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We present a method for calculating elastic and inelastic scattering probabilities for light parti-
cles, such as helium and molecular hydrogen, scattering from surfaces with which they weakly in-
teract. The method is a unitary one-phonon approximation in which the scattering probabilities are
calculated from thermally averaged amplitudes which are generated numerically. The thermal
averaging procedure is more general than this application and could be applied to other systems with
weak inelastic scattering. We also discuss an approximation for the gas-surface interaction potential
that can greatly simplify calculations where it is applicable. Finally we present some preliminary re-
sults using this method to study rotationally mediated selective adsorption resonances in HD scatter-

ing from copper.

I. INTRODUCTION

In all experiments in which helium or molecular hydro-
gen are scattered from single-crystal surfaces both inelas-
tic scattering and selective adsorption resonances are
present and can have an important effect on the elastic
scattering. As the resolution of these experiments has im-
proved not only is it possible to extract, from the elastic
scattering, kinematical information like diffraction peak
positions and selective adsorption energies but it has be-
come possible to extract dynamic information like the dif-
fraction peak intensities and the resonance lineshapes. It
also has become possible to investigate inelastic scattering
processes leading to an understanding of the full gas-
surface interaction. To interpret these experiments and to
compare the results with calculated potential energies it is
necessary to be able to accurately describe the dynamics of
the scattering process. In this paper we present a method
for calculating scattering probabilities that can treat both
inelastic scattering and selective adsorption resonances in
the presence of the other. By studying inelastic molecular
hydrogen scattering, in particular the effects of the rota-
tional degrees of freedom on the scattering process, we
hope to both describe these scattering experiments and
discuss qualitatively how selective adsorption resonances
and inelastic scattering affect each other in more general
scattering situations.

This method is a unitary one-phonon approximation.
Unitarity, i.e., that the sum of all the calculated scattering
probabilities is one, is necessary for studying the thermal
attenuation of the elastic scattering probability and for
studying the coupling of selective adsorption resonances
and inelastic scattering. As we showed in a previous pa-
per! inelastic scattering is greatly enhanced by selective
adsorption resonances, so much so that the distorted wave
Born approximation breaks down. This breakdown is
caused by the overcounting of scattering events that is in-
herent in the Born approximation, and is corrected for in
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this new approximation by removing the overcounting. In
spite of the breakdown of the distorted wave Born approx-
imation at selective adsorption resonances a one-phonon
approximation is still the appropriate approach for study-
ing helium and molecular hydrogen scattering because
away from resonance the inelastic scattering probability is
still weak, so that once a resonant particle scatters inelast-
ically its subsequent scattering probability is low.

In the experiments® we wish to describe, the scattering
of H,,> HD,* and He,’ the low masses and moments of in-
ertia of these particles cause those particles that diffract
or undergo rotational transitions to leave the surface in
well separated directions. This angular separation allows
the detection of these effects simply by changing the rela-
tive angle of the detector with respect to the substrate and
source. Furthermore, since the physisorption potentials
wells are shallow, the bound states for these particles are
well separated in energy and can be observed in these ex-
periments through selective adsorption resonances. Selec-
tive adsorption resonances are observed in the intensity of
outgoing scattering peaks as a function of the incidence
conditions. They are due to virtual diffractive or rota-
tional transitions into bound states and are caused by ei-
ther the corrugation of the surface or its translational-
rotational coupling.

While the inelastic scattering for these systems is weak
enough to allow the observation of coherent elastic
scattering effects, it is not negligible nor unobservable.
The kinematical constraints of the scattering process per-
mit single Rayleigh phonon creation and absorption
events to be seen in the time of flight spectra of helium
atoms.” Rayleigh phonons are normal modes of a semi-
infinite surface that are localized to the surface; for a
given wave vector parallel to the surface they have an en-
ergy that is lower than all the bulk phonon energies. The
dispersion relation of the Rayleigh mode with respect to
the parallel momentum allows the identification of vari-
ous time-of-flight peaks as single Rayleigh phonon transi-
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tions. In the case of molecular hydrogen scattering the
decreased energy resolution and the increased inelastic
scattering probability make it more difficult to observe
single-phonon peaks experimentally. The stronger van der
Waals attraction felt by the hydrogen molecule, compared
to the helium atom, causes the molecule to scatter from a
steeper part of the repulsive potential,® which increases
the inelastic scattering. Increased multiphonon scattering
masks single-phonon peaks in the time of flight distribu-
tions. Another aspect of inelastic scattering of current ex-
perimental interest is the degree to which the rotational
degrees of freedom of molecular hydrogen affect the rate
of sticking in either physisorption’ or chemisorption®
states. One-phonon calculations can describe the initial
trapping step, when the sticking proceeds through such a
step. But to completely describe the sticking process it is
necessary to describe the transition of a trapped particle
into a stuck particle,’ and that is beyond the scope of the
current method.

The simple scattering behavior of helium and molecular
hydrogen allow straightforward calculation of the scatter-
ing rates. The small observed number of elastic and inter-
nally inelastic channels makes coupled channels calcula-
tions practical while the low inelastic scattering probabili-
ties mean one-phonon-change calculations are relevant to
the description of the scattering process. For heavier
atoms and molecules both the number of elastic channels,
which are not well separated experimentally, that have to
be included and the increased inelastic scattering make
both the observation and the calculation of elastic and in-
elastic scattering more difficult.

In many ways the present calculation is related to a
long line of previous calculations but it has some new
features. To describe the translational-rotational coupling
we use a coupled channels approach in which the wave
function is expanded in the spherical harmonics so that
the rotational behavior is calculated using a discrete set of
states instead of a continuum. The coupled channels
description of scattering from a static substrate has been
used to very accurately describe both helium'® and molec-
ular hydrogen!! experiments. The main point of such cal-
culations has been to extract the particle-surface potential
from the experimental scattering intensities. Since direct
inversion of experimental data to generate the potential is
impossible, it is necessary to search through possible po-
tentials to find the one for which the calculated scattering
probabilities best match those observed experimentally.
Alternatively the bound state energies, extracted from
selective adsorption resonances, can be used to determine
the potential. Provided both that the coupling that leads
to the resonances is weak and the resonances are well
separated from each other, the bound-state energies can be
extracted from the energies of the resonances using the
kinematics of the scattering process. If these conditions
are not satisfied then either a full coupled channels calcu-
lation or its equivalent is required to match the experi-
mental and calculated resonances.

Inelastic gas-surface scattering probabilities have been
calculated in many ways ranging from classical'? to fully
quantum mechanical. Between these two extremes, the
latter of which is discussed in more detail below, calcula-

tional approaches have included wave packet calcula-
tions' (both for elastic and inelastic scattering), and vari-
ous semiclassical calculations'* in which the motion of the
scattering particle is treated classically and the phonons
are treated quantum mechanically.

For helium and molecular hydrogen, quantum-
mechanical calculations are the most valid approaches due
to both the quantum-mechanical nature of the elastic
scattering process and the discrete nature of the one-
phonon-change scattering process. The simplest quantum
mechanical approach is the distorted wave Born approxi-
mation,'® which is a Fermi’s golden rule approach. The
rate for transitions caused by the creation or absorption of
single phonons, is calculated between scattering state
eigenfunctions of the flat static surface. The eigenfunc-
tions that are used in these calculations depend only trivi-
ally on all of the degrees of freedom except the motion
normal to the surface. This golden rule approach can be
used to include higher-order phonon processes but unless
further approximations are made the resulting calcula-
tions are difficult to carry out.!® As computing power has
increased, distorted wave Born approximation calculations
have been carried out using eigenfunctions in which
several of the degrees of freedom are coupled, for in-
stance, eigenfunctions of corrugated static surfaces!’ and
surfaces with translational-rotational coupling.! The ap-
proach we are using in this paper is related to these ex-
tended distorted wave Born approximation calculations in
that we treat the rotational diffraction on an equal footing
with the elastic scattering.

The distorted wave Born approximation is less ap-
propriate for calculating the elastic scattering probabilities
when they are changed by the possibility of scattering
inelastically. The simplest calculation of the elastic
scattering probability under these conditions is to multiply
the scattering probabilities by a Debye-Waller—like fac-
tor.'”® Another relatively simple calculation is to add a
phenomenological local optical potential'® to the rigid sur-
face potential when doing a coupled channels calculation.
The optical potential simulates the transfer of scattering
probability from the elastic scattering to the inelastic
scattering by absorbing intensity from the elastic scatter-
ing probability. This optical potential approach can be
improved by solving for the nonlocal energy-dependent
self-energy?° that correctly describes the elastic scattering
probability. A related approach is to include inelastic
scattering in a scattering matrix calculation to study its
effect on the elastic scattering line shapes.?!

A unitary calculational scheme, in which all of the
scattering intensity is accounted for and sums to unity, in-
volves an extended coupled channels calculation,?? extend-
ed in the sense that possible inelastic transitions are in-
cluded in the coupled channels calculation. The calcula-
tion is done for several initial occupations of the lattice
modes and then the scattering probabilities are thermally
averaged with respect to these initial occupations to get
scattering probabilities to compare with experiment.
Since the phonon modes form continua and any number
of phonons can be created or destroyed, it is necessary to
truncate the set of inelastic processes that are allowed.

