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Dynamics of a disordered monatomic solid with continuous distribution of force constants
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The average local-information transfer approximation (ALITA) Green's function (Go(co))
(where Q and to are the wave vector and the frequency, respectively) and related longitudinal (L) and
transverse (T}dispersion curves, frequency spectrum and neutron inelastic scattering (NIS} cross sec-
tion have been calculated for a monatomic solid„disordered with respect to interatomic coupling and
atomic configuration. Rectangular, elliptic, and Lorentz distributions of the self-force constants in

the nearest-neighbor central-force model have been assumed. It has been found that the frequency
spectrum of such a system is dominated by a huge peak at the average Einstein frequency due to the
T curve, and a bump at lower frequency representing the first minimum in the L curve. Force dis-

order manifests itself in extending the range of frequencies and in rounding off the details of the
spectrum corresponding to configuration disorder. Besides, the plane-wave deformations with wave

vectors in certain "Q gaps" cannot contribute to normal modes of vibration in disordered solids.
The NIS cross section at large momentum transfer RQ leads directly to the spectrum of Einstein fre-

quencies. If this spectrum has a sharp edge at 0, then essential deviations from the Debye type of
frequency spectrum and from the T' law for vibrational specific heat at low temperatures do ap-
pear.

I. INTRODUCTION

Numerical investigation of large clusters of topological-
ly disordered atomic systems leads to a good description
of the experimental situation for several disordered
solids —see, e.g., the review of Hafner. ' However, due to
the finite dimensions of such clusters (less than ten atoms
in one direction), some arbitrariness in taking boundary
conditions, and several approximate, although ingenious,
tricks in the numerical procedure, the quality of the
description does not necessarily mean that all has been ex-
plained. In particular, the numerical procedures are not
very useful in predicting correlations between experimen-
tal spectra. To do that one has to have a simple (even if
approximate) and transparent approach. Such an ap-
proach has been r~ntly developed —an analytic construc-
tion of various spectra in terms of the same Gro:n's func-
tion for topologically disordered solids. ' Let us briefly
recall the idea.

For monoatomic systems the frequency spectrum can
be expressed exactly, and the neutron inelastic scattering
(NIS), the first-order Raman (FOR), and the infrared ab-
sorption (IRA) spectra can be expressed approximately in
terms of the Fourier transform of the displacement-
displacement Green's function

(G&(to)) = I dte' '—g ((uR(t), uR(0)) )e'~'
&R,R

(l)
where uR(t) is the displacement at time t of an atom from
its average position R. For example, the (squared) fre-
quency spectrum is (A, -co ),

G(A, )- Qlm[Tr(G&(co+is))],
9

i.e., the frequency spectrum is g(to)=2coG(to), whereas
the NIS cross section has roughly the form

d2 Nis
-n (to)Q Q( Im(—Gq(to+is) ) ), (3)

(4)

where W=W/W, the 8' is the distance between nearest
neighbors, and I is a coupling parameter. VAth the num-

where fig and %co are momentum and energy transfers in
the scattering, respectively, and n (co) is the Bose-Einstein
factor. Similar expressions appear in the FOR and IRA
cases.

The function (Gq(to)), central to this approach, has
been derived in the average local-information transfer ap-
proximation (ALITA) and applied to model-disordered
solids with isotropic and central forces between nearest
neighbors. With use of this function, the impact of con-
figuration disorder, mass disorder, and force disorder cor-
responding to two different scalar self-force matrices has
been established. '

In this work we intend to determine in full the role of
disorder in interatomic coupling, using the above-
mentioned nearest-neighbor central-force model. It
should be emphasized that such interatomic forces are in
general capable of securing the stability of solids. Such a
model was recently used also by Bhatia and Singh to fit
the "phonon dispersion curves, " found numerically by
several authors. We assume the force-constant matrix (of
the theory of small variations) between the atom at the
average position R and its nearest neighbor at
R'= R+WR to be (see Fig. 1)

—IWRWR for
( WR~ = W,

@R,R' @R,%»
0 othenvise,
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ber of interacting nearest neighbors n and the parameters
I and W fixed, and possible differences in the self-force
matrices for different atoms

q'R= —g @R,w (5)
'W~

neglected [Eq. (5) is in fact the translational invariance

condition], we have arrived in Ref. 3 at the following
"dispersion curves, " corresponding to purely configura-
tional disorder

Qi = h2(QR'),
M

O', = "
[h,(gW) —h, (gW)],

M

where, with p =QW

ho(p) =—1—l sinp

2 p

1
1 6 sinp —p cosp

3
silip

p3 p

Both curves correspond to the poles of the ALITA
Green's function (G&(co)). At the same time the curve
Qi is the predicted geometric place of the NIS-peak posi-
tions in the c0-Q plane. In this case there is no force dis-
order.

