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The elementary theory of in situ measurements of the wave-vector-dependent dynamic susceptibil-

ity g(q, e) in superconductor-insulator-superconductor (SIS) and superconductor —normal-

metal —superconductor (SNS) Josephson junctions is presented in some detail. The theory for more

complicated SISN and SINS junctions is also described. In addition, the theory of point-contact
and superconducting quantum interference device geometries, relevant to the recent experiments of
Bsberschke, Bures, and Barnes is developed. Involved is a detailed application of the MaxweH and

London equations along with the distributed Josephson effect. In a measurement of g(q, co), the fre-

quency co is determined by the relation 2eVO ——flu where Vo is the voltage applied across the junc-
tion, and the wave vector q is determined by the relation 2ed80 ——

iraq where d is the effective width

of the junction and 80 is the magnetic field applied perpendicular to the direction of the current.
The relative merits of the different types of junctions are discussed and the expected signal strengths
are estimated. The hmitations for the maximum measurable frequency and wave vector are also

given. It seems probable that the proposed technique can be used to measure spin-wave branches

from zero wave vector up to about 10%%ui of the way to the Brillouin zone edge. The electron-spin

resonance (ESR) of dilute magnetic systems can be measured as in the experiments of Baberschke,
Sures, and Barnes. Estimates and experiment suggest that this method of performing ESR is better
than an order of magnitude more sensitive than conventional methods. Some applications are dis-

cussed.

I. INTRODUCTION

The idea of using the ac Josephson effect to perform
spectroscopic measurements is not new. Many years ago
Silver and Zimmerman' studied the nuclear magnetic res-
onance (NMR) of '9Co in this way. However, it was not
until some time later that one of the present authors' sug-
gested the appropriateness of this effect for the in situ
detection of ESR in metals and superconductors. The
in situ nature of the measurements avoids the well-known
mismatch of Josephson junctions to microwave com-
ponents and the equally bad impedance difference between
such components and the metallic or superconducting
SMDpie.

A point-contact method for the fabrication of
superconductor nor—mal met-al sup—erconductor ( SNS)
junctions has recently been developed by Pellison et al.
In such structures the N layer comprises a suitable sam-
ple. The first successful ESR measurements on such SNS
junctions with samples of both Au:Er and Au:Gd have re-
cently been reported. ' It is easily possible to measure
samples of Au:Iod with as little as 100 ppm of the mag-
netic ion Gd +. This concentration is only a few times
the practical sensitivity limit of the conventional ESR in-
stnunents.

Very recently Goldman et al. and the present authors
have extended the idea to measurements of the q-
dependent dynamic susceptibility X(q,co) in concentrated

magnets. Goldman et al. effectively used an adaptation
of the theory for the Eck modes. ' However, it is known
that the implicit assumptions of the theory which leads to
Eck modes are not always justified. When these assump-
tions are avoided one obtains the theory for the Fiske
modes. s 9 Only in the large frequency limit do the many
such Fiske modes merge into an Eck mode. In this limit
the Eck mode is the envelope of the Fiske modes. Unfor-
tunately, whatever limit one takes, the approach of Ref. 6
is invalid since it ignores the displacement current, which
directly implies that both Fiske and Eck modes are ab-
sent. As Goldman et al. state, one might justify ignoring
the displacement current for frequencies much less than
that of the first Fiske mode. However, as we will show in
Sec. III, in this case the coupling to the susceptibility with
a wave vector determined by the field is of the same order
as the coupling to the lowest wave-vector susceptibility,
implying the technique is nonspecific with respect to the
wave vector. It is the specification of the wave vector us-

ing the magnetic field which is the principal point of the
proposed experiment. It will also be shown that this prob-
lem can be avoided by using other geometries.

The basic applications of the Maxwell, London, and
Josephson equations to the problem of planar
superconductor-insulator-superconductor (SIS) and SXS
junctions are described in some detail in Sec. II. The
spectroscopic response of such junctions is calculated in
Sec. III. Also dealt with in this section is the adaptation
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of the theory to point contact and superconducting quan-

tum interference device (SQUID) type of geometries. The
estimation of the actual magnetic signal strengths which
are expected in X(q,co} or ESR measurements is given in

Sec. IV. Section V contains our conclusions and a discus-
sion of possible applications for the present technique.

II. BASIC THEORY

In this section we describe the basic theory involved in
spectroscopic measurements in a standard planar Joseph-
son junction SMS, where M stands for either an insulat-
ing (I) or a normal conducting (N) barrier separating the
two superconducting (S) layers. As illustrated in Fig. 1,
the junction is of rectangular shape with a barrier of
thickness 2a along the x axis and length I along the z
axis. Either the M or the S layers may be magnetically
doped.

The problem to be considered is that of a damped
strip-line resonator. 'the role of the ac Josephson effect is
twofold: to provide the driving current for the strip hne
and to detect its resulting resonances. This problem has
previously been analyzed 9 for undoped SIS junctions
and the theory of the resulting Eck or Fiske' modes is
well confirmed by experiment. ' The response of un-

doped SNS junctions has also been investigated both
theoretically' and experimentally. " We will extend these
theories to junctions doped with magnetic impurities.
Since our conclusions do not agree with the recent work
of Goldman er a/. , we will give sufficient detail for the
reader to follow the various steps with reasonable ease.

We begin with the Maxwell equations

where jz is the normal current density given by Ohm's

law

1js= —
2 A

PAL,

1 E,
Po4

(2.5a}

(2.5b)

(2.5c}

and jq is the Josephson current density given by the
Josephson equation"

jJ——J,sin(J) .

In Eqs. (2.4)—(2.6), cr is the electrical conductivity,

po
——4n /10,

(2.6)

is the permeability of free space, A,z is the London
penetration depth, A is the magnetic vector potential, J,
is the Josephson critical current density, and P is the
phase difference between the Cooper pair wave functions
in the two S layers. The temporal and spatial depen-
dences of P are given by

84 2eV
(2.7)

VP= (SXn) . (2.8)

(2.4)

jq is the superconducting current density given by the
London equations'

VXE=-

VXH= +j.0
j

In general, the current density j is given by

j=j~+js+ jJ

(2.1)

(2.2)

(2.3)

d —=2(a+A, ), (2.9)

A, being the actus penetration depth which, as we will
show later, is related to the London penetration depth A,L,

by

Here V is the electrical potential difference across the
junction, 8 is the unit vector in the x direction, and

pp
(2.10)

ps

where ps is the magnetic permeability of the S layers.
For a voltage Vo applied along the x direction and a

magnetic field Ho applied along the y direction, from
Eqs. (2.7) and (2.8),

2e Vo

Bt
:—Np, (2.11a}

2ed poHO
ko (2.11b)

FIG. 1. Geometry of the SMS Josephson junction, where S
denotes a superconductor and M, the middle layer, is either an
insulator or a normal metal. Either the S or the M layer may
contain the magnetic system.

