 K for Ge. In this
case, we scale the coupling u* by the renormalized density
of states N(Er)/[1+ N(Ep)] where N(Eg) is the DOS per
eV per atom per spin at the Fermi level. This relation of
u1* to the DOS at the Fermi level was empirically derived
by Benneman and Garland®® and was successful in transi-
tion metals. The reliable first principle calculation of yp*
is difficult, and the variations in the DOS at the Fermi
level may give different values for u* of elements con-
sidered here. If u*=0.1 is used for all elements, we get
T, of 5.52 and 3.09 K for Si and Ge, respectively. Thus,
the value of T is less sensitive to the variation of u* since
A and T, are not too small. Our estimate of T, for Ge is
smaller than the measured value. We expect this error
arises from the lack of information on the electron-
phonon coupling since one-phonon wave vector is chosen.
Because T, is considerably sensitive to A, the values for
T, are reasonably estimated for elements where experi-
mental inputs are absent.

The pressure dependence of A is studied by varying the
crystal volume, and the corresponding pressure is calcu-
lated by using the Murnaghan equation of state.’’ For Si,
A does not change for a small range of pressures’ where
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the B-Sn structure is stable as shown in Table II. Experi-
ments>’ also reported that the variation of 7, with pres-
sure is almost constant or has a very small negative slope.
However, for the heavier elements, the pressure coefficient
of T, was found to decrease and to be —210+50 for Ge
and —495 mK/GPa for Sn’, respectively. In Table II, the
pressure dependences of the phonon frequency, the DOS
at the Fermi level, A,,, and A, for Ge and Sn are also list-
ed for several different pressures. Assuming the same
scaling factor for A and the same cutoff in the phonon
spectrum as those used in previous calculations, an esti-
mate of the pressure coefficient of T, can be made. We
find that dT./dP is less sensitive to the value of u*. For
Ge, T, varies sublinearly with pressure; the slope is stiffer
in the region of low pressures. For purposes of 100 to 180
kbar, the calculated dT, /dP is about — 140 mK/GPa and
this value is lower than the measured dT,/dP for pres-

TABLE II. Pressure dependences of the calculated density of
states at the Fermi level, wg,, Aqy and A4 at q=1(0,0,1)/ ¢ for the
B-Sn phase of Si, Ge, and Sn. The units for N(Ef) are
states/Ry per atom and per spin. Results for Si are from Ref. 7.

P @qy
(kbar) N(EFr) v (10" rad/sec) Agy Aq
Si
110 2.42 LOA 3.03 0.06
TA 2.60 0.04
TO 8.02 0.09 0.38
120 2.41 LOA 3.05 0.06
TA 2.60 0.04
TO 8.15 0.09 0.38
Ge
100 2.17 LOA 1.77 0.07
TA 1.36 0.03
TO 4.49 0.09 0.38
180 2.12 LOA 1.85 0.06
TA 1.38 0.03
TO 4.92 0.08 0.34
265 2.07 LOA 1.93 0.06
TA 1.40 0.03
TO 5.35 0.07 0.32
Sn
0 2.85 LOA 1.03 0.08
TA 0.74 0.05
TO 2.73 0.10 0.46
20 2.75 LOA 1.07 0.07
TA 0.76 0.04
TO 2.92 0.08 0.38
35 2.70 LOA 1.10 0.06
TA 0.76 0.04
TO 3.07 0.07 0.34
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sures from 115 to 140 kbar.® This smaller calculated coef-
ficient is expected since T, at 100 kbar (with use of the
scaling factor of 1.28) is underestimated compared to the
experiment. When a scaling factor is chosen to be 1.395
which produces the measured T, dT./dP is found to be
-180 mK/GPa and this value lies within the experimental
values. For Sn, the calculated value for dT,/dP is about
—700 mK/GPa for pressures up to 35 kbar and this coef-
ficient is the largest among the elements studied here.
Therefore, the magnitude of the pressure coefficient of T,
increases when going to heavier elements and this fact is
in good agreement with experiment.