What happens if there are a number of different cou-
pling parameters, assigned at random to interatomic
bonds? The answer '~ turns out to depend on self-forces:
If there is a finite number of different self-force matrices
then there appears a comparable number of frequency
gaps in the frequency spectrum and in the dispersion
curves of such a system. For example, with two self-force

matrices corresponding to isotropic coupling, %&l and

+al, in concentrations cq+cii ——1, we have single gap
near the average Einstein frequency [(cq %q

+ cubi q'ii ) /M)' . Some of these gaps have been observed
in the NIS spectra for substitutional alloys, but not for
topologically disordered solids so far.

In this paper we assume an extended distribution of
force constants, continuous in a certain range. Physically
it may be due to a continuous distribution of the inter-
atomic distances or to interbond angles varying in a con-
tinuous way throughout the solid. Apparently, the
normal-mode patterns of atomic displacements should be
more peculiar here than in the former cases. It will be
shown below, however, that even in this case there are in-
teresting manifestations of coherence in the NIS spectra,
as far as the AI.ITA scheme may be relied upon.

In Sec. II we introduce the distributions and derive the
Green s function. Dispersion curves are discussed in Sec.
III. To calculate the frequency spectrum we have to in-
troduce the cutoff function to carry out the Q integration
in Eq. (2), as discussed in Sec. IV. The possibility of
determining the distribution of Einstein frequencies from
experimental data is discussed in Sec. V. In Sec. VI we
examine the plane-wave contribution of normal modes in
disordered systems. Finally, in Sec. VII we try to support

FIG. 1. Model of monatomic disordered structure with the
nearest-neighbor bond distance F fixed. Central-force model
arises if the interatomic bonds are free springs.

the idea that known anomalies in frequency spectra and
specific heat of disordered systems may be due to a singu-
lar pileup of Einstein frequencies in the zero-frequency
limit. Conclusions are given in Sec. VIII.

II. CALCULATION

OF THE GREEN'S FUNCTION (5q(ru} )

We have to establish the form of the Green's function

(G~(co}) and of the related functions assuming such dis-
tributions of force constants, which make the task both
reasonable and tractable. Let us start from some of the
general formulas of Refs. 2 and 3. In the ALITA one
finds the following form of the Green's function for a
monatomic solid:

A, A.ee + -ee
co M 4~(m) —co M —4(2(co)

=Qer~+(I —Qe)r~,

where Q=Q/Q, and the form of the Q dependence fol-
lows from isotropy of the system; M stands for atomic
mass. The functions 4~' (co) are related to the effective
dynamical matrix

((L4)q)@a= =QQ@g(~)+ (& —Qe)+'g(~),

where

((LC )Q) g LR@RRsin [Q.(R—R')/2]
& RR

and (L ) is the average locator:

( L ) = 1/3N g TrLR,

where the locator is

LR ——(co M I —O' R)
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2. They are symxnetric with respect to A, =l. This means
that %0 is the average self-force constant and ego is the
average Einstein frequency. The width parameter a is a
measure of the interatomic coupling disorder. From now
on we assume co ~ 0, i.e., sgn(er0) =1 and we can forget it.
The functions I "and I of Eq. (8) can now be written as
follows (p =QW):

1 .Lr L T A(A)
'P AA(A, )+f (15)

fLT
('LT 1) 1 'L [6h (p)] 1

i~ = [3ho(p) —3h2(p)] (16)

Functions fz' are displayed in Fig. 3. Now we have to
distinguish between two cases:

(i) p(A, )&0, i.e., the frequency is in the band of disorder;
it is so for 1 —a g A. ~ 1+a for rectangular and for elliptic
distribution. One obtains from (15):

0.5

2 3 4 5

—ImI "(oi+is)=
qic~ [fp +RA i(A )]z+[nip(A)]

(17)

(ii) p(A, )=0, i.e., the frequency is outside the range of
the self-force distribution, e.g., 1 —a pA, or A, p 1+a for
rectangular or for elliptic distribution; shortly, we are out
of the band of disorder. Formally we can take the limit

[ohio(A, )]~0 in (17) to arrive at

Iml q—(ate+i e) = ir5(f, +XA, (X)) . (1S)L P ~P L

FIG. 4. Calculated NIS profiles (17) for Lorentz distribution
with a=0. 1, in several p-constant (i.e., Q-constant} and co-

constant scans. Dispersion curves (6) for purely configurational
disorder, a =0, are also shown: here ~"' =3MO, i. T/(nl).
Shaded area shows the 1 —a ~ A, g 1+a region.