In solving the Maxwell equations (2.1) and (2.2), we as-
sume the media to be isotropic so that

(2.12)

(2.13)
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We also make a Fourier transformation in time by setting and the velocity of light c in the M layer (in the absence
of the S layers}:—~lQ) .

c =(pM~w}
—1/2 (2.25)

The Maxwell equations thus reduce to

V XE= i c—opH,

VXH= ic0~+~r ——,E+)g ——~,E+)g,
Po4

where

0'~ ——l Q)E+ 0'—
~Po4

(2.14)

(2.15)

(2.16)

2

Bx /l pk, L

(2.26)

We may assume solutions to Eqs. (2.23) and (2.26) of the

For the S layers, the first two terms in (2.15), corre-
sponding to the displacement and the normal currents,
can be ignored compared to the third (the superconduct-
ing) term and Eq. (2.20) reduces to

Combining the two equations (2.14) and (2.15) and using
the Maxwell equation H„= exp +exp —Q Qx QQ&

V 8=0,
we obtain

V H = icop, o,H+ V Xj& .

(2.17}

(2.18)
H„'=h„exp

(2.27)

(2.28)

Since the Josephson current is taken to be along the x
direction,

X+6H„=h„exp xg —a, (2.29)

V Xjg= (2.19)

V H=lCOp~(lCiPE~+0')H+ fRI
2 Js

(2.20)

for the M layer and to
r

V H=imps ies+cr —
z H ~

2

~@&~i
(2.21)

with no inhomogeneous term, for the S layers.
In order to find the solutions to these equations we fol-

low the normal procedure of first solving the homogene-
ous problem and then expressing the solution to the inho-
mogeneous equation as an expansion in terms of the
homogeneous solutions, with the coefficients determined
by the usual methods.

We look for separable solutions of the form

H =H„(x)e (2.22)

which amounts to making a Fourier transformation
B/Bz~ik„ for the z direction, and in keeping with our
geometry, assumes that there is no y dependence of H,
i.e., B/By —+0.

For the M layer, the homogeneous part of Eq. (2.20)
reduces to

2 N . 2—k„+ —i—H„=o,
Bx c 52

(2.23}

where fi}i is a unit vector in the y direction. Equation
(2.18) thus reduces to

VXH=o, E,
which leads to

1 BH
cT Bx

(2.30)

(2.31)

Equations (2.27)—(2.31) and the continuity requirement
of E, at the interfaces give a relation between 6 and I,:

(2.32)

where
'

1 j2
2l
$2

(2.33)

The substitution of (2.27) and (2.32) back into (2.23) re-
sults in the dispersion relation for the junction

1/2
0 2 . 2

Q)~ =C k~ +18

for the M and the upper and the lower S layers, with
quantities h„,6, and A. to be determined. To determine A, ,
it is assumed that ( k„A,)2 g~ 1 whence, from (2.26),
A, =(po/ps)'~ A,L, justifying (2.10). Trivially, the boun-
dary condition for the continuity of the tangential com-
ponents of the H field at the interfaces x =+a is satisfied
if a &&b, which wiB later be shown to be valid. The next
boundary condition to be satisfied is the continuity of the
tangential component of the E field at the interfaces
x =+a. From Eq. (2.15) with gJ ——0,

where we have substituted the skin depth
' 1/2

(2.24) (2.35)
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It is easy to make a connection with the usual result for
an undoped SIS junction. In this case p&-p~-po and
for 5~op Eq. (2.34) reduces to

The last term can be obtained from Eq. (2.7), using
Faraday's law and is equivalent to our (2.40). By contrast,
the first term is obtained by integration of Eq. (2.8)

(2.36) BP 2ed 2ed
By(z, t)= (ppH +My )

z
(2.42)

2a
c —c (2.37)

is the standard result for the reduced speed of light in
such a structure. ' The more general result (2.34) ac-
counts for damping via the normal conduction term
2i/5 . Somewhat hidden, but of importance here, are the
imaginary contributions to ~„which arise because in gen-
eral p~ and IM~ contain the complex dynamic susceptibih-
ties of the dopants.

Finally, in connection with the solutions of the homo-
geneous problem, we must specify the boundary condi-
tions at the ends of the junction, z =+L/2, which deter-
mine the allowed vectors k„.In principle, the continuity
of E and H at these ends requires a coupling between the
internal and the external modes of the system, e.g., stand-
ing waves in the fading wires, and makes the problem too
complicated. However, as was shown above, the speed of
light c in the SMS structure is much smaller than that
outside the junction. As a result, it is reasonable to as-
sume that the electromagnetic waves are almost totally re-
fiected at z =+L/2. This assumption drastically simpli-
fies the problem. It implies that E„vanishes at
z =+L/2, whence E„(z,t) may be expanded in a Fourier
series

and implies that P couples directly to fluctuations in the
magnetization M. However, mathematically it i.s in-
correct to integrate both Eqs. (2.7) and (2.8) and add the
resulting terms involving M». In fact, we may integrate
either of these equations and show that the two answers
agree by using the Maxwell equations. Our expression
Eq. (2.40} correctly accounts for both electric field and
magnetization fiuctuations.

To find a particular integral of the inhomogeneous
equations we expand the field in terms of the homogene-
ous solutions (in complex notation):

H(x, z, t) =+H„(x)e (2.43)

where the coefficients in the expansion are the H„in Eqs.
(2.27)—(2.29). We then substitute the zeroth-order formu-
la for the Josephson current

jJ——J,sin(topt +kpz) (2.44}

1 2, N . 2
c' 5', —k„+ i h„—= ik„j„,— (2.45)

—i(o)t+k„z)
into Eq. (2.20). If we multiply Eq. (2.20) by e
and integrate z over the length of the junction, we find

E,(z, t) = g E„(t)sin(k„z)+g E„(t)cos(k„z), (2.38) where we have used

where

7f 7T

n I.

1

Bx b,

and where
2.39

and n is an integer. Since E and 8 are interrelated via the
Maxwell equations it follows that (2.39) for k„determines
the allowed values in (2.34) for co„.This completes the
solution of the homogeneous problem.