The present calculation is related to both the optical po-
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tential approach and the extended coupled channels ap-
proach and forms a bridge between the two. It differs
from the extended coupled channels approach in that the
thermal averaging is done before the wave functions are
calculated; it also differs in that the solutions are calculat-
ed iteratively instead of at one time. The final results of
this calculation for the elastic scattering probability are
identical to those of a self-energy calculation?® mentioned
above but are calculated using different intermediate
quantities. In this calculation we chose to truncate the al-
lowed phonon changes to include only one-phonon-change
processes, but include all the phonon modes in the lattice.
We also specify how to treat the situation in which parti-
cles can trap on the surface, a situation that can cause
great difficulty if sufficient care is not taken.

We apply this method to HD scattering for two main
reasons, the most important being that experiments have
been performed on this system. The other reason is that
with present computer power this method is most applic-
able to HD scattering. Significant savings in computation
time result from being able to ignore the corrugation of
the surface, as is discussed in Sec. V, and from treating
broad as opposed to narrow selective adsorption reso-
nances, because the iterative calculations converge faster.
To study selective adsorption resonances and inelastic
scattering simultaneously and to take advantage of the
time savings mentioned above requires studying HD
scattering.

This paper is organized as follows: Sec. II gives the
general derivation of the thermal averaging, Sec. III con-
tains a unitary one-phonon-change approximation using
the results of the preceding section, Sec. IV discusses the
use of stationary state scattering results to calculate the
scattering probabilities, Sec. V gives the approximations
that are made on the form of the gas-surface interaction
potential, Sec. VI presents the result of some preliminary
calculations using this method, and Sec. VII contains a
summary of the main results of this paper.

II. THERMAL AVERAGING

In this section we show how thermally averaged scatter-
ing probabilities can be calculated in terms of amplitudes
that are already thermally averaged. This procedure does
not violate our concepts of statistical mechanics because
the amplitudes for the particle are not thermally averaged
with respect to the particle but with respect to the pho-
nons from which the particle is scattering. We are
averaging a reduced time evolution operator with respect
to the phonon coordinates; the time evolution operator has
been reduced by operating it on the initial state of the par-
ticle. We call this reduced time evolution operator an
amplitude-operator throughout this text to remind the
reader that it is both an operator on the phonon coordi-
nates and an amplitude for the scattering particle. The
thermally averaged amplitudes are the set of the thermal
averages of products of this amplitude-operator with all
possible combinations of phonon creation and destruction
operators. This amplitude-operator can be used to calcu-
late all the properties of the particle scattering from any
surface so that all the thermally averaged properties can
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be calculated from the thermally averaged amplitudes.
These thermally averaged amplitudes obey a hierarchical
set of equations of motion which can be solved and used
to give the thermally averaged scattering without explicit-
ly thermally averaging.

Our development of the amplitude-operator is based on
studying the time evolution of the state of the system. We
start at some initial time (¢ =0) with the scattering parti-
cle in some initial state that is localized sufficiently far
from the surface so that it is not interacting with it, then
the state of the system is given by a product ket of that in-
itial state, |X(0)), and the initial state of the phonons,
| {n;}), which is specified by the occupation of all the
normal modes of the surface

|W(0))= | X(0)) | {n;}) .

The straightforward method of calculating the thermally
averaged scattering probabilities is to calculate the scatter-
ing probabilities for the initial particle state scattering
from each lattice state in an ensemble of surfaces and then
averaging the scattering probabilities weighted by the
thermal probability of each surface in the ensemble. In-
stead of this procedure, we show that we can calculate the
thermally averaged scattering directly from thermally
averaged amplitudes.

The time evolution of the state of the whole system,
from which the scattering probabilities can be obtained, is
given by operating on the state (2.1) with the exponential
of the full Hamiltonian multiplied by the time

| W(e)) =e~Ht | W(0)) .

(2.1)

(2.2)

Since the Hamiltonian couples the motion of the scatter-
ing particle with that of the phonons, the state is no
longer a product state once the particle starts to interact
with the surface but can be thought of as a sum of prod-
uct states. Below we write this sum of states in terms of
how the occupations of the phonon modes have changed.

A. Hamiltonian

The Hamiltonian is broken into three terms: the Ham-
iltonian, H\,,, of the lattice in the absence of the scatter-
ing particle, the Hamiltonian, Hp,y, of the particle in the
absence of coupling to the phonons, and the potential,
Vint» that couples the motion of the scattering particle
with the motion of the phonon coordinates. The particle
Hamiltonian includes both the kinetic energy of the parti-
cle and the potential that couples the particle with the lat-
tice minus the interaction with the static lattice

H=Hpy+Hpn+ Vi - (2.3)

The weak inelastic scattering and small changes in pho-
non occupations allows us to describe the lattice by a har-
monic Hamiltonian because the subsequent anharmonic
effects are even smaller in a real system. In

Hiy= wa fax . (2.4)
p

the phonon modes are labeled by a composite index A
which includes the momentum of the mode parallel to the
surface, the polarization, and either the asymptotic
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momentum normal to the surface far from the surface for
bulk derived modes, or the decay length into the surface
for modes that are localized to the surface.

In this section we make several approximations only to
simplify the presentation. For example, we use a Hamil-
tonian for the scattering particle that just consists of the
kinetic energy due to its center of mass motion and a po-
tential energy due to the presence of the static lattice that
depends on the position of the center of mass

2
Hipp= {? +V(r). 2.5)

The momentum of the center of mass is p and the posi-
tion of the center of mass is r. Throughout this paper
lower case boldface letters refer to three-dimensional vec-
tors (e.g., r), boldface upper case letters refer to two-
dimensional vectors that are perpendicular to the surface
normal which we choose to be the z direction (e.g, R),
and italic versions of the boldface letters are the norm of
the vector (e.g., p).

For simplicity we take only that term in the interaction,
Vint» between the particle and the phonons that is linear in
the phonon coordinates

1
Vim=——‘/——N—§[Vx(r)a§+H.c.] . (2.6)

The factor of N 172 associated with the sum over the
modes of the lattice (N is the number of atoms in the sur-
face) comes from writing the displacement of each lattice
atom in terms of the normal coordinates of the lattice [see
Sec. V, Egs. (5.4)—(5.6)].

The procedure for thermal averaging that we present
does not depend on either the neglect of the internal de-
grees of freedom of the scattering particle or the exclusion
of more than the linear term in the interaction potential.
We make these approximations to improve the clarity of
the presentation. In particular, later we include the rota-
tional degrees of freedom to study molecular hydrogen
scattering.

B. Time evolution

Since we are not interested in the behavior of the lattice
except to the extent that it affects the motion of the parti-
cle we define a quantity W that we refer to as an
amplitude-operator. It is an amplitude for the particle
and an operator for the phonon coordinates with the time
dependence of the lattice factored out

U(r,=e""" (x| e~ | X(0)) . 2.7

In a related gas-surface scattering calculation Celli and
Maradudin®® use this amplitude-operator to calculate elas-
tic scattering probabilities in the presence of inelastic
scattering. The amplitude-operator and the time evolu-
tion operator of the uncoupled lattice give the time depen-
dence of the molecule scattering from any initial set of
phonon coordinates when they operate on that initial
state. In particular, using Egs. (2.1), (2.2), and (2.7),
(r|W(t)) can be written as

(r| W)y =e T2P(r,0)| (n;}) . (2.8)

The utility of this amplitude-operator is that its time
dependence is independent of the initial state of the lat-
tice; this independence allows the calculation of the
scattering from any particular surface in the ensemble us-
ing just this one operator. The equation of motion for ¥,

i%@(r,t):Hpm(r)Q’(r,t)—}- ?int(ryl)\/i’(r,t) (2.9)

is obtained by taking the partial derivative with respect to
time of the defining equation (2.7). The two terms con-
taining the lattice Hamiltonian cancel. The particle Ham-
iltonian commutes with the lattice Hamiltonian. The
time dependence of the interaction potential is that due to
the noninteracting lattice

—iH,t iH,t

ﬁm(r,t):e Vime

=71‘17 Z[h(r)e“"*’ahﬂ.c.] ) (2.10)
A

The time dependence of ’Vim is not that of any of the con-
ventional approaches (Schrodinger, Heisenberg, or interac-
tion picture) but is the interaction picture for the lattice, a
picture in which operators have the time dependence of
only part of zeroth-order Hamiltonian, i.e., that of the lat-
tice Hamiltonian. We choose to treat the time dependence
this way because we are only interested in the lattice time
dependence as far as it affects the particle’s motion. Since
the time dependence is known exactly it can be removed
from the calculation.