Let us remember that the function —Iml (co+is) gives
the NIS profile (3). In the band of disorder the
—ImI" ' (co+is) profiles are broad. Obviously it is so
everywhere with the Lorentz distribution, see Fig. 4.
However, as the peak width -Ap(A, )/

~
Ai(A, ) ~, it goes to

zero for A, ~O (acoustic limit) even in this case.

III. DISPERSION CURVES

Now let us look at the "dispersion curves" given by the
equation '~

6"' (A, )
—=AAi(A, )+f~

' =0 . (19)

These equations may have many solutions for a given
Q—see Fig. 3. The Q ranges, where they have the out-
of-band solutions

—ImI ' (co+iE)-Iz' 5(A, —A.z' ), (20)
FIG. 5. Lower part: longitudinal dispersion curves for ellip-

tic distribution. Thick line: a =0.6, thin hne: a =0.3. Insets
show some NIS profiles for the disorder-band parameter
a =0.3. Horizontal lines mark the edges of the band in both
cases. Dashed line is the L-dispersion curve (6) for purely con-
figurational disorder. Upper part shows the I~" intensity [see
(20}jof the 5-function part of the NIS cross section correspond-
ing to the L-dispersion curves in lower part. Note the Q gaps
and the absence of the coherence range III for a =0.6.

[where Az are the roots of (19) and Iz =1/
~
&'(Az )

~ ), will
be called the coherence ranges. The NIS profiles are 5
functions there. The remaimng Q ranges, those without
solutions, will be called the g gaps. Figure 5 shows the
plot of the dispersion curve A~ and its intensity I~ versus
p, for elliptic distribution.

It is clear from Fig. 2 that with rectangular distribution
the sequence of the coherence ranges is infinite —see the
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singularity at A, =1.3. Two remaining self-force distribu-

tions are smoother from it and so the number of coher-
ence ranges is finite. Because of the continuous behavior
of the function —AAi(A, ) for A, ~O and f~' for p~O,
there always exists the first coherence range, at least for
0+1.

The dispersion curves Qi q(p) given by Eq. (6), corre-
sponding to purely configurational disorder, are also
shown in Figs. 4 and 5. On comparing, we can see that
force disorder (i) expands upwards the range of allowed

frequencies, (ii) introduces the Q gaps, and (iii) produces
broad NIS-intensity profiles in the band of disorder apart
from the sharp ones outside the band.

IV. FREQUENCY SPECTRUM

Let us see in which way the force-constant disorder
shows up in the frequency spectrum g(ei) or G(A, ) (total
density of states). The Q summation in (2) is divergent
with the ALITA Greens function —it is the main defi-
ciency of this approximation. There is a good argument
for "improving" the convergence by multiplying the
Green's function with a properly chosen cutoff factor, to
reduce the large-Q contribution. As this step is rather
arbitrary, let us first distinguish these features of the spec-
trum which follow directly from the details of the L and
T dispersion curves and from the form of the p distribu-
tion of self-forces.

In the band of disorder the spectrum is just a deformed
distribution p(A, }, as it follows from Eq. (17); see also the
NIS Q-constant profiles in Fig. 5 and Sec. VII. If the
band is well defined and narrow enough, we may have in
the spectrum the contributions of region II and further
coherence ranges. In each of them the dispersion curves
attain a maximum or minimum range. These extrema
contribute to the spectrum the singularities of the x
type.