Next we turn to the inhomogeneous problem. So far,
this problem has not been fully specified since a detailed
prescription for the phase P in Eq. (2.6) has not been
given. %'e shall write

j„=J,S„.
The "overlap" coefficients S„aregiven by

4k„S„=— sin(kp —k„)—.
L kp —k

(2.46)

(2.47)

For b &&a, the x dependence of H„(x)is negligible and so
one can equate H„and h„,i.e.,

2e
P(z, t)=kz+ dtV(z, t)=kz+pyt+C(z, t}, (2.40)

—&knjnH„=h„=
(b/a)K k„—(2.48)

where V=2aE„ is the potential difference across the
junction. This formula, which has been used by a number
of authors, directly implies that the phase difference P
couples to electric field fluctuations in the M layer. Gold-
man et al. use instead

4(z, t) = f dz'My(z', t)
2ed

From Eqs. (2.48} and (2.15),

K (a /b)k„—
We rewrite Eq. (2.49) in the complex notation

Exn =&~po~ne Je ~

(2.49)

(2.50)

+ f dt' f dz '(z, t) .2ed, , ~~y
Bt

(2.41)
where A„and 8„arereal and determined from Eq. (2.49).

We now coinbine Eqs. (2.38), (2.46), and (2.50) and ob-
tain
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E„(z,t)=J,popo g S„A„cos(tot+8„)cos(k„z)
odd n

S„A„sin(cot+8„)siii(k„z)

l
qs =- +—,O,k„ (2.61)

(2.51)

for the time-dependent component of E,.
Equation (2.51) represents the completion of one itera-

tion in the search for a self-consistent solution of our
basic equations. The self-consistent nature of the problem
arises because the time-dependent electric potential differ-
ence produced by E„(z,t) across the barrier is

It is important to realize that the wave vector probed is
one of the wave vectors obtained by imposing boundary
conditions upon the electric field but that this wave vector
has an imaginary x component corresponding to the fact
that the magnetic field decays exponentially in this direc-
tion. The wave vector in the M layer and most of the
remaining results depend upon whether this is an insula-
tor or a metal.

If the barrier is an insulator,

V(z, t) =2aE, (z, t) .

In principle we should set

V= Vo+U

(2.52)

(2.53)

a g&A. , 0~0,
and from Eqs. (2.32)—(2.35),

(2.62)

4ea
|})=a)pt+ p,pJ, g, (2.54)

where

in Eq. (2.40) for P(z, t) and repeat the steps following Eq.
(2.44). However, for the present purposes, the first itera-
tion which gives (2.51) is sufficient to calculate the elec-
tromagnetic response of the junction. One finds for p,

Since the imaginary x component of q in the I layer is of
the same order of magnitude as the z component, the con-
cept of wave vector in an I layer is ill defined. However,
if the barrier is a normal metal,

a &gA, , o large

and

g=—g S„A„sin(coot+8„)cos(k„z)
even n ((k„. (2.63)

+ g S„A„cos(oipt+8„)sin(k„z),
odd n

and from the Josephson Eq. (2.6), expanding in J„
4eajz ——J,sin(a)pt+kpz)+ pP, icos(toot+kpz) .

(2.55)

(2.56)

So the concept of a wave vector in a normal-metal barrier
is rather well defined.

Whatever the M layer, in the S layer, the imaginary
part

——10 m
1

Integrating Eq. (2.56) over the junction and averaging
over time gives the dc current

I =Jp g S„A„sin8„,
n=1

where

Jo =2ea Wp pJ, /fi—

(2.57)

(2.58)

(2.59)

The wave vector q entering the 7 argument is determined
by Eqs. (2.27)—(2.29)

(2.60)

and %is the area of the junction.
Equation (2.57) is the principal, but rather formal, re-

sult of this section. Physically interesting results are ob-
tained through the evaluation of A„and 8„defined by
comparison of Eqs. (2.49) and (2.50). The properties of
the all important magnetic systems are introduced via the
complex dynamical magnetic susceptibility in the Fourier
space:

Therefore, the wave vector is well defined if k„is large
compared to this value. The imaginary parts of the wave
vectors do not occur in the simpler approach of Goldman
et al.'

From Eqs. (2.49), (2.50), and (2.57),

+SzI Io o 2i Io I
@st c & ps~+IJ ma

(2.64)

2
po oio apl'

Ists =Jo g S„Im
pl c2 ps

(2.65)

If the I layer is magnetically doped, p~~po, and Eq.
(2.65) gives

(2.66)

2

For an SISjunction, o —+0, a « A, , and Eq. (2.64) reduces
to
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CO& (CO&
—CO )—i CO& ECOz

X(q, co) =X '-iX "=Xo
(a), —co) +(&~, )

(3.1)

If the S-layer is magnetically doped, p,l~po, and (2.65)
gives

f„X"/2I2-Ia
(1 f„)—+(f„X"/2)' (2.67)

For an SNS junction, a »A, , and the displacement term
in Eq. (2.64) can be ignored compared to the conduction
term, i.e., ohio/c «2/cr and Eq. (2.64) reduces to

P

2 I o 2& 2Isns=Jo g S„Irn ———k„ (2.68)

If we make the substitutions

Po

2+@
[~~(1+X')]'+(2+pNX")'

(2.70)

A similar approximation is not valid for the SISjunctions
since both terms in the sum are sharply peaked.

Our final results for this section are Eqs. (2.66) or (2.67)
for the SIS junction, depending on whether the insulator
or the superconductor is magnetically doped, while the
somewhat simpler Eq. (2.70) is relevant for the SNS junc-
tions with the N layer magnetically doped.

III. SPECTROSCOPIC RESPONSE

In this section, we first estimate the size of the magnet-
ic signal for the simple SMS junction on the basis of the
theory developed in Sec. II, and then discuss the possible
merits of more complicated SINS and SISN structures.
Next, we outline the theory for a single-point contact SNS
and two-point contact (or SQUID) arrangements and re-
late the theoretical results to the recent experiments of
Baberschke et al.

In the absence of saturation, the magnetic system can
be represented by a coinplex rf susceptibility'

1 1 (I+X'—iX"},5i 5o

where 5o is the skin depth in the absence of the magnetic
dopants, Eq. (2.68}reduces to

r

CO 2+En&
I3 —-Io gS„q 2, (2.69)

[p„(1—X')]'+(2+@„X")'

whirr~ Io =Jo5o and pn: 5+m
Since the expression between the brackets in Eq. (2.69)

is a slowly varying function of k„,the overlap function
S„actsas an explicit 5 function and for the SNS junction
for an applied magnetic field, such that ko ——q =k~, it is
possible to make the simplification

where Xo is the static susceptibility and the resonant fre-
quency co, may contain zero-field, Zeeman, and magnon-
dispersion terms

cos =coc+mz+mm ~ (3.2)

where the zero-field term co, may be caused by the
crystal-field or electron-nuclear interactions giving rise to
fine or hyperfine structures, respectively; roz is the Zee-
man interaction with an applied magnetic field Ho

~z=PagHo (3.3)

where u is the magnon velocity ( U « c).
The experiments to dates have involved dilute magnetic

alloys, where only the co, term is important and boo, is
primarily due to the Korringa' relaxation. If one consid-
ers more complicated systems such as spin-glasses of anti-
ferromagnets, the magnon term ro becomes important.