Since the lattice Hamiltonian commutes with any parti-
cle operator and does not change any particle state when
operating on it, we can use the amplitude-operator to
evaluate the expectation value of any particle operator.
For example, consider

(W(1) | Opart | W(1))
= [a* [ & ({n} | ¥ e,
X Opan(6,E)¥(r',0) [ {n;}),  (2.11)

where we have inserted two complete sets of particle states
(in the position representation) around the particle opera-
tor. Note that Op,(r,1’) can be taken outside of the pho-
non matrix element. Since Eq. (2.11) is valid for any
operator O, all the properties of the scattering particle
are contained in the density matrix, which is ¥ times its
Hermitian conjugate. Accordingly, thermally averaging
the expectation of any particle operator just involves in-
tegrating over the thermally averaged density matrix

(WD) | Opart | (1)) D
= [d* [ d*r 0, (¥ 5,0 ¥(r,0) .
(2.12)

Calculating the thermally averaged density matrix from
quantities that are independent of the initial state of the
lattice is possible because the time evolution of the
amplitude-operator is constructed to be independent of the
initial state of the lattice.
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C. Multiphonon expansion

To further simplify the calculation of the scattering
probabilities we break up the amplitude-operator into
amplitude-operators for each of which there is a specific
change in the occupation of the lattice modes. In particu-
lar there is a term in which the occupation of each of the
lattice modes has had no net change, a sum of terms in
which exactly one mode has had a net increase or decrease
of one phonon, and further terms for every possible net
change. We write these terms by explicitly factoring out
|

1

@(r,t)="l70ph(r,t)+—‘7—]—v‘

Each of these new phonon-change amplitude-operators
can be written as a sum of terms that are amplitudes (i.e.,
they contain no phonon operators) times pairs of phonon
operators such that the index of both the creation and the
annihilation operator in each pair is the same. Associated
with each pair of phonon operators there is a factor of
N ! and a sum over the lattice modes. There is only one
sum with each pair of operators because we have taken
only those terms in which the operators are paired; the
rest of the terms from the same applications of the in-
teraction potential are in higher-order phonon-change
terms because they have more unpaired phonon operators.
For example, the zero-phonon-change term can be written
as

@oph(r,t)zngph(r,t)ﬂ-%; 2¢(’5ph(r,t)a{al+-1—$7 D REEEN
Fy

M 2.14)
|

2[ax(t)q’lph(f,t,l,+)+0A(t)®1ph(l'yt,l,—)]+‘1% > .
x
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all of the unpaired phonon operators from each term.
Each phonon creation or destruction operator in the in-
teraction potential which lead to these changes in phonon
occupations, has associated with it both a sum over the
modes of the lattice and a factor of N ~1/2, where N is the
number of atoms in the lattice. We write this factor expli-
citly in front of the sum so that all of the newly defined
amplitude-operators are not proportional to any power of
the size of the system (see below). Thus, the decomposi-
tion of the amplitude-operator in terms of phonon-change
amplitude-operators is given by

(2.13)
AN

r

All of the amplitudes and amplitude-operators discussed
in this paper are independent of the size of the system in
the limit that the size of the system becomes infinite be-
cause all sums of paired operators over 3N terms are can-
celed by a factor of N~!. Some of the sums over lattice
modes of unpaired operators should be restricted so as not
to include the terms that are counted elsewhere because of
pairing, but the corrections are not important or even
relevant because all the restricted terms are negligible in
the large N limit.

Since any expectation value over phonon states requires
that all the phonon operators must be paired to give a
nonzero result, the thermally averaged density matrix can
be written as a sum of the thermal averages of the square
of each phonon-change term

<®*(r,r>®<r',t>>th=<®3,,h<r,t>@oph<r',t>>m+—117 S A, +)aa V(A +) g,
A

+(‘/l\’J,rph(r,t,l,—)a;ak\’i’lph(r',t,k,—))th]+pz— > -

L (2.15)

AA

All of the creation and destruction operators on the right-hand side of this expression are explicitly paired, and all are
summed over. In each of these expectation values there are many terms that contribute; contributing terms are called
correlated if the index of one of the paired phonon operators is identical to that of another pair. In the large N limit all
correlated terms have a factor of N ~! that is not associated with a sum and hence vanish as the number of lattice atoms
becomes infinite (see Appendix A). This vanishing of correlated contributions allows each of these thermal expectation
values of a product of operators to be written as a product of expectation values

<®*(r,t)ﬁ/<r',t>>th=<®£,,h(r,t)>th<®o,,h<r',z)>,h+% 3P th, + ) mra+ D (64, +) Y
A

RIS

+(@Iph(ryt’}\’—)>thnl<q\/lph(r"t’}\-,—))th]+ 2
N= v
(2.16)

[

Although the left-hand side of Eq. (2.15) and the first
term on the right-hand side of the same equation appear
similar, the difference is that in the quantity on the right-
hand side, all the phonon operators in each factor are ex-

plicitly paired; in the quantity on the left hand side, each
factor contains unpaired operators that when paired with
operators from the other factor give rise to the rest of the
terms on the right-hand side of the equation.
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D. Thermally averaged amplitudes

Thermally averaged n-phonon-change amplitudes can
be defined by the thermal expectation value of the n-
phonon-change amplitude-operators, in which we
thermally average the paired phonon operators in the par-
ticle amplitude-operator. These thermally averaged am-
plitudes can be equivalently defined by taking the thermal
expectation of the product of some phonon creation and
destruction operators, which have the time dependence of
the uncoupled lattice, with the amplitude-operator. This
equivalence results from there being only one term in Eq.
(2.13) that does not have any unpaired phonon operators
when multiplied by the product of phonon operators. The
zero-phonon-change amplitude

1,b()ph(f,t)5 (Q’oph(r,t))th: <\/I\’(r,t)>zh ’

is the thermally averaged amplitude for the particle given
that the lattice is in its initial state. We show that this
amplitude describes the elastic scattering of the particle.
There are two types of one-phonon-change amplitudes,
]

(2.17)

4495

those that are the thermally averaged amplitudes for the
particle given that the occupation of exactly one-phonon
mode has increased by one

¢1ph(r,t,l, + )= < \’I\’lph(l',t,A,, + ) )th

=—‘/§1—)‘(a;’(t)\i’(l‘,1)>th ’ (2.18)

(flk

and those given that the occupation of exactly one mode
has decreased by one

Vipn(n A, =)= (W (0,4, —) ),

‘:N_ (a](OW(r,0))y, .
A

(2.19)

These amplitudes and the further n-phonon-change am-
plitudes describe the inelastic scattering of the particle.
The density matrix can be written in terms of these
thermally averaged amplitudes and the thermally aver-
aged occupation numbers of the lattice modes as [see Eq.
(2.16)]

("I\I T(r’t)(i/(r,’t) )th=¢5ph(ryt)¢0ph(r”t)+ Xl; 2 [ l,brph(r’t’)\'a + )(nA+ 1 )lﬁ]ph(r',t,k, +)
A

+¢rph(r»ty}""“ )nk¢1ph(r”trkr—)]+F 2 T

The advantage of writing the density matrix in terms of
the thermally averaged amplitudes is that these ampli-
tudes obey a hierarchical set of equations of motion and
do not need to be explicitly thermally averaged.

The equation of motion for the zero-phonon-change
amplitude, g, in which none of the lattice mode occu-
pations have changed, is found by thermally averaging the
equation of motion (2.9) for the amplitude-operator

i%gboph(r,t): Hopord (Dioga(,1)

o S+ DVAOim(nt i, +)
A

Vi (Ddim(nEA, —)] . 221)

The equations of motion for the one-phonon-change am-
plitudes, in which only one-phonon mode occupation has
changed, are found by thermally averaging the same equa-
tion of motion after it has been multiplied by the ap-
propriate creation or destruction operator and then scaling
the resulting equation by the prefactor in Eqgs. (2.18) and
(2.19)

. 0
17— —w,

ot l/’lph(r’tyky‘i")

= Hpar (DP1p0(5,1,A, 4+ ) + V3 (D)opn(T,7)
o S L0+ DV (4, 4,4, +)
<

e VE(Oen(n LA, +,1,—)] . (2.22)

! (2.20)

AL

r
The w, term on the left-hand side of the equation comes
from pulling the time-dependent creation operator
through the time derivative. The zero-phonon-change
term on the left-hand side becomes the term in the last
sum when A=A’; for this term the two explicit operators
(one from the premultiplication and the other from the
potential) are paired together instead of with two unpaired
operators in the amplitude-operator and the expectation
becomes the occupation of that mode times the zero-
phonon-change amplitude. The correlated contributions
are again negligible because of unbalanced factors of N ~.

The equations of motion for the two-phonon-change
amplitudes can be defined in a manner similar to that for
the one-phonon-change amplitudes, leading to a hierarchi-
cal set of equations of motion. This procedure for calcu-
lating thermally averaged properties is quite general for
any system in which a few degrees of freedom are coupled
to an infinite phonon system. The approximations we
have made up to this point have been made just for the
clarity of the presentation. For instance, the inclusion of
anharmonic terms in the interaction potential just compli-
cates the equations of motion for the thermally averaged
amplitudes. In this case the n-phonon-change amplitudes
would be coupled to more than just the (n —1)- and
(n +1)-phonon-change amplitudes. Even though this ap-
proach is an exact solution to the scattering problem, a
hierarchical set of equations of motion is useful only if
the higher-order phonon-change terms are unimportant.
For the contributions of the n-phonon-change terms to
become unimportant in the limit that n goes to infinity,
the coupling between the phonons and the scattering par-
ticle should be weak as is the case for thermal energy heli-
um and molecular hydrogen scattering.
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III. ONE-PHONON APPROXIMATION

For systems in which the inelastic scattering is weak,
we truncate the set of thermally averaged amplitudes to
include only zero- and one-phonon changes. The equa-
tions that describe this approximation come from those of
the preceding section with the higher-order phonon-
change amplitudes set to zero. The equation of motion
for the zero-phonon-change amplitude is unchanged be-
cause the interaction potential we used included only the
term linear in the phonon coordinates, i.e.,

d
ot Hpen

i

Do) = = S 1120 Vg (Dyon(5 1,1 0) -
Opl N £ p

(3.1)