If the bandwidth parameter a ~ 1, then there always ex-

ists in the spectrum the Debye region, where 6-A, '~2 or

g -co . The first coherence range then exists also.
Now let us do the Q integration in (2) to obtain the fre-

quency spectrum. The Lorentz distribution of self-forces
is most convenient for this purpose, because of its
continuity —the band of force disorder extends indefinite-

ly and there are no singularities. [For the convenience of
calculation of the function Ai(A, ), the lower limit of in-

tegration in (14) has been shifted in this case to —oo. The
resulting tail of negative self-force constants ql &0 is of
little importance, if the parameter a is small enough. ]

The Gaussian form proposed before has been used as
the cutoff factor: (p =QW)

—(p/p )2
F(Q)=e ~—:e (21)

To give some estimate of a or pa, let us recall that for
crystal the corresponding function may be taken as F= 1

in the Brillouin zone, and I' =Q besides. The volume of
the zone in terms of the atomic radius r0 is 6m /r0 (for
monatomic systems). We require that with the form (21)
the integral f Fd Q equals the same. Assuming that the
distance between nearest neighbors 8 =2rz, we obtain a
fairly reasonable estimate:

W
2 ~ 61/3 1/6 (22)

With the cutoff parameters near the above values, the de-
tails of the dispersion curves between p =0 and the
second extremum may be visible in the frequency spec-
trum. The first minimum in the Q~ curve should show

up well because the volume element of integration Q dQ
is of great importance there and the component [n.kp(A, )]
in the denominator of (17) is relatively small. The situa-
tion is almost the opposite with the first maximum of the

Q~ curve, so the corresponding contribution to the spec-
trum is expected to be small. The Q(2 curve oscillates
near 1,=1. It should result in a strong peak in the spec-
trum near this value.

Figure 6 shows the results of such integration with the
half-width a =0.1 and pa ——6.77 [larger than the estimate
(22} to show the details more clearly]. They are consistent
with the above predictions. Perhaps the most interesting
feature is the bump about A, =0.6, corresponding to the
first minimum in the Q&, whereas the one corresponding
to first minimum, about A, =1.6, is weak. Both bumps be-
come sharper when the width parameter a decreases; be-
sides, bumps due to other extrema in dispersion curves
show up then. Qualitatively, the obtained spectrum is
similar to known experimental spectra for amorphous Ge
and Si, as we anticipated, except for the low-frequency
structure in the experimental spectra.

V. DETERMINATION OF THE SPECTRUM
OF EINSTEIN FREQUENCIES

FROM EXPERIMENTAL DATA

A hypothetical frequency of vibration of an atom when
its neighbors are frozen at their equilibrium positions is
called the Einstein frequency. In a crystal there are a few

FIG. 6. Spectrum of (squared) frequencies G(A, ), Eq. (2), for
the elliptic distribution of self-force constants with the
disorder-band parameter a =0.1. Cutoff factor (21) with

p0 ——6.77 was used in the integration. The curve marked 6
shows the contribution related to the L curve in Fig. 4; the
bump at k=0.6 is a manifestation of the first minimum in the
curve. Arrows show the positions of the first minimum and
first maximum; for purely configurational disorder, a =0, the
singularities of the x ' type would be present. Main peak in

the full spectrum 6~+26~ follows the behavior of the T-
dispersion curve near A, = 1.
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of them —e.g., for Al there is only one, =3.8 X 10'i rad/s
(Ref. 9)—and this notion is not very useful. In disordered
systems the neighborhood of each atom is different from
the others and so there are plenty of different Einstein fre-
quencies. For example, the spectrum of Einstein frequen-
cies, determined numericaHy by von Heimendahl' for a
large disordered Mn-Zn cluster, shows a formidable
width —about 90% of the whole squared-frequency range
of the normal-mode band for this case.

In the physics of disordered solids we have too few
well-conceived intrinsic characteristics. The spectrum of
Einstein frequencies would certainly be of great value in
this respect —it gives statistical information on the fields
of force the atoms move in—wn the condition that we
could measure it. We show below that neutron scattering
at large momentum transfers Q provides this function
directly, at least for the present monatomic case with
nearest-neighbor coupling only.

All we have to do is to put Q ~ ao (i.e., p~ ao ) in the
formula (17}. In this limit i&~1, f~~co, and we im-
mediately obtain

d 2~Nts
n(a)—)Iml "(co+is)-n(co}p(A), ,

da) dQ
(23)

i.e., from neutron inelastic scattering at large Q we can
get the spectrum of Einstein frequencies E(co):

N
E(a)) =2aip

Q)0

(24}

This is true for any distribution p(A, ) confined to a finite
range of A, & 0. If the system is more complex, multiatom-
ic, or if it has long-range interactions, then the formula is
probably less simple, but the principle remains true. In
this way, for the first time, the spectrum E(co) has been
shown to be a physical "observable. "

This observation enables us to understand the interrela-
tion between some spectra calculated numerically by
Hafner" for the large cluster of metallic glass Cao 7Mgo i.
He has found that at large Q several dynamical structure
factors (the NIS cross section being composed of them)
are "practically identical with TDOS" (total density of
states), i.e., with the frequency spectrum g (~).