The width b,co, arises from diverse sources. For exam-
ple, in the above experiments it was due to inhomogene-
ous broadening in addition to the Korringa relaxation.
For a spin-glass, a ferromagnet or an antiferromagnet, hy-
drodynamic theory would suggest a diffusion term Dq 2.

A. SISjunctions

For an SIS junction doped with magnetic impurities,
the relevant equations are (2.66} and (2.67}. These equa-
tions together with Eq. (3.1} lead to three types of maxi-
ma in Id, . (a) The self-resonant or Fiske modes9 which
occur at

nfl
I.o=—cop=OP~ =c ~

——c (3.5)

(b) The peaks in the overlap function S„which occur at

2ed nm

iii
" I.Ho =ko ——k„= (3.6)

When the individual Fiske modes are not resolved, the in-
tensity of their envelope becomes magnetic field depen-
dent and is known as the Eck mode, (c) when coo is not
close to co„:

and magnetic resonances appear at

(3 7)

Equations (3.5) and (3.7) show that the Josephson fre-
quency mo corresponding to the applied voltage Vo must
be compared with both the magnetic resonance frequency
co, and the frequency oi„for Fiske modes. Similarly, the
Josephson wave vector ko corresponding to the applied

where pa is the Bohr magneton and g is the ratio of the
magnetic moment to the angular momentum of the mag-
netic centers. For an antiferromagnet, the magnon term

may be written as

(3.4)
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i.e., the ¹h Fiske mode has its wave vector (which is ap-
proximately equal to the desired wave vector q) matched
to the external field.

If the dimension L of the junction is such that the first
Fiske mode is larger than the desired frequencies, i.e.,

COO=OPS gN~,

and if P" is small compared to unity, Eqs. (2.66) and
(2.67) simplify to

(3.8)

and

oo I I

I2-Io g S„
n=i

(3.9)

The coefficient S„for the two cases n =1 and n =E,
determined from the definition (2.47) by putting ko ——kz,
are

field Ho must be compared with both the desired wave

vector q and the k„,again associated with the Fiske
IDodes.

For a junction of length L of the order of 10p, the first
Fiske mode t'ai is —1000 GHz. The frequency c0, for
small wave vectors q is typically of the order of a few
GHz and is well below the first Fiske mode. In such a sit-
uation the Fiske modes are safely out of the picture. We
would then like to select a given wave vector q by adjust-
ing the applied field such that

ko ——q.
However, the coupling is not direct between the Josephson
current and the magnetic system, but rather it is via the
intermediary of the Fiske modes, which in the above-
described situation are, by design, driven well below their
resonances.

Under such circumstances, one must ask which value or
values of n dominate the sums in (2.66) and (2.67). To
this end, it is instructive to compare the magnitude of the
n =1 term with that of the n =N term for which

will correspond to a mixture rather than a single wave
vector. Furthermore, as shown in Sec. II, the wave vector

q in this case has a large imaginary part and hence is ill
defined. However, this ill-defined wave vector is not a
problem. This is because the I layer is very thin and the
x component of the magnon wave vector must satisfy
some boundary condition. The coupling to such different
wave vectors will be determined by an overlap integral
which will only be appreciable for magnon wave vectors
of vanishing x component. Hence, for a giuen k„,the
wave vector of the magnons is perfectly well defined even

though that of the magnetic field is not. However, since
many values of k„areinvolved, SISjunctions with doped
I layers are not suitable for determining the magnon
dispersion relations.

In contrast, if the impurity is in the S layer, from Eq.
(3.9),

(I2) =S=+ (I2) =1~IO
X

and, therefore, the observed signal is determined by the
field-matched mode. The study of the magnon dispersion
relation is, thus, possible if the magnetic system under in-

vestigation is in the S layer. Furthermore, as discussed in
Sec. II, the concept of the wave vector is meaningful in

the S layer if q is large compared to the inverse penetra-
tion depth in the S layer. Since A, -10 m, this implies
quite large wave vectors. However, provided that the S
layer is sufficiently thin, the boundary condition will

determine the x component of the wave vector as
described above. Under such circumstances the S layer
exhibits two-dimensional behavior.

Although an SIS junction, with the magnetic system in
the I layer, is unsuitable for the study of the magnon
dispersion relation, it is suitable for the detection of dilute

impurity ESR. Furthermore, bulk nuclear magnetic reso-
nance is a possibility„since at realistic temperatures the
nuclei have no significant k dependence. In such experi-
ments, the value of the applied magnetic field may be op-
timized by adjusting ko such that

ko=-ki,

and from Eq. (3.8) the signal is estimated via

and

4
sIi =Io

N)
(3.10)

S~-1 .2

From the definition f„—:(co„/too),

i.e., the maximum signal is obtained when co, /coita l and

I.I)—+Jo
8

Therefore, if the I layer is magnetically doped, from Eq.
(3.8)

plf
Io

Ii' fi
Thus, the net signal which derives from the low n —1

Fiske modes is comparable with those which arise from
the field-matched mode n-N and the observed signal

If the applied field Ho is much larger than its optimal
value, e.g, as might be the case if it is adjusted to satisfy
the resonance condition (3.7), the signal decreases as
(Hi/Ho), where H, is the value satisfying the condi-
tion ko ——k I.

Since JoL is -I„the critical current of the junction,
simple estimates (see Sec. IV) suggesting a magnetic
response of the order of I, will be possible for a concen-
tration of magnetic ions as low as 0.1%. Under favorable
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conditions, concentrations as low as 1 ppm should be
detectable. The precise response, however, depends upon
the details of the magnetic resonance and in particular on
the width of the ESR line.

Id, -I,[aX'(to)+PX"(co)], (3.15)

with tz and P of the order of unity determined by the pre-
cise value of p i.

For V~I,R,

(3.11)

From Eq. (2.70) for a nonmagnetic system,

2
1 2ett pic 5o

I3 =I' ——2 ~o5o =—
2

(3.12)

In arriving at Eq. (2.57) from Eq. (2.56) we assumed that
ri was small compared to unity. A comparison of Eqs.
(3.11) and (3.12) shows that our results are valid for

V&I,R .

With this proviso, Eq. (2.70) may be rewritten in the form
r

I,R 2+pttX"

[p~(1 —X')]'+ (2+p~X")2
(3.13)

If one is interested in measuring the wave-vector-
dependent dynamic susceptibility X(q, to}, the applied
magnetic field must be adjusted such that

ko ——q-kN .