We have made the one-phonon-increase and one-phonon-
decrease amplitudes look similar by defining a notation;
o=+ or —, which refer to a net phonon increase or de-
crease, respectively, after the interaction, so that
n;‘+ =nl+ 1, ny_=n, and Vk+ = Vz__ = VA,' In thiS no-
tation the equations of motion for the one-phonon-change
amplitudes are simple because they are only coupled to
the zero-phonon-change amplitude

i-2 00y — Hpur | 1n(51,0,0) = V3, (£ (1, ) -

ot

(3.2)

In the approximation, the thermally averaged density ma-
trix contains contributions from only the zero- and one-
phonon-change amplitudes

P(£,8',1)= $iu( 5, Wopn(r', 1)

+ }l; 2 Ui 6LA,00(, A0y, . (3.3)
Ao

If the density matrix is evaluated at equal positions and
integrated over all space it is constant in time
2 [ arpirrn=0. (3.4)
This can be seen by taking the time derivative inside the
spatial integration and using the equations of motion to
replace the time derivatives, then the Hermitian properties
of the Hamiltonian can be used inside the integration to
cancel all of the terms. The equal position density matrix
is just the probability density for the scattering particle
summed over all of the possible states of the lattice. That
it is constant in time means that the one-phonon-change
approximation is a unitary approximation. The same ar-
guments apply to any finite phonon-change truncation of
the set of amplitudes which will also be a unitary approxi-
mation.

IV. STATIONARY STATE SCATTERING

In this section we present the stationary state scattering
results for the scattering probabilities, discuss the prob-
lems that arise in stationary state scattering theory when
the zeroth-order Hamiltonian has bound states, and show
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how the scattering probabilities can be calculated from the
asymptotic forms of the scattering state wave functions.
Central to the derivation of these results (see Appendix B)
is a limiting process in which the initial momentum un-
certainty of the wave packet goes to zero. Taking this
limit allows the scattering to be calculated in terms of sta-
tionary state eigenfunctions of the Hamiltonian.

The scattering from the surface can be described in
terms of the scattering state solutions of a Lippmann-
Schwinger equation containing the static surface poten-
tial. The state X'~ is a scattering state with outgoing
boundary conditions and is defined using a Lippmann-
Schwinger equation with the advanced free-particle Green
function G§

Xk =e*"+ [ @ Go(r,r, EQV (XX 7r k) .
@.1)

Scattering states with incoming boundary conditions,
X'*), can be defined in the same manner using the retard-
ed Green function. The bound states of the static surface
potential are defined by

(Hpart — En i X(,n,K)=0; [ d’r |X(r,n,K)|?=4 ,
4.2)

where A is the area of the surface and n indexes the
bound states at each value of K. A complete set of states
consists of both the bound states and either the incoming
or the outgoing scattering states.

The propagation of a particle in the presence of the
static surface is described by a retarded static surface
Green function G| defined by

(E —Hppr +in)G (1,1, E)=8"(r—1) , (4.3)

together with the boundary conditions that in the limit
that as z goes to infinity, with z’ finite, the Green func-
tion behaves like an outgoing plane wave. We use this
Green function to write scattering states in the presence of
inelastic scattering.

The scattering states in the presence of the coupling to
the phonons are defined by a Lippmann-Schwinger equa-
tion similar to those with no coupling by using an outgo-
ing static surface scattering state and the retarded static
surface Green function. The Lippmann-Schwinger equa-
tion reduces to a set of equations coupling the different
multiphonon amplitudes

Yo (,K)=X*r,k)— [ d*' G(r,r',E})
XL S Vi (W A0
N Ao
(4.4)
¢(1;h)(r,ky}\70')=—fd3r‘ ;(I’,l",Ek—Cfa)A)
X V3o (E ) om (1K) 4.5)

There is no boundary term on the right-hand side of this
last equation because the boundary conditions are chosen
so that the incident amplitude in the one-phonon-change
states is zero.
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A. Trapping

The bound states of the static surface potential appear
as poles as a function of energy in the static surface Green
function. Hence the one-phonon-change amplitudes
diverge as a function of the phonon energy as the final-
state energy E} —ow, becomes equal to a bound-state en-
ergy with parallel wave vector equal to K—o0Q;. These
divergences, which arise for finite temperature in any fi-
nite phonon-change truncation of the scattering states and
for zero surface temperature in any approach, are due to
trapping on the surface. If a stationary state is thought of
as a constant incident flux of particles the continual in-
crease of probability in the bound states leads to the para-
dox that the time-independent stationary state depends on
time. This continual build up of particles means that
there is no time-independent scattering state unless there
is absorption of probability from the bound-state ampli-
tudes; this absorption (and the resolution of this paradox)
is provided by the imaginary part in the Green function.
In the limit that the imaginary part of the Green function
goes to zero all of the absorption, which is proportional to
7, takes place from the bound-state amplitudes because
they are diverging proportional to ~!. The limit —0 is
well defined and produces a stable limiting value for the
trapping probability (see Appendix B). Even though these
scattering states involve a loss of probability due to trap-
ping, the one-phonon approximation we are describing
remains unitary.

The stationary state scattering wave functions also obey
a coupled set of Schrodinger equations with the infini-
tesimal imaginary part included

Pk, t)= (W) | X 7,k ) )X 0,k p) | WD) Dy

2
= | [ ek ien [+ 3 m,
Nk,a

In Appendix B we show that the first term gives the elas-
tic scattering and the remaining terms give the inelastic
scattering probabilities. The elastic and inelastic scatter-
ing in Eq. (4.8) can be written in terms of matrix elements
of the interaction potential with respect to the zero-
phonon-change scattering state amplitude and the outgo-
ing static surface scattering states. In this form the in-
elastic amplitudes look like a typical golden rule rate in
which the interaction potential causes a transition from
the initial state to the final state. Note that this approach
uses the incoming zero-phonon-change amplitude instead
of the incoming static surface scattering state.

After a sufficiently long time such that all of the non-
trapped particles have left the surface the probability to
have scattered inelastically into a final state with wave
vector Ky is given by [see the discussion following (B6)]
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(Hpan"Ek“in)ilJ{);h)(r,k)
== % 2 VaoDma Uil k,A0),  (4.6)
Ao

[Hpart (Ek Owk) [’7]¢(1 h’(t:k’/’k,o)
P!
———F{a(r)d)f)ph)(r,k) . (4.7)

Solving these equations with a finite value of 1 remedies
the divergence in the one-phonon-change amplitudes (see
Appendix B). In practice it is simple to find a finite
imaginary part that is small enough that the solutions of
these equations for finite 7 give the same results as those
in the limit that 7 goes to zero. In the numerical calcula-
tion that we describe in Sec. VI we choose to solve the
Schrodinger equations instead of the Lippmann-
Schwinger equations because using the latter would re-
quire either storing or recalculating the static surface
Green function, G1.

B. Scattering probabilities

To describe the scattering probabilities in the presence
of the static surface potential, which cannot be treated as
a perturbation, we have to calculate the matrix elements
of the wave packet with the outgoing scattering states of
the static surface potential. This approach is quite similar
to that of the distorted wave Born approximation, and in
fact it is a self-consistent improvement of that approxima-
tion. In particular, the probability to scatter into a state
with a wave vector Kk is given by the square of the matrix
element between the wave packet and the outgoing
scattering state solution of the static surface

2
f d’rX")(r,kf)‘tlz‘lgh’(r,t,k,a)1 ) (4.8)

f d3r [X(_)(r,kf)]‘

m 1 1
Pually) = gy 2o
2
X Vo (DU (1.k;)

X(ZW)S(Eki—Owk—Ek[) .

(4.9)

This result is identical to the distorted wave Born approx-
imation result with the zero-phonon-change amplitude re-
placing the incident static surface potential scattering
state, i.e., using the left-hand side of Eq. (4.4) to replace
the first term on the right-hand side of Eq. (4.4) in Eq.
(4.9). This expression illustrates why this approach is a
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unitary extension of the distorted wave Born approxima-
tion because the elastic wave function from which the in-
elastic transitions are made is calculated self-consistently
with the inelastic states to which the transitions are made.
Furthermore, we see why the distorted wave Born approx-
imation is not unitary and this approximation is; in the
distorted wave Born approximation when a particle
scatters inelastically the flux stays in the elastic channel

1
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and continues to scatter leading to an overcounting of the
inelastic scattering, whereas in this approach the flux is
removed from the elastic channel leading to a flux con-
serving approximation. The trapping probabilities are the
probabilities to be in one of the bound states of the static
surface potential and are given by a similar expression
with the outgoing scattering state replaced by a bound
state

m 11
Pinel(n,Kf)zk—ﬂ?W fd3r [X )(r,n Kf)]‘Vka(r)¢(+)(r’ , (217')5(Ek‘_—0'wk—— n,Kf) . (4.10)
The first term in Eq. (4.8) gives the elastic scattering probability which can be shown to be
m
Pe.(kf>=%‘, 7(:(217)6(19,(,, —Ey )2m**(K; ~K;—G)
X 2
X | ~LR (kp ki )+— [ dr [ @ X k)] Sr,r, E v 0.k | .11

where R (ky,k;) describes the amplitude to make a transition from the incident state k; to the final state k by scattering
from the static surface potential. It is proportional to the matrix element between the incoming scattering state and the
outgoing scattering state. The sum over surface reciprocal-lattice vectors G makes explicit the possibility of elastic dif-
fraction (or inelastic scattering due to internal excitations of the molecule as we discuss below) in the elastic scattering
probability. The second term in the absolute value is the effect of the inelastic scattering on the elastic scattering; it is
written in terms of the self-energy given by
’ 1 r ’ * ’
3(r,r',Ey)= N > i Vio(DG(r,r', Ey —0w) ) V3, (1) . (4.12)
Ao

This is the Born approximation to the self-energy of the full scattering system and can be understood in terms of its con-
stituents: the potential V,, causes a transition to a one-phonon-change state, the molecule propagates with the energy
E, —ow, until the potential ¥}, causes a transition back to the zero-phonon-change state. This process is summed over
the possible phonons, weighted by the thermal occupation of each phonon mode.