In view of the result (22) they should instead be propor-
tional to the spectrum of Einstein frequencies, p(A, } or
F. (co). As mentioned in Sec. IV, in the band of disorder
the squared-frequency spectrum G(A, ) is the p distribu-
tion, properly deformed, and a similar relation holds be-
tween the functions g (co) and E(co). When both spectra
are spread over the same frequency range, then they can
be close to each other, which explains the Hafner result.

At the same time we have to emphasize that in spite of
all possible similarities the dynamical structure factor at
large Q [i.e., the function E(co)] and the frequency spec-
trum g(co) are basically different in their physical con-
tent. This fact follows directly from our simple and
transparent formulation, but semis to have been obscured
somewhat in numerical procedure.

VI. ON THE NATURE OF NORMAL MODES
OF VIBRATION IN DISORDERED SOLIDS

A neutron probe may be represented by a plane wave

(PW). It is able to interfere with the PW components of
normal modes of vibration and thus give us information
on them. The result of such PW testing is contained in

the function (G~(co)). In the present case the following
conclusions may be drawn.

No plane-wave deformations with wave vectors from
the Q gaps can be present in the normal modes. In con-
trast, the deformations with Q belonging to the coherence
ranges can participate in the modes. Qualitatively, the
amplitude Iz is a measure of such participation —we can
see in Fig. 5 how rapidly Iz falls to zero when the corre-
sponding Q approaches the Q gap.

At long wavelengths Q~O, one knows a priori that the
PW deformations are the normal modes in disordered
solid —this is a continuum limit and atomicity plays no
role. On the other hand, one expects that just the discrete
nature of the system should inhibit the propagation of too
short waves. In the present model one indeed finds that
the dispersion curve in the first coherence range ends up
on p =1.8 (for a =0.3, see Fig. 5), corresponding to the
wavelength =3.5W. But, rather unexpectedly, we arrive
at coherence ranges at still shorter wavelengths. The
second one is centered roughly at p =4 and provides the
highest-frequency PW coinponent of normal modes in the
system. The appearance of the second and further coher-
ence ranges depends on the shape and width of the p dis-
tribution. It is the force-disorder that creates the Q
gape —in the case of purely configurational disorder the
coherence range is infinite.

Let us look at the Q-constant NIS profile in Fig. 5 for
p = 1.6, a =0.3. It consists of the 5(A, —Az )-type peak at
A, =0.61 with the intensity factor I =0.78, and a broad
profile through the whole self-force disorder band. Al-
though confined to the band, the profile is different from
the original elliptic p distribution [as is obvious from
(17)], and its shape depends on Q through fz" (16). When
the dispersion curve approaches the band, the intensity I~"
falls to zero, whereas the total in-band intensity increases,
its peak approaching the band edge. The ro-constant NIS
intensity, according to (17), never reaches zero in the
band.

To fully exploit the meaning of the above, let us figure
out the system of decoupled atoms vibrating with single
Einstein frequency coo.

Im{G~(c—a+i s) ) ——Im(L ) -5(~—coo) .

In the Q-constant NIS scan a perfect PW normal mode (if
there was one) and the PW component of localized vibra-
tion would show up as similar narrow peaks. The situa-
tion changes drastically in the m-constant scan: the
plane-wave normal mode again provides a narrow peak,
whereas the local mode provides a constant intensity of
scattered neutrons at the energy transfer Rco=ficoo, zero
otherwise. If instead of the single level coo there is a band
of disorder, then, in the same scan, the intensity may vary
a little instead of being constant [see Eq. (17)],but narrow
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5-function-like peaks are still to he expected only beside
the band. The situation remains qualitatively the same if
we switch on the coupling between the atoms, except that
now the intensity in the band is lower —part of the degrees
of freedom have been used to set up the plane-wave com-
ponents of normal modes. The r0-constant scan is there-
fore appropriate for identification of the band of disorder
which, in a sense, is also the band of frequencies of local-
ized IDodes.