8. SNS junctions

For an SNS junction, the relevant expressions are Eqs.
(2.69) and (2.70). First, we must discuss the region of va-
lidity of the perturbation approach used to derive these
expressions. For a resistively shunted Josephson junc-
tion' of small capacitance and in the absence of a mag-
netic system, the current and voltage are related by

represents undamped propagation. In contrast in an
NSISN junction, this is no longer true. In the limit

a « 5, t « I, ,

the dispersion relation becomes
r

~o'„=(1—~') (k„c)',
PN5

(3.16)

i.e., the characteristic frequencies are heavily damped with
equal real and imaginary parts.

The final result for Id, is of the forin (2.66) and (3.10)
with

C. SISXand SOS junctions

We have solved the problem of symmetric NSISNjunc-
tions where the S layers have a thickness t. The calcula-
tions are quite lengthy. However, the results are readily
appreciated on physical grounds and for this reason the
derivation will not be given.

We are interested in the situation where the N layer(s)
contain the magnetic system. What is required is a
dispersion relation, i.e., a modification of Eq. (2.34) which
via Eq. (2.50) determines A„and 8„.

First consider the case where the penetration depth
A, »t. In this case, apart from generating the Josephson
effect, the S layers play no role. Consider again Eq. (2.34)
for a simple SIS junction, with the I-layer conductivity
zero. Since with our approximation of ignoring the nor-
mal current in the S layers they are lossless, the resulting
dispersion relation

h

N~= C k~
Q 2

par =(q5o)'»X & 1

Eq. (3.13) simplifies to
r

X"(q,~0)

(q5o)
(3.14)

A, ~5, X"~X"+X', q=- —,0,k„

and as with conventional ESR in metals, there is an equal
admixture of absorption and dispersion in the measured
response.

In the inverse situation where

When the interest is in the ESR of dilute alloys with a
zero-field splitting, a small field, such that

kp —k[

will suppress the dc critical current making the I-V curve
more linear and optimize the couphng of the current to
the n = 1 mode. In Eq. (3.13), setting

p, =(ki5o) —1

t &&k,

we find

co —= —+4(1 i}—g p(p
N- —Zt /i(k )

2.
Pn n (3.17)

Now Eqs. (2.66) or (3.10) may be used without replacing
A. by 5 and w1th

X" (X"+X')4e ""

gives

In essence, apart from numerical factors of order unity,
both cases can be represented by (3.17); as the supercon-
ductor layer thickness is increased, the coupling to the ex-
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terior N layer is diminished exponentially. Because of the
second term in the brackets in (3.17), for small values of t
the Fiske modes become very strongly damped. In fact,
the response predicted by (2.66) will be similar to that for
an SNS junction described by (2.70). Increasing the S
layer thickness permits this response to be varied continu-
ously between SNS and SIS behaviors. Clearly, again to
within numerical factors of order unity, the removal of
one X layer to leave an SIST structure would not change
Eqs. (3.16) and (3.17).

Such SISN structures have the obvious advantage of
not requiring the magnetic system to be contained in ei-
ther the barrier or the S layers where it may destroy the
Josephson effect. Furthermore, they offer the possibility
of varying the coupling of the magnetic system and have
obvious advantages from the fabrication point of view.

The alternative SINS ordering of the layers offer simi-
lar possibihties of interpolating between SIS and SNS
behavior but it is more difficult to vary the coupling to
the magnetic system. The theory is essentially the same
as that in Sec. II, except that the conductivity and suscep-
tibility (assuming that the magnetic system is in the N
layer) are "diluted" by the ratio t/tt of the N layer to the
total barrier thickness. Including an I layer in an SNS
junction might be a useful way of controlling the critical
current independently of the normal layer thickness and
thereby might constitute a way of tuning the I,R product
to the desired value, i.e., Ace-eI, R [see the discussion fol-
lowing Eq. (3.12)].

D. Po1nt-contact SNS junct1ons

Here we envisage the physical structure illustrated in
Fig. 2(a). A more or less sharp point is brought into con-
tact with an NS planar sandwich. If the dimension L of
the tunneling region under the point is greater than the
skin depth 5, then the junction can be considered in the
same way as the SNS junctions of the preceding sections.
However, when L gg5 it is more appropriate to consider
the junction region as a line of oscillating current screened
by currents flowing in the N layer.

To make an easily tractable problem requires a fair de-
gr«of abstraction and several assumptions about the
form of the point-N-layer contact. These assumptions are
illustrated in Fig. 2(b). The tunneling current which now
flows in the z direction is envisaged as occupying a circu-
lar region of diameter L. The N layer has a uniform
thickness 2a. There are superconductors both above and
below it in normal (or perhaps more realistically strong
capacitive) contact. The aim of these assumptions is to
reduce the problem to one with cylindrical symmetry. In
particular, the assumption about the nature of the S-N
contact away from the central region is a crude approxi-
mation. For this reason the present calculations are only
intended to illustrate the various factors involved.

Keeping only the normal current and using complex
notation for an ac effect of frequency co, we have from
(2.20)

SAMPLE, a; X(~).

r
N ~L h—

ACTUAl N LAYKR

{b)

FIG. 2. (a) Geometry for the pont-contact SXS junction.
The dimension I. is that of the region where the Josephson
current flows. (b) The idealized, cylindrically symmetric
geometry used in the calculations. It is assumed that there is a
cylinder in which the Josephson current, I=I,sin(cot), flows.
The shaded N-layer region has a normal conductivity 0 and
contains magnetic impurities. The potential difference across
the junction is assumed to be that between the top and the bot-
tom of the shaded layer at a radius r =I./2.

which is Bessel's equation with n =1. The relevant solu-
tion is the Hankel function H'i" (z) where z =lrr and
it= —(1 i)/5—

Ampere's law gives H(L/2) =I, /mL to yield

H(r)= —(I,~/4)Hi"(~r) . (3.19)

Taking the curl gives

E,(r) = (l,a'/4r)Ho" (—a.r) . (3.20)

~here the magnetic system enters via ~:

(2i /5o)[1+—7'(co) N" ( o]i). —

(3.21)

(3.22)

With H.'"=Jo+t I;, J.=1——,'z'+
=(2/~)[in( —'z)+y] Jo, where y -0.577 is the Euler-
Mascheroni constant. »nce

I
~(L/2)