The inelastic scattering probabilities can also be directly calculated from the asymptotic form of the one-phonon-
change scattering states. The probability to scatter into a particular final state is given by the flux density in the one-
phonon-change amplitude far from the surface divided by the incident flux and summed over all phonon modes that
satisfy energy and momentum conservation

zfl
ky N

Pine(ks)= hm 2

znxawlph rk;h0) |22 by (2m)8(Ey, — 0w, —Ey )27 V(K —0Qu—G—K,) .
(4.13)

The trapping probability can be calculated from the behavior of the one-phonon-change amplitudes in the limit that the
small imaginary part in the Green function (or Schrédinger equation) goes to zero. In the scattering state solutions cal-
culated with a finite imaginary part there is a loss of probability from this system due to absorption from the bound-state
amplitudes because particles would be trapping on the surface in a real scattering event. The trapping probability is then
equal to the probability of absorption divided by the incident flux summed over all the phonon modes that satisfy paral-
lel momentum conservation

Pua(nKy)=lim 3 znm - fd3 | ¥ (r. ki A0 | 2

X (2m)8(Ey, —0wp —Eypx )28 P(K; —0oQu—G—Ky) . (4.14)

Similarly to the inelastic scattering probabilities, the elastic scattering probability (including diffractive and internal tran-
sitions) can be shown to be equal to the outgoing flux divided by the incident flux

1(kf)— hrn 2 ks |1p§{,’h) r.k

-
— i, ™" | 2L (2m8(Ey, — By )28 (K, —~G—K,) (4.15)
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These last three expressions [(4.13)—(4.15)] are used to
calculate the scattering probabilities once we have solved
for the scattering states using Eqgs. (4.6) and (4.7). When
integrated over all momenta and summed over all bound
states, these probabilities sum to one because this is a uni-
tary approximation.

V. APPROXIMATIONS ON THE POTENTIAL

Although the equations presented in the preceding sec-
tion could be solved for an arbitrary form of the potential,
we show in this section, starting from a completely gen-
eral form of the interaction potential, what assumptions
lead to a Hamiltonian for which the scattering can be
easily calculated and what form the equations of the last
section take when applied to this form of the Hamiltoni-
an. In particular, we choose a Hamiltonian for a flat sur-
face so as to decouple the motion parallel to the surface
from the motion perpendicular to it. This decoupling al-
lows a much simpler numerical calculation of the wave
functions.

The Hamiltonian consists of the kinetic energy of the
scattering particle, the lattice Hamiltonian, and the poten-
tial that couples the scattering particle and the lattice.
Later we regroup the terms in the pattern of Eq. (2.3), but
here we keep all of the coupling terms together. The
Hamiltonian for the general form is

H=Tpn+Hpyu+V. (5.1)

The kinetic energy of the particle, Tparts here a molecule,
consists of the translational kinetic energy of the particle
plus its rotational kinetic energy. We neglect vibrational
and electronic degrees of the molecule because the excita-
tion energies are much higher than the other energies in
the scattering problem. Accordingly

2 2
VAR Sy (5.2
2m 21
where L is the angular momentum operator for the
molecular rotations (a three-dimensional vector in spite of
its being upper case) and I is the moment of inertia. The
orientation of the molecule is specified by the angle of the
molecular axis with respect to the surface normal 6 and
the angle of the orientation around the surface normal ¢.
The lattice Hamiltonian is the same as it was in the
preceding section [Eq. (2.4)]

Tpa =

Hiy = wza lay . (5.3)
A

The displacements of the lattice atoms can be expanded in

terms of the normal modes of the lattice?

172

1 iQ,-
e QRag(2,z,) (a§+ak) ,

=y 2

1
2Mﬂ);~
Q=—-Q,. (54

Here A indexes the normal modes, Q, is the wave vector
of the mode parallel to the surface, w, is the frequency of
the mode, and e(A,z,) is the polarization vector, which
depends on the distance of the atom from the surface be-
cause there is no translational symmetry normal to the
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surface. The polarization vectors obey the following
orthonormality condition

_iR".(QA—-QN)=8;‘,A (5.5)

% S e*(A,z,)-e(1,2, e

Finally a; and a; are the creation and destruction opera-
tors for the phonon mode.

A. Interaction potential

In general, the interaction between the scattering parti-
cle and the lattice depends on the position of all the atoms
in the lattice and all the molecular coordinates. Since the
mean-square displacements of the lattice atoms are small
compared to the characteristic lengths of the potential a
Taylor series expansion of the potential in terms of the
displacements of the lattice atoms should converge rapidly

V(5,6,6, (0, ])= Vo(r,0,6)+ 3 =L g
na aun,a {“jl=0
L 3V
+5 __o¥ry . ‘
’ "’2‘1 'gﬁ aun.aaum,ﬂ luj}=0 n,a“m,B

(5.6)

We truncate this expansion at the term linear in the pho-
non coordinates, consistent with the one-phonon-change
approximation we have made previously.

Now we regroup the terms in the Hamiltonian so that
all the terms that are independent of the phonon coordi-
nates are grouped together.?* In addition, we make part
of the flat surface approximation, we ignore any depen-
dence on the position of the particle parallel to the surface
in the first term in the potential,

H o= Tpar+ Vo(2,6) . 5.7

The rest of the flat surface approximation is made in Eq.
(5.10).

The linear term in the coupling between the phonons
and the scattering particle can be written in a manner that
makes it easy to see all of the approximations that we
make

1 i(Q;+G)-R
Vimzz 2 T/_ﬁ'?@‘ 2t Vla

G az,

X (G! Qk9z7zn ,6)¢ )ea(kyzn )

172

1 (a%—i—a;).

21‘4(1);t

(5.8)

We have expanded the coordinates of the lattice atoms in
terms of the normal modes of the lattice Eq. (5.4), and ex-
pressed the dependence of the potential on the position of
the particle in the plane of the surface by Fourier
transforming the potential with respect to the sum of the
parallel wave vector of the phonon mode and a
reciprocal-lattice vector. The dependence of the potential
on the phonon wave vector and the reciprocal-lattice vec-
tor is given by an integral over the surface Wigner-Sietz
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cell (SWSC) of the potential summed over the lattice sites
in the surface

Vla( G’ Qk’zazn ’ 9;¢ )

1 2 —i(Q+G)«R-R,) AV
“a fswscd RXe d
a R, Upa

n

{uj]=0 .
(5.9)

This is still a completely general form for the linear cou-
pling term in the potential.

The approximation that we make for the coupling po-
tential is given by restricting the form that V', takes to

Vla(G’Qer’zn ’6’¢)

aV()(Z,e)

3 (5.10

= "aa,zGG,OSzn,OH(QA)

This expression includes the rest of the flat surface ap-
proximation; we keep only coupling to the phonon motion
normal to the surface 8, ,, do not allow umklapp process-
es (i.e., G=0), and do not allow coupling of any other
component of the motion with rotation of the molecule
around the surface normal. For simplicity we also assume
that the scattering particle only couples to the phonons
through the projection on the top surface layer §, o. Fi-

nally we assume that the dependence of the potential on
the parallel wave vector of the phonon that is being cou-
pled to and the dependence on the height of the particle
above the surface and its orientation are separable. The
dependence on the parallel wave vector is assumed to be
Gaussian?®

H(Qy)=e %20
This last assumption greatly simplifies numerical calcula-
tions because the only dependence of the phonon ampli-
tude on the wave vector of the phonon comes in through
the net energy transfer to the motion normal to the sur-
face and an overall scale factor. This simplification is dis-
cussed further below.

This separability assumption can also be thought of as a
local height approximation, i.e., that the effect of the pho-
nons is to locally shift the origin of the potential without
changing its shape in the z direction. If this potential is
then expanded in terms of the phonon coordinates the
coefficient of the linear term is proportional to the partial
derivative of the uncoupled term with respect to the
height above the surface. Then the Fourier transform of
H(Q) gives the effect of a lattice vibration at one surface
point on the local height of the surface at another surface
point as a function of the distance between the two points.
The local height approximation should be a good approxi-
mation close to the surface where the effective height is
dominated by the closest atoms; further from the surface
where the potential is determined by more and more
atoms the approximation should break down. Fortunately
the inelastic scattering is dominated by the region of the
potential close to the turning point so that the breakdown
of this approximation should not be important. Within
this approximation the neglect of the layers below the top

(5.11)
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is equivalent to assuming that only the top layer affects
the local height in the potential. Again, this neglect
should be a good approximation close to the surface.