The decreasing behavior of T, in going from Si to Sn
appears to be caused by the decreasing Debye tempera-
ture. Since the electron-phonon coupling A is similar for
the three elements, the Debye temperature which is the
prefactor of the McMillan equation, determines T, if we
assume p1* to be constant. The electron-phonon interac-

tion parameter A can be written as'*3®
A=—A;’L2- : (10)
Op

where the McMillan-Hopfield parameter 7 is related to
the Fermi-surface average of the electron-phonon matrix
elements of Eq. (4). Using simple models, it can be
shown* that both 7 and ), tend to increase with increas-
ing average electron density 7. For lighter elements like
Si with high 7, 7 is stronger because of the stronger at-
tractive potentials which also produce higher phonon fre-
quencies. However, this effect on 7 is largely compensat-
ed for by the high Debye temperature as seen in Eq. (10).
Thus, the superconducting transition temperatures are
mainly determined by the cutoffs in the phonon spectrum

0.10
N
-
3
o a
<
S ;
L 0.05 o
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FIG. 1. Calculated electron-phonon matrix element nZ ~'/3
versus average electron density 7. The scaled value of 1.28 A4
for A is represented by the open point while the solid points are
based on A4 for q=27(0,0,1)/c. The dashed line is an empirical
formula given by nZ ~1/3=2.267 '? in Ref. 39.

TABLE III. Angular-momentum decompositions of the
valence charge densities for Si, Ge, and Sn in the 8-Sn structure
for pressures given in Table I. Units are in electrons per atom.

Symmetry Si Ge Sn
s 1.36 1.49 1.52
p 2.17 2.14 2.13
d 0.47 0.37 0.35

for elements considered here. Based on the calculated
electron-phonon couplings, the plot of nZ ~!/3 (Z is the
valence charge) as a function of 7 in Fig. 1 illustrates the
correlation between the variables 7 and 7. Hence, the me-
tallic group-IV elements satisfy reasonably the empirical
formula nZ ~'/3=2.267 ! obtained from a study of sim-
ple and transition metals.’® Furthermore, the phonon
linewidths for all different phonon modes have an increas-
ing tendency similar to the behavior of 17 when the elec-
tron density increases.

Although the group-IV elements are likely to form in
the 3-Sn structure when metallizing, their behavior under
pressure differs significantly. The pressure coefficient of
T, is highest for Sn which has the smallest 7,. With in-
creasing pressure, both Si and Ge are found to undergo a
structural transition into the simple hexagonal phase at
different pressures above 130 kbar (Refs. 40 and 41) and
750 kbar (Ref. 42), respectively. The higher transition
pressure for Ge results from the large d-electron core in
the Ge atom."*> Recently, the simple hexagonal phase of
Si was found to be superconducting with a maximum 7,
of 8.2 K.7 At this time a test for superconductivity in
simple hexagonal Ge has not yet been made. In contrast,
Sn is found to transform into the body-centered-tetragonal
phase at 95 kbar and then into the body-centered-cubic
phase at 350 kbar.** In analogy to Ge, the simple hexago-
nal phase for Sn is unstable with respect to the B-Sn phase
for pressures below 350 kbar because of the large size of
the d-electron core. In Table III, the angular-momentum
decompositions of the valence wave functions are com-
pared for Si, Ge, and Sn. Si has more d symmetry in the
charge density of the valence electrons than Ge and Sn.
For Ge and Sn, the d core electrons produce more repul-
sive d pseudopotentials and induce a repulsive force on
the d valence electrons. Hence, the repulsive interaction
pushes the energy for the d state higher and thus the d-
symmetry state in the valence states is reduced. We found
that the s-symmetry state increases whereas the p-
symmetry state decreases in going from Si to Sn.

IV. CONCLUSIONS

We have shown that the pseudopotential-total-energy
calculations can describe the electron-phonon interactions
and superconducting properties of Si, Ge, and Sn in the
B-Sn structure. With increasing electron concentration
from Sn to Si, the phonon frequencies, the force con-
stants, the phonon linewidths, and the electron-phonon in-
teractions increase. For metallic Si, Ge, and Sn, the re-
sulting correlation is similar to the behavior found for
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other simple and transition metals. Furthermore, the
electron-phonon mass enhancement parameters are simi-
lar, and assuming a reasonable u*, the superconducting
critical temperature is highest for the element with the
highest cutoff in the phonon spectrum. Based on the
electron-phonon interaction calculations for one-phonon
wave vector and using the constant scaling factor which
gives the measured superconducting critical temperature
for Sn at normal pressures, the superconducting transition
temperature of Si is estimated in reasonable agreement
with experiment; this value is smaller for Ge where exper-
imental data are unavailable. We have found that the
pressure dependence of the superconducting transition
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temperature becomes larger for heavier elements and this
behavior is in good agreement with experiment.
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