I
-L/5&1 by as

sumption, we obtain
r

E, —= —(I,a /4e)I(2ilm. )[ln(aL/4)+y]+1I,

10 1 dH 1 2i——H ——0=0,
dr r dr r 5

(3.18) Assuming the susceptibility is small and separating real
and lmag1nary parts
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E, —=-(I, /on5p) F — + (F+l)X'+ —+1 X" +i (F+1)X"— —+1 X' =E,'+iE,", (3.23)

where F =ln
~
L/45

~
+—, in2+y. In complex nota-

tion the time-dependeht field E,(t)= —(E,'+iE,")e'"'
corresponding to a real field E,(t)=[(E,')
+(E,") ]'~ cos(sot+8p) where tan8p=E, '/E,". The qu:m-
tity 2aE, (L/2) corresponds to the ac voltage between su-
perconductors. Adding this to the dc voltage, we get

P(t)= f V(t)Ct
fi

2e Vp
(2a)[(E,')2 y (E,")i]'csin(cot+ 8p),

The form of our result for SNS point contacts is there-
fore

Id =(I R /V)(L, /25p) [aX'(co)+pX"(a)}] (3.29}

where a and p are again (here geometrical) factors which
determine the admixture of absorption X"(to) and disper-
sion X'(co). As with other configurations, if I,R —V and
here L &5, then the ESR signal is roughly
I,[aX'(to)+pX"(co)] and, for modest N-layer concentra-
tion of impurities, it can be an appreciable fraction of I,
(see Sec. IV).

(3.24)

where the phase shift 8p is all important.
This expression, which includes the perturbing effects

of the rf field, is put back into the standard expression for
the Josephson current:

I=I,si n4(t) —=I,si [ntto+(I, R "/V)cos(tot+8p)]

-I,sinrot +(I,R "/V)cos(cot )cos(tot +8p),

(3.25)

which after taking the average, yields

Id, = (I,R "/Vjsin8p,

where

cos8p ——E,'/[(E,') +(E,") ]'~ =(2a/I, )(E,'/R")

=(I,R'/V) F+(F+1)X'(to)+ —+1 X"(to)

E. ac SQUID geometry

For the measurement of ESR, a considerable improve-
ment in sensitivity, over the point-contact arrangement
described above, might be achieved by the use of a double
contact or ac SQUID arrangement. This same type of
structure can also facihtate the application of a static field
as a means of meeting or modifying the resonance condi-
tion (3.7). As illustrated in Fig. 3, such a system
comprises two junctions in a low inductance loop. In our
analysis we assume that the two junctions are point con-
tacts or resistively shunted with negligible capacitance.

In the presence of a magnetic field, the two junctions
will no longer oscillate in phase. There will be a circulat-

d

(3.26)

and R'=(2a /trtr5 ) is the resistance of a region of radius
equal to the skin depth about the point contact.

The mysterious looking logarithmic function in these
expressions is easy to understand from the following argu-
ment: By Ampere's law the field surround the point,

000000

~ac

H (r, t) =(I,/2mr)sin(tot), (3.27}

but only to a distance 5 beyond which the field is screened
in the usual way. From the Maxwell equation VXE
= —BB/Bt, the rf voltage at r =L/2 is

L, r =I./2
2aE —-2acop J H(r)dr

2 5

= [pa)(2aI, /2m )ln(L /25) ]cos(cot )

—[I,R 'ln(L /25 }]cos(cot),

which essentially reproduces (3.23) oi (3.21).

(3.28)

FIG. 3. Schematic of an ac SQUID. The crosses indicate the
Josephson junctions. The inductance I.o is that of the loop,
while R is the effective resistance of the junctions including any
actual shunt resistances. The sample hes within the inductance
coil.
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ing current of magnitude I,sinir(H/H(2). Here H& is the
characteristic field corresponding to one quantum of flux
penetrating the loop.

The conservation of current gives in complex notation

I,sin[a(H/Hg )]= [(2@0jicopLO)+1/R] V, (3.30)

V= I[1/R+(2/~LO)X"] +[(2/~LO)(1 —X')] I

XI,sin[m(H/Hg )]cos(cot+HO),

where

2( 1 X—') /coL o

(3.31)

(3.32)

where p is the permeability of the magnetic material en-
closed in the loop, Lo its inductance without such a ma-
terial, and V is the potential difference across each junc-
tion. Assuming X(r0) « 1, in real notation, V is given by

—+ (2/coLO)X"
R

Following the same steps as for a single point contact, we
easily arrive at the following expression for the change in
dc current:

EIq, ———,'(2e/A')(I, /co)sin[n(H/H~)]I[1/R+(2/coLO)X"]/[1/R +(2jcoLO)X"] +[(2/~LO)(1 —X')]2[ . (3.33)

Clearly the best coupling to magnetic system is provided
when R -cuLO. The magnetic response is of the form

(ddd, ) ~- , [(I,R—) /VR]sinir(H/Hg)

X [aX'(co)+PI"(co)], (3.34)

I ) l i 5
/

I I l ) I

)50-

I00-

IO p.V

where a and P are of order unity. For much higher fre-
qllellcies (HF)

(W„)„„-[(I,R)' /V~L, ]sin[4(H/H~)]X"(co), (3.35)

which is smaller than (3.34) by a factor of RjarLO. For
much lower frequencies (LF)

(life, )LF- —,
' (I,coLO /V)sin[n(H/H~)]X"(co), (3.36)

which involves a small factor coLO/R.

An advantage of this SQUID arrangement as compared
with its distributed equivalent, i.e., the thin-film junctions,
is the possibility of applying a magnetic field parallel to
the loop plane. In this situation the ac field is transverse
to the static field, as is required for an ESR experiment,
and the applied parallel field can be used to help satisfy
the resonance condition. Such an arrangement permits
the entire H ~ plane to be investigated. Only the com-
ponent of H parallel to the loop enters the factor
sinn(H /H~).

To satisfy the above condition R -coLO for maximum
sensitivity and typical junction impedances, the loop size
of the SQUID is limited to micron dimensions. A rough
estimate for a loop inductance is Lo ——poRO-10 Ro H
where Ro is a dimension of the loop. If a typical ESR
resonance frequency is 10 GHz, then a loop of micron di-
mensions has an impedance coLO-10 ' 0 which is not
untypical of Josephson-junction impedances. Physically,
such a SQUID might be readily fabricated with the
modern microcircuit techniques available at a number of
laboratories. A less controlled method is to use rather
broad point contacts. Figure 4 shows the magnetic field
dependence of the critical current for the point contact for
which the measurements on Au:Gd were taken. This ex-
hibits a classic two-contact behavior.