One should emphasize here, however, that our distinc-
tion between localized modes and those involving plane
waves does not have a direct relevance to the Anderson lo-
calization concepts. There, one seeks conditions under
which a given atom can vibrate with a single definite fre-
quency. ' Here, one investigates the whole macroscopic
system for the plane-wave contamination of its normal
modes of vibration.

VII. ACOUSTIC LIMIT

The low-temperature "vibrational" specific heat Cv of
some disordered three-dimensional systems shows the T"
behavior with n & 3. As at low frequencies the frequency
spectrum g-c0" ', this means that in such solids there is
a deviation from the typical Debye behavior g-ei .
Hence there must be a deviation from the linear relation
between the normal-mode frequency r0 and wave vector q,
r0-q, at long wavelengths

Just in this limit is it reasonable to identify the NIS
dispersion curves discussed in this paper with the disper-
sion curves of vibrational modes in the solid. Let us
therefore see whether the force disorder may modify the
usual u versus q dependence.

It can happen only when the force-disorder band [i.e.,
the A, range where p(A, )+0] reaches the A, =O point, i.e.,
for a =1. Details of the edge of the p-distribution at
A, ~O are essential here. Elliptic distribution and, with
some reservation, Lorentz distribution, lead to the usual
ru-q, because Ai(A, )~const as A, ~O. With rectangular
distribution, in the limit A, ~O, q~O, Eq. (19) gives

—co into2 2

g(co)-ei ( —lnr0) i

Ci.-T ( —lnT) ~

which is a definite modification of the Debye behavior. It
is easy to check that with Ai(A, )~—A,

'~ as A.~O, we
would have g(~)-co, which leads to Cv-T, whereas
with Ai(it)~ —A, as A, ~O there is g(co)-const,
which leads to C~-T. The form of the corresponding
functions p(A, ) is not known, but obviously they must be
singular at the zero frequency edge. This means there is a
strong accumulation of self-force constants (or Einstein
frequencies) approaching zero. It makes the system un-
stable with respect to macroscopic deformations. In the
present nearest-neighbor central-force model this is the
only way to make the system "floppy" in the sense of

Phillips and Thorpe. ' With a more flexible model, e.g. ,
one such as the axial force model, one may possibly arrive
at instabilities also at short wavelengths, on allowing the
first minimum in the co~ curve to approach zero. Some
such effects appear when tll= —0.2, where t represents
the isotropic coupling in the above-mentioned model.

VIII. CONCLUSIONS

The influence of the force-constant disorder on dynami-
cal characteristics of disordered solids has been calculated
exactly, within the ALITA, for the nearest-neighbor
central-force model of interatomic coupling. The force
disorder manifests itself in the smoothing of the details of
the frequency spectrum, as compared to the one for purely
configurational disorder, in the appearance of the Q gaps
in dispersion curves for such plane-wave deformations
which cannot be components of normal modes of vibra-
tion, and in the possibility of essential deviation from the
T law for the specific heat of the three-dimensional
disordered solids at T~O. Neutron inelastic scattering at
large momentum transfer has been shown to provide the
spectrum of Einstein frequencies, which in this way be-
comes physically observable. Numerical data of other au-
thors show that this spectrum can spread over a wide
range of frequencies. It should be considered as one of
basic characteristics of disordered solids. Possibly, to be
successful in understanding the dynamics of such systems
in more complex cases, one should first determine and
then take into account this characteristic. In general, it
can be done within the ALITA.

The present approximation exaggerates the importance
of the poles of the locator and, for many Q vectors, does
not provide any broadening. Usually the broadening of
the modes enters into theories via single-site multiple
scattering —see, e.g., the papers of Roth' and Singh' on
electronic structure of amorphous systems. In the present
work the broadening appears, for frequencies in the band
of disorder, as a manifestation of finite width of the spec-
trum of self-forces. No broadening appears for the fre-
quencies outside the band, which is a deficiency of the ap-
proximation.

Nevertheless, there is evidence'0" that for some sys-
tems the band of disorder covers a great part of the fre-
quency range where g(co)&0. In such cases traditional
efforts aimed at incorporating all multiple-scattering con-
tributions into theory may turn out to be less practical
than taking into account the correct width and shape of
the Einstein frequency spectrum E(~).
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