The interaction potential can now be written in a form
similar to Eq. (2.6)

a¥(z,6)

int=— > (M;e R tHc) .
oz I

1
VN
(5.12)

The dependence on the height above the surface and on
the orientation with respect to the surface is independent
of the phonon to which the scattering particle is coupled.
The dependence on the position parallel to the surface
comes in through a factor that conserves the total wave
vector of the system parallel to the surface. The factor
M, contains all the information about the strength of the
coupling to each phonon mode

172

e;(A00H(Qy) .

M, = (5.13)

ZMG)A

Below we see that M, is related to a weighted phonon
density of states.

B. Scattering states

Because of the form of the potential we have assumed
the parallel wave vector and the azimuthal quantum num-
ber are conserved and hence the form of the static surface
scattering states simplifies

X(_)(r>9,¢ykf91fam):eiKI.Reim¢X( _)(Zleiklf,lf’m) .
(5.14)

The remaining part of the wave function is independent of
the incident parallel wave vector. The zero-phonon-
change amplitude, on the other hand, still depends on the
full incident wave vector because the coupling to the pho-
nons depends on the parallel wave vector

¢§);_h)(r99’¢»ki11i’m ) =eiKi'Reim¢¢£);h)(2,0,ki’li,m) .
(5.15)

The scattering probabilities depend on the matrix element
of the derivative of the static surface potential between
these two scattering states.

The details of the phonons come into the scattering
probabilities through a weighted projected density of
states

C(Q,0)= 717 S 1y | My | 22080 —0wy)
Ao

X (2m)28Y(Q—0Q;) . (5.16)

This density of states is projected onto the surface layer
by the e,(A,0) factor in the definition of M;, and weight-
ed by the thermal occupation of the modes, by the ampli-
tude of the mode, and by the (local-height) phonon-cutoff
function H(Q). The weighted phonon density of states
indicates how likely the particle is to interact with a pho-
non at a particular frequency and parallel wave vector. It
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is also worth a reminder at this point that C(Q,w) in-
cludes both phonon creation and annihilation events
through o. The inelastic scattering probability is given by
the product of three factors: the inverse of the incident
velocity, the squared matrix element of the derivative of
the static surface potential between the incoming zero-
phonon-change state and the outgoing static surface state,
and the weighted phonon density of states

Pine(kyp,lp)=—— <X(_)(z,6,sz,lf,m) l

zi

BVO (z,0) 2
x U2 |z, ki,li,m>>|

X C(K;—K,E —Ej) . (5.17)

This equation is Eq. (4.9) rewritten in the form appropri-
ate for the flat surface approximation. One nice feature
of this approximation is that, given the matrix element for
one final z component of the wave vector, the scattering
probability for any wave vector with that z component
can be calculated without recalculating the scattering state
wave functions. Since these wave functions are calculated
by numerically solving a Schrodinger equation, the sav-
ings in computer time can be considerable.

To rewrite Egs. (4.6) and (4.7) in the form appropriate
for the flat surface approximation it is useful to define
some energies and wave vectors. The incident energy due
to both the energy in center of mass motion normal to the
surface and the rotational energy is given by

ki LU+
A= om VT

The change in energy in motion normal to the surface and
the rotational energy due to exciting a phonon of wave
vector Q and frequency o is given by

(5.18)

(K;—Q)?* K}
AEZ=EZ,-——Ezf=a)+T————2'—n— (5.19)
]
2
cwg)=[ 5% [ 22.cQuiams|o— |aE,~
=L S ny, | M| 2218 | cw0r— |AE, —
Nl,o

We use Eq. (4.13) rewritten using this phonon density of
states to calculate the inelastic scattering probabilities.

C. Coupled channels

For molecular hydrogen scattering the potential only
depends weakly on the orientation of the molecule and the
rotational energy splittings are comparable to the scale of
the incident energies so that is is useful to formulate the
scattering problem in a coupled-channels approach by ex-

(K;—Q)? K}

(K;—0Qy)? K}
__.._________+__

We are going to expand the motion of the molecule in
terms of spherical harmonics with respect to its rotation
so it is useful to define the kinetic energy the incident
molecule would have in each rotational state far from the
surface

kz I1(1+1)
m z,--—T . (5.20)
It is also useful to define the same quantities for the mole-

cules that have scattered inelastically

ki(AE,) ki
2m  2m

—AE, . (5.21)

These wave vectors are used in the Schrodinger equations
that the scattering states obey.

We can take advantage of the fact that the one-
phonon-change amplitudes only depend on the energy in
the motion normal to the surface and on the rotational
motion up to a scale factor and calculate many of the am-
plitudes at the same time by scaling the one-phonon-
change amplitudes by M, and defining an amplitude that
only depends on the change in that energy

Yifn(1,6,6,k;,1;,m,\,0)

(K, — R :
=MA8” i—oQ;) e:m¢¢(1;-h)(z,9,AEz) | Q=0Q;;0=00,
(5.22)
Here AE, is evaluated at o =0w,; and Q=0Q,. If Eq.

(4.13) for the inelastic scattering probability is written us-
ing the wave function defined above, there is a factor
| M, | ? associated with the sum over phonon modes. If
we integrate the inelastic scattering probability over possi-
ble parallel wave vectors we can define a new phonon den-
sity of states that is a measure of how strongly phonons
lead to a particular change in the energy

|

] . (5.23)

2m + 2m

2m

I

panding the potential in Legendre polynomials and the
wave functions in spherical harmonics. These expansions
can be truncated after a few terms. The expansion of the
potential and its derivative are given by

0(2,0)= 3 Vi2Pcosd) (5.24)
3V,(z,0)
——%f-—: S ViPy(cosh) . (5.25)
1



4502

Since the wave functions are expanded in spherical har-
monics, we need the spherical harmonic matrix elements
of the potential

Vil2)=3, Vil2) [ dQ Y}, (6,)Pr(cosd) Yim(6,8) .
<

(5.26)

These matrix elements still depend on the azimuthal
quantum number m, but that quantity is constant during
the scattering process so we suppress this dependence. To
simplify the wave functions we suppress all of the initial
conditions in writing down the wave functions. To
suppress the azimuthal dependence of the wave function
we define a spherical harmonic with the azimuthal depen-
dence removed
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Yin(0)=e~™%Y,,(0,0) . (5.27)

Using this function we can write the expansions of the
wave functions as

¢‘+’<z,9>=2 Yo (2,1 Y (6) (5.28)
Ui (2,6,AE,)= 2 Yifn(z,,AE,) Y}, (6) . (5.29)

We solve for these wave functions numerically and use the
solutions to calculate the thermally averaged scattering
probabilities.

The wave functions we have defined above obey a cou-
pled set of differential equations that are the formulations
of Egs. (4.5)—(4.7) in the approximations that we have
made for the potential

1 a* (+) (+) )
[ 3m g7+ o i YR D+ S Ve = [ 5 I'AE,), (5.30)
1 d? | kilAE;) '
I da? +—212m +in ¢(1;h)(2,1,AE,)+§ Vil 2) g (2,1 ,AE,)—Z Vir (2)%on Shz,) . (5.31)

The first term on the left-hand side of both equations con-
tains the kinetic-energy operator minus the kinetic energy
in each channel of the molecule far from the surface, the
second term contains the static surface potential that re-
flects the molecule away from the surface and that cou-
ples different rotational channels within the same
phonon-change amplitude. The right-hand side of the
first equation is the coupling of the zero-phonon-change
amplitude to all of the one-phonon-change amplitudes,
and the right-hand side of the second equation is the cou-
pling of each one-phonon-change amplitude to the zero-
phonon-change amplitude. These terms are asymmetric
because of the way in which the one-phonon-change am-
plitudes were scaled. We solve these equations with a fi-
nite imaginary part that is small enough that the results
do not change if it is made smaller, typically it must be
much smaller than all of the widths of the resonances in
the problem.

By discretizing the energy mesh for the one-phonon-
change amplitudes these equations could be solved by a
large coupled channels calculation, but in situations in
which the sum of the results of a distorted wave Born ap-
proximation are not much greater than one it can be faster
to solve these equations iteratively. For the first iteration
we set the one-phonon-change amplitudes to zero and
solve for the zero-phonon-change amplitude; this gives the
scattering from the static surface. Then we use this result
for the zero-phonon-change amplitude to calculate the
one-phonon-change amplitudes; this gives the distorted
wave Born approximation results for the inelastic scatter-
ing probabilities. Then these amplitudes are used to cal-
culate the zero-phonon-change amplitude and the calcula-
tion proceeds iteratively.

D. Scattering probabilities

The boundary conditions that the amplitudes must
satisfy are that the amplitudes decay to zero into the sur-
face

Jim Yo (2,1, 912, AE, ) = (5.32)
The zero-phonon-change amplitude far from the surface
consists of a unit amplitude incoming plane wave in the
incident channel and outgoing plane waves in all the rota-
tional channels that have positive kinetic energy far from
the surface

lim iz, )= Ty, AR k30, (5.33)
Those rotational channels that do not have sufficient ener-
gy must also decay away from the surface. The allowed
channels for the one-phonon-change amplitudes are all
outgoing plane waves

ik, (AE, )z

lim ¢}z, AE,)=R,(AE,)e *% kZ(AE,)>0.
Z— o0

(5.34)

The forbidden channels must also decay to zero away
from the surface. Solving the coupled Schrédinger equa-
tions, Egs. (5.30) and (5.31), for these boundary conditions
gives the scattering probabilities.

The elastic and rotationally inelastic scattering proba-
bilities are given by the outgoing flux in each channel di-
vided by the incident flux [see Eq. (4.15)]

kzI

P,=k'R,2.
z

(5.35)
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The inelastic scattering probabilities are given by the ratio

of fluxes times the phonon density of the states due to the

scaling of the amplitudes [see Egs. (4.13) and (5.22)]
k4(AE;)

P/(AE,)=—""—"-C(AE,) | R(AE,)|*.

5.36
k. (5.36)

The trapping probabilities are due to the absorption
caused by the infinitesimal imaginary part in the
Schrodinger equation, and are given by the probability
density in the bound states times the absorption rate [see
Eq. (4.14)]

P, =lk"l S [ dz | iz LE—E,) | *C(E;—E,) .
zi ]

(5.37)

Since this is a unitary approximation these probabilities
all sum to one

dAE,
SP+Y [ P(AE,)+3 P,=1.
1 1 (2m) n

In Sec. VI we calculate these probabilities for the case of
HD scattering from copper.

These probabilities have been integrated over all possi-
ble parallel momenta that lead to the same change in the
energy in the motion of the molecule normal to the sur-
face. To recover the full distribution over all of the indi-
vidual final states it is just necessary to multiply the prob-
ability that has been calculated for the change in normal
energy appropriate to that final state by the integrand of
Eq. (5.23). This integrand is the product of the phonon
density of states and the 8 function that determines the fi-
nal normal component of the energy from the properties
of the phonons.

The flat surface approximation discussed in this section
is useful because it greatly reduces the number of final
states that have to be integrated over. This reduction
arises from the decoupling of the motion normal to the
surface from that in the plane of the surface. It is a use-
ful approximation for studying rotationally inelastic
scattering from uncorrugated surfaces because of this sim-
plification. It is not a useful approximation for quantita-
tively calculating scattering probabilities for corrugated
surfaces, but by calculating the interaction of inelastic
scattering with rotational transitions it should be possible
to qualitatively discuss scattering from a corrugated sur-
face.

(5.38)

VI. RESULTS

To demonstrate the method presented in this paper we
use it to calculate scattering probabilities for HD scatter-
ing from copper and compare the results with the results
of the same calculation using a distorted wave Born ap-
proximation. The main purposes of this section are to
demonstrate that it is possible to carry out the calcula-
tions that we have outlined in this paper and to show how
selective adsorption resonances and inelastic scattering
can affect each other. More extensive calculations are
presented in a subsequent paper along with the details of
the potential, the phonon spectrum, and the numerical
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techniques that we use.

The differences between the distorted wave Born ap-
proximation and this self-consistent one-phonon approxi-
mation are most obvious at a selective adsorption reso-
nance. At the energies near the resonance we have chosen
to study, the HD molecule can scatter from the uncorru-
gated static copper surface into either an / =0 oran /=1
rotational state. Above the resonance but near it most
molecules leave the surface rotationally excited, in an
I =1 state. The /=2 rotational state plays a significant
role in the rigid surface scattering when at this selective
adsorption resonance the molecule can make a virtual
transition into the / =2 rotational state and the second
lowest bound state of the potential. When the molecule
can make this transition it tends to spend a long time near
the surface in this rotationally excited state. The scatter-
ing probabilities are greatly affected by this resonance
with the elastic, / =0, scattering probability increasing to
one near the center of the resonance. These scattering
probabilities can be seen in the top panel of Fig. 1, the
solid curve is the elastic, / =0, scattering probability from
a static surface, and the dashed curve is the rotationally
inelastic, / =1, scattering.

The shape of the elastic scattering probability as a func-
tion of incident energy is characteristic of a Fano reso-
nance. This is not surprising because selective adsorption
resonances, Fano resonances, and Feshbach resonances all
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FIG. 1. Comparison of two methods for calculating scatter-
ing probabilities. The system is HD scattering at normal in-
cidence from a zero-temperature copper surface. The top panel
shows as a function of incident energy a static surface calcula-
tion of the elastic (solid curve, /=0), rotationally inelastic
(dashed curve, I =1), and a distorted wave Born approximation
calculation of the total phonon inelastic scattering probability
(dashed-dotted curve). The bottom panel shows the same proba-
bilities calculated using.the self-consistent one-phonon approxi-
mation outlined in this paper. The structure in these curves is
due to a selective adsorption resonance in which the HD mole-
cule makes a virtual rotational transition to an / =2 state in the
second bound state of the static surface potential. The three
probabilities in the top panel sum to a total probability greater
than one, especially at the resonance, while the three probabili-
ties in the bottom panel sum to one at all values of the incident
energy.
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result from the coupling of a bound state into a continu-
um of states, and all have similar lineshapes.

The elastic and rotationally inelastic probabilities sum
to one for all incident energies in the static surface calcu-
lation; the distorted wave Born approximation for the in-
elastic scattering probabilities does not alter the static sur-
face scattering probabilities. For the distorted wave Born
approximation to be valid the inelastic scattering probabil-
ity should be small compared to one. Far from the reso-
nances the inelastic scattering probability, seen in the dot-
ted curve in the top panel of Fig. 1, calculated using the
distorted wave Born approximation is about as large as it
can be for this approximation to remain valid. At the res-
onance this condition is clearly not satisfied as the inelas-
tic scattering probability exceeds unity. The total proba-
bilities calculated using these methods range from about
1.3 to 2.1. The width of the Lorentzian that can be fit to
the enhancement of the inelastic scattering peak is the
same as the width of the Fano resonance that can be fit to
the static surface scattering probabilities.

The bottom panel of Fig. 1, for comparison, shows the
results of the same calculation done using the method
developed in this paper. Since this approximation is uni-
tary the scattering probability is one for all incident ener-
gies; numerically unitarity is satisfied to the same accura-
cy as it is for the static surface calculation of the elastic
and rotationally inelastic scattering probabilities. In this
approximation the elastic and rotationally inelastic
scattering probabilities are affected by the inelastic
scattering probabilities. The peak in the elastic scattering
probability is strongly reduced, much more strongly than
the dip in the rotationally inelastic scattering probability.
This suggests that dips due to selective adsorption reso-
nances should be easier to observe experimentally than
peaks. The width of the enhancement peak in the inelas-
tic scattering has increased due to the interaction between
the selective adsorption resonance and the inelastic
scattering; the increase is roughly a factor of 2. This in-
crease in the resonance width indicates that the inelastic
lifetime of the resonance is comparable to the inherent ro-
tational width.

VII. SUMMARY

The central features discussed in this paper are: (1)
when the scattering is weak we justify expanding the
scattering wave functions in terms of n-phonon-change
operator-amplitudes, (2) these n-phonon-change ampli-
tude operators are thermally averaged to describe the
averaged scattering in terms of thermally averaged ampli-
tudes, (3) the scattering probabilities are calculated using
stationary scattering states when the interaction time is
long compared to the characteristic times in the substrate,
(4) the calculation can be simplified for some specific as-
sumptions about the interaction potential, and (5) the in-
elastic scattering and selective adsorption resonances af-
fect each other. The first three points reflect what we feel
is the correct way to treat thermal energy helium and
molecular hydrogen scattering from surfaces on which
they physisorb. The fourth point details the simplifica-
tion of the scattering calculation for a specific system in
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which the corrugation of the surface does not play an im-
portant role and the fifth point is a result of applying
these approximations to molecular hydrogen scattering.
These points are detailed as follows.

(1) When the inelastic scattering is sufficiently weak
that in a typical scattering event only a few phonons are
created or destroyed, the scattering process can be reason-
ably described in terms of how the occupation of the lat-
tice has changed. Helium and molecular hydrogen
scattering at thermal energies from surfaces on which
they physisorb satisfy the weak inelastic scattering cri-
terion due to their low mass and their weak interaction
with the surface. Since the elastic scattering is a
quantum-mechanical process and is both observable and
distinguishable from the inelastic scattering, it is neces-
sary to treat the elastic scattering quantum mechanically
and separately from the inelastic scattering. It is also im-
portant to treat the inelastic scattering in terms of the
changes in the phonon modes because the inelastic scatter-
ing probabilities reflect the discrete nature of the phonon
excitations of each mode. Doing the calculation self-
consistently allows the range of validity of the calculation
to be extended to resonant elastic scattering situations in
which a perturbative approach would break down.

(2) In calculating scattering probabilities it is useful to
be able to thermally average the results without having to
do an explicit ensemble average of calculated scattering
probabilities. In this paper we have presented a method of
doing the thermal averaging by calculating the scattering
in terms of thermally averaged n-phonon-change ampli-
tudes. This part of the calculation is exact and is useful
in any situation in which the expansion in terms of pho-
non exchanges, discussed in the preceding section, is appl-
icable.

(3) The scattering probabilities for these systems can be
calculated using stationary state scattering wave functions
because the resolution with which the energy of the in-
cident particle is defined is much smaller than typical
phonon frequencies in the lattice. Stationary state calcu-
lations are useful both for their simplicity and because
they emphasize the quantum-mechanical nature of the
scattering process that is of interest in the scattering ex-
periments. Since scattering experiments are performed
for a better understanding of the gas-surface interaction
potential and quantum-mechanical scattering, due its
discrete nature, is usually more sensitive to the details of
the potential, stationary state calculations are better suited
to discriminate between possible potentials.

(4) The flat surface approximation is used because it
speeds up the calculation while still including some of the
important aspects of the potential and allowing the possi-
bility of studying resonance phenomena. It is an approxi-
mation in which we neglect the corrugation of the surface
while still treating the motion of the particle parallel to
the surface. The simplification comes from the separabil-
ity of the motion parallel and perpendicular to the sur-
face. This approximation also allows separate calculation
of the importance of the details of the potential and of the
importance of the details of the phonon spectrum on the
scattering probabilities.

(5) Our preliminary calculations show that selective ad-
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sorption resonances increase the inelastic scattering at res-
onance conditions and that inelastic scattering broadens
selective adsorption resonances. This last result will not
emerge from a low-order perturbative approach. Future
work will be directed toward studying in more detail how
inelastic scattering and selective adsorption resonances af-
fect each other as well as how finite substrate temperature
affects the scattering process.
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APPENDIX A: THERMAL AVERAGING

In this appendix we discuss the thermal averaging pro-
cedure that we use in Sec. II of this paper.”® We show
that in the limit that the number of modes in the substrate
goes to infinity, the contribution of correlated terms to the
density matrix goes to zero. When the correlated contri-
butions are unimportant, the thermal averages of products
of operators can be written as products of thermal aver-
ages of the operators. In particular, we are interested in
the thermal averages of the amplitude-operators that
describe the time evolution of the amplitude of the
scattering particle; these are the thermally averaged n-
phonon-change amplitudes we use to calculate the scatter-
ing probabilities.

In all of the terms that contribute to a thermal expecta-
tion value each phonon creation operator must be paired
with an annihilation operator; correlated terms are those
in which two pairs of operators are paired together. The
correlated terms do not contribute to the expectation value
because they are inversely proportional to the size of the
lattice (N ~!) due to the removal of a sum over a number
of terms proportional to the size of the system by the re-
quirement that the mode indices of two pairs of operators
be equal. For the uncorrelated terms the factor of N~
cancelled by the sum over 3N terms that is missing in the
correlated terms. These factors and sums in the ampli-
tude operators come from the form of the interaction po-
tential, Eq. (2.12), which has both a sum over the modes
of the lattice and a factor of N ~!/2 associated with each
phonon creation and annihilation operator.

By suppressing the spatially dependent functions associ-
ated with each phonon operator, all of the terms in the
left-hand side of Eq. (2.15) for the density matrix can be
written in the form

exp [—-ngini ]

1 1 1
R AR R A

1 2 n

) al." )th ’

(AD

with arbitrary numbers of creation and destruction opera-
tors. The only terms in this expression that are nonzero
are the terms which have no unpaired phonon operators.
When all the operators are paired there are the same num-
ber of sums over the phonon modes, as there are factors of
N~!, each sum having 3N terms. The contributing terms
can be written in the form

VENE W ehonionalaa.
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n

Here all of the phonon operators are paired in the same
way that they are on the right-hand side of Eq. (2.15),
which has been written in terms of operators and
amplitude-operators that have the pairing already explicit.
The uncorrelated terms in Eq. (A2) are those in which we
replace the average of the product of paired operators by
the product of the averages of the paired operators

1
_E(GA akl>th 2<0A2012>th 7\72(01"0“ dth -
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In this expression all factors of N ~! are balanced by surns
over the lattice modes. On the other hand, correlated
terms have at least two of the paired operators paired with
each other and are of the form

1
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: (A4)

Since each of the correlated terms has at least one factor
of N~! associated with it that is not balanced by a sum
over the phonon modes these terms do not contribute in
the limit that the number of lattice atoms goes to infinity.
The vanishing of the correlated terms allows us to rewrite
the density matrix in Eq. (2.15) in the form of Eq. (2.16),
i.e,, to write the average of products of operators as the
product of operator averages. Then we can define the n-
phonon-change amplitudes that we use to calculate the
thermally averaged scattering.

As an example of how terms from the right-hand side
of Eq. (2.15) contribute to the right-hand side of Eq.
(2.16) let us consider one of the terms from the square of
the zero-phonon-change amplitude-operator [see Egq.
(2.14) for the definition of these operators]
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First consider the uncorrelated contributions, those in which A;5%A,, rewriting the exponential of a sum as a product of

exponentials
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Now write the sum over all sets of occupation numbers of
the products over all modes as the product over all modes
of the sums of the occupations for each mode

SII=I1 = . (A7)
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All the factors in the numerator other than those contain-
ing A; and A, cancel similar factors in the partition func-
tion leaving
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These two ratios just give the thermal expectation of the
occupation of each of the modes
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These and all the other uncorrelated terms are the contri-
butions to the right-hand side of Eq. (2.16). Now consider
the correlated terms; the calculation for these terms
remains the same until
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Although this result is of a different form from the terms
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in Eq. (A8), there is an additional N =1 factor associated
with losing a sum over the phonon modes so that the
difference in form is unimportant. This factor causes the
contributions of the correlated terms to go to zero in the
limit that the number of lattice atoms goes to infinity.
The restricted sum in Eq. (A9) can be made unrestricted
in tllle same limit because the error is also proportional to
N~

APPENDIX B: STATIONARY STATE SCATTERING

In this appendix we outline the derivation of the results
in Sec. IV of this paper. First we show how to calculate
the scattering probabilities in terms of matrix elements of
the zero-phonon-change scattering state by taking the lim-
it that the initial momentum uncertainty of the wave
packet goes to zero. Then we show that the same scatter-
ing probabilities can be calculated from the asymptotic
form of the zero- and one-phonon-change scattering
states.

The derivation of the results in this Appendix requires
four limits to be taken in this order: the imaginary part 7
that determines the boundary conditions goes to zero, the
wave packet start far enough from the surface that it is
not interacting with it, the initial momentum uncertainty
of the wave packet goes to zero, and the final time minus
the initial time (5 —¢;) goes to infinity. The first two and
the last limits are properties of description of the calcula-
tion; the imaginary part has to be small enough that the
normalization of the incident plane wave is not affected
by it, we choose to have the particle start in a state that is
independent of the surface, and want to measure the state
of the particle after it has ceased interacting with the sur-
face.

The third limit is a property of the scattering system
and may not always be valid. To take this limit (the ini-
tial momentum uncertainty going to zero) the interaction
time of the scattering process should be longer than the
characteristic time scales of the phonons. The interaction
time is set by the time difference from the time when the
wave packet first interacts with the phonons to the time
when all of the incident wave packet has entered the in-
teraction region. A lower bound on the interaction time,
set by the energy-time uncertainty principle, is Planck’s
constant divided by the energy resolution of the incident
wave packet. A lower bound on this lower bound is set by
the energy resolution of the scattering experiment. Since
the times scales of the phonons are their oscillation
periods and the phonon frequencies go continuously to
zero, there are always phonons in the surface with time
scales longer than the interaction time. For this reason
stationary state scattering is unable to describe all of the
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scattering processes, but if the interaction time is longer
than most relevant time scales and if the low-frequency
phonons do not dominate the scattering process it should
be able to describe the scattering within the resolution of
the experiment. In particular, if low-energy modes are
not important in the stationary state scattering calculation
they are not important in a wavepacket scattering situa-
tion because wave packets will not strongly excite modes
for which the oscillation period is longer than the interac-
tion time.

To derive the matrix elements for the scattering proba-
bilities we expand the initial wave packet in terms of the
scattering state solutions in the one-phonon-change ap-
proximation. Then we use the spectral representation of
the Green function to convert the time dependent ex-
ponentials into energy-conserving & functions in the limit
that the time difference goes to infinity. Finally the am-
plitude factors that describe the initial wave packet be-
come a 8 function.

The initial wave packet can be expanded in incoming

plane waves
3 .

sr0= [ 2 a e ke TR, B1)
T

where the time dependence gives the free motion of the
particle. The expansion coefficient, a(k), is sharply
peaked around the incident wave vector k;. The boundary
conditions that the Lippmann-Schwinger equations for
the zero- and one-phonon-change amplitudes obey allow
us to expand the initial wave packet in terms of these
scattering states with the same coefficients as the expan-
sion in plane waves
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This time dependence gives the full time dependence of
the scattering particle in the one-phonon-change approxi-
mation. Inserting the equation for the one-phonon-
change amplitude into Eq. (4.7), gives the expansion of the
state of the scattering particle at any time in terms of out-
going scattering states of the static surface. To write the
scattering probability in the form of Eq. (4.9) the one-
phonon-change amplitudes are written in terms of the
zero-phonon-amplitude using the Lippmann-Schwinger
Eq. (4.5), and the static surface Green function is written
in terms of its spectral representation

d’k XX K]t
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The sum over n in the second sum in the spectral repre-
sentation is restricted to run only over the bound states
for a particular value of K; since all of the E, ¢ must be
less than zero, some values of K have no bound states for
sufficiently large energy in the motion parallel to the sur-
face. The normalization of the scattering states allows
one three-dimensional spatial and one three-dimensional
k-space integral to be done trivially, leaving

[ r XMk Vs (D1 9 (k) | (BS)

This expression is valid for any time, in particular the limit that ¢, —#;— oo in which we calculate the scattering proba-

bilities.

Expanding the square of the absolute value as a product of complex conjugates gives
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Each of the factors with time exponentials become energy
8 functions in the