IV. ESTIMATES OF PARAMETERS

let

a i I i i i l i I l i i

The criteria for ESR and finite wave-vector dynamic
susceptibility, X(q,co), measurements differ somewhat and
must be treated separately. One common quantity is an
estimate of a Curie susceptibility

-260 0 2QQ

MAGNETIC FIELD (6)
(gag )'NoS(S +1)

3kT (4.1)

FIG. 4. The electric current as a function of magnetic field
for two external potential differences (Ref. 4). The envelope of
this "diffraction" pattern is "single-slit"-like and reflects the fi-
nite size of the point contacts. The finer oscillations are "two-
slit"-like and the period reflects the separation between the, sup-
posed, two-point contacts.

wbere No is the number of spins per cubic meter. To esti-
mate Xo for a typical system, we take g =2, S =3, and
T = 1 K and a concentration of sites occupied by magnet-
ic ions of 10{)0ppm and obtain

go-10
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While (4.1} is valid only for dilute paramagnets, the
same formula might be used to roughly estimate X for or-
dered concentrated magnetic systems near their transition
temperatures, i.e., in the hydrodynamic regime. For a
transition temperature in the range —1—10 K, this gives
7-1—0.1.

For the spin-wave response of ordered systems well
below the transition temperatures, results from standard
spin-wave theory will be used.

A. %ave-vector-dependent dynamic susceptibility f(q, e )

The usual theory for the ac Josephson effect is valid up
to frequencies corresponding to twice the gap or
-3.5kT, . The corresponding Josephson frequency is in
the range 500—1000 GHz, which would be about 10% of
the way to the Brillouin-zone (BZ) edge if the maximum
energy of the branch were 300 K-6000 GHz.

The maximum wave vector depends more on junction
parameters. For an SIS junction the effective magnetic
thickness of the barrier is d =2(A, +a}-0.1 p, while for
an SNS junction the actual N-layer width could be of the
order of a micron or more. Finite critical currents have
been detected with N layers of a few tens of microns. The
N layer may be either clean or dirty, which results in the
critical current and I,R being different for equal barrier
thicknesses. Experiments on dirty N layers indicate that
thicknesses of a few microns correspond to I,R products
in the 10-pV region. Higher products would result for
clean N layers. Thus for clean SNS junctions one might
expect a reasonable (but not optimal) 2e(I,R)-Ace with
N layers of thickness 10 )u. For an SNS junction, typical-
ly a »A, and the magnetic and actual barrier thicknesses
are practically the same. The one-to-two order-of-
magnitude-larger magnetic barrier thickness, as compared
with SIS junctions, increases the maximum wave vector
which can be generated with a given magnetic field by the
same factors.

If the superconductor is to be of type I the critical field
will be at most several hundred Gauss. However, thin
films of thickness less than the coherence length have
greatly increased critical fields and, of course, if type-II
superconductors were used the upper critical field, create
no practical limitation. %e take 10 6 as the upper limit
for the experimental field. Equation (2.11b) may be writ-
ten in the form

(psg) NOS (S + 1)
X( q, co)—

R(sos co+i I )—
The imaginary part of this, at resonance (co =co~ ), is

(4.3)

trodynamics. Despite this, the theory can be used to give
indications about the critical dimensions. The imaginary
part of q is determined by 1/b, and the equivalent of
(2.32) when qk, l. & 1 is

1/b, =(A,L, /Aa)E

with p~
——pM ——po. From (2.26), when qA, L & 1,

1/A, -k„,and if 1/b, is to be small compared with
k„-q,then we must have

a &Xi (qlL ),
which with A,L —10 m, q —10 m ', implies that
a & 10 m, which is possible for SNS junctions. Howev-
er, for the voltages corresponding to such high frequencies
the normal current density would most certainly be too
high, leading to heating effects, and because the N layer is
so thick, the critical current will be too small. To increase
the critical current, a value of d —10 m would be better
and an SNIS configuration would freeze out the normal
current. However, it should still remain possible to probe
several percent of the BZ.

Other configurations might be more practical. For ex-

ample, an SNISN' junction might be used. The SNIS
part would be chosen to maximize the q range, etc. The
sample would be the thin N' layer. If its thickness is less
than the skin depth and the mean free path of the mag-
nons, the magnetic field will only couple to those magnon
modes with a zero wave-vector component perpendicular
to the plane of the layer. Hence the quantization condi-
tion rather than the q vector of the magnetic field would
determine this component and the wave vector of the
magnons would be well defined.

On the basis of both energy and wave-vector limita-
tions, we estimate that the Josephson-junction X(q, co)

spectroscopy will be useful for measurements up to a few
percent of the way toward th BZ edge. This is just the re-
gion where neutron measurements become difficult.

The signal observed via the junction I-V curve should
be large. We take the following form to crudely represent
the magnetic susceptibility associated with dispersive spin
w'aves:

2~&od
ko —— (4.2) (psg) NOS (S + 1)

AI
(4..4)

where yo ——h/2e-2X 10 ' Wb is the flux quantum for
d-10 m, and 80-0.1 T, ko-3)& 10 m '. A
typical BZ vector

qadi

would correspond to an in-
verse lattice spacing of 2 A, so

qBz -0.5 & 10 rn

Thus, the maximum wave vector that can be probed is
greater than 10% of qaz.

However, the realization of such larger wave vectors
implies restrictions upon the junction geometry. For such
large frequencies, the theory of Sec. II is inadequate for
several reasons but principally because it uses local elec-

If we take rather arbitrarily I =1 K, we obtain

indicating an enormous response such that Id, -I, . Such
measurements should be easily made.

Clearly these estimates are quite crude. They are in-
tended only to indicate the feasibility of our method and
as a guide for the reader who may wish to make estimates
for some particular material or junction configuration.

Also of interest is the response of concentrated magnet-
ic systems in the hydrodynamic regime. Then the absorp-
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tion is of the form"

X"(q,co)=XOIDq a)/[co +(Dqi)2]I . (4.5)

This is a slowly varying function of co width with a max-
imum value for X" of the same magrutude as the static Xo.
Near the maximum and with the susceptibility
Xo-1—10 ', the response should again be a large frac-
tion of I,.

B. ESR spectroscopy

Consider specifically the systems Au:Gd + and
Au Er. In each case the magnetic ion has a zero-field
resonance. For Gd + this is due to single-ion crystal-field
splitting, while for '67Er, the hyperfine coupling is respon-
sible. In both cases the frequency is a few GHz corre-
sponding to voltages of several pV. The resonances are
known' to be relatively narrow and so, although the stat-
ic susceptibility for a concentration of 1000 ppm is only
—10, the imaginary part of the dynamic susceptibility
is much larger, being —10 ' when the resonance condi-
tion is satisfied. If the junction parameters are chosen so
that I,R —V (where 2 eV/%=co, and co, is the frequency
for resonance), then from Eq. (3.28) the response is

Id, -I,[aX'(co)+PE"(co)jj-10 'I, ,

which is again large.
These estimates are confirmed by the measurements of

Baberschke et al. In Fig. 5 we reproduce the I-V curve
for a point-contact SNS device in which the N layer was
Au:1000 ppm Gd. The indicated ESR response is indeed
an appreciable fraction of I,. Figure 6 shows data for a
much less concentrated 100-ppm sample. A comparison
with the state-of-the-art measurements with a convention-

2.I 9Hz
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FIG. 5. I-V curves for a Nb-Au —1000-ppm Gd-Nb SNS
Josephson junction (Ref. 5). The lower curve shows two mag-
netic resonance features corresponding to the transitions be-
tween the crystal-field split levels shown on the right. The
upper curve shows Shapiro steps used to calibrate the frequency.
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FIG. 6. Actual I-V and dI/dV curves for an Au:100-ppm
Gd experiment (Ref. 5). The inset shows the dI/dV curve, in-

verted, with the smooth nonresonance part of the curve sub-
tracted. This latter curve shows at least an order of magnitude
improvement in intensity over the conventional ESR for this
system (Ref. 20). Different temperatures were measured to
show that paramagnetic (Korringa) relaxation was occurring.

al ESR spectrometer shows at least an order of magni-
tude improvement in the signal-to-noise ratio. These pre-
liminary measurements, therefore, indicate that concen-
trations of a couple of orders of magnitude smaller might
be detected with the Josephson technique.

V. CONCLUSIONS AND DISCUSSION

We have developed a theory for wave-vector-dependent
dynamic susceptibility and ESR measurements for a
variety of Josephson-junction geometries. These include
SIS, SNS, SISN, and SINS planar junctions. In addition,
the theory for the point-contact SNS junctions and
SQUID arrangements relevant to recent experiments has
been described. Estimates of the various parameters have
been given.

Measurements by Baberschke et al.5 have confirmed
our estimates for ESR in point-contact SNS structures
developed by Pellisson et al. and show the technique to
be practical. It is easy to argue that under favorable cir-
cumstances the currently proposed technique represents
the ultimate radio spectroscopic ESR or X(q, co) measure-
ment for a metallic sample. Consider the excess current
I,=I (I/R), i.e., the—difference between the actual
current and what the current would be if the junction
were purely resistive. Since I, V represents a power sup-
plied to the junction, it must be that the excess current is
associated with some loss mechanism. It is not difficult
to identify this loss as being due to the normal current in
the N layer at the frequency observation co. To this we
add the observation that this current is restricted to the
region of the junction which is occupied by the magnetic
system under observation and for this reason it is intrinsic
to the measurement. %e then compare this to a standard
ESR experiment. In such an experiment there is the iden-
tical loss mechanism in the region of the sample which is
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observed due to the absorption of power by the currents
which screen the applied rf field. Clearly, in both cases
there is a noise associated with these normal currents
which is intrinsic to the experiment and unavoidable.
Under the circumstances envisaged in this paper, I,-I
and so the noise associated with I and I, are comparable,
while in practice these two are the principal noise source
intrinsic to the device. Finally, with a high quality
SQUID it is realistic to expect that the noise associated
with the I-V measurement is no greater than that generat-
ed by the measuring device. We conclude that the en-

visaged spectroscopic measurement is limited only by the
unavoidable rf noise generated by the sample adding
another Josephson-type measurement to those which are
limited only by intrinsic considerations.

Dynamic susceptibility, X(q, to) measurements for wave
vectors q up to several percent of the way to the BZ edge

appear to be possible. The estimated response is so large
that potentially less sensitive, but more convenient, SISN
geometries might be used. The normal sample forming
the N layer might be evaporated on prefabricated SIS
junctions. The response is less because, except for very
thin films of thickness less than the London penetration
depth, the rf field, and therefore the coupling of the
Josephson effect to the magnetic system, decays exponen-
tially with the S-layer thickness.

The principal difficulties of this technique for spectro-
scopic measurements are the need to make the sample a
part of the junction, the restriction to the low tempera-
tures necessary for superconductivity, and the problem
that type-I superconductivity will only coexist with low
magnetic fields.

Possible solutions to these problems consist of the use
of point contacts developed by Pellisson et al. i and used
in the measurements by Baberschke and co-workers, ' in
which case the s ample consisted of a rolled foil of Au:Gd.
Another possibility which would permit the use of bulk

samples in both X(q,co) and ESR measurements is again
the use of pre-evaporated SNS or SIS junctions simply
placed in close physical contact with a bulk sample. Since
the important coupling is inductive, good electrical con-
tact is not essential. This has been confirmed by studies
of NISISIN structures not reported here. For junctions
with a large resistance, lumped SQUID geometries, which

physically separate the sample and Josephson device,
might be possible. Larger fields necessary to perform

some ESR measurements could be facilitated if the mag-
netic field were generated by control lines well separated
from screened junctions. Devices might also be fabricated
from type-II superconductors. One might even envisage,
within the bounds of existing microelectronic technology,
the local heating of the sample by resistive control lines.

Interesting possibilities for this technique are numerous.
In particular, the possibility of measuring X(q, co) for very
low wave vectors would permit the study of critical
dynamics for the hydrodynamic regime of concentrated
magnets. Perhaps more exciting is the possibility of simi-
lar studies on spin-glasses. Such studies might well con-
firm or reject the possibility of the existence of a spin-
glass phaie transition. The small size and low power re-

quirements of Josephson-junction spectroscopy are com-
patible with the use of dilution refrigerators to attain very
low temperatures. ESR measurements on very dilute
"ideal" spin-glasses at temperatures less than 1 K would
be possible. The dynamics of single-ion (or possibly lat-
tice) Kondo systems might also be studied at low tempera-
tures.

There is also the speculative but interesting possibility
that SN point contacts might be used for ESR and
perhaps X(q, to) measurements. The existence of an ac
Josephson effect seems to have been demonstrated for
point contacts of this kind. ' In fact, the "series" resis-
tance needed in the analysis of the recent ESR work with
SNS point contacts suggests that either the top or the
bottom SN contact was not good and that these were, in
effect, SN paint-contact measurements. It is hoped to
develop a detailed theory for this possibility in the near
future.

Finally, it is interesting to note that there is an appreci-
able coupling of the ac Josephson effect to phonon modes
in SIS junctions. 2 A rather straightforward extension of
the present theory to include lattice currents might ex-
plain the current data. Should such an approach prove
correct, it would appear that the Josephson effect is cap-
able of producing not only monochromatic photons but
also phonons with a we11-defined wave vector. There are
no skin-depth problems associated with phonons and
again if our estimates are accurate it will be possible to ex-
tend this technique, currently only selective with respect
to the frequency, to one which would measure phonon
dispersion relations up to a few percent of the way into
the BZ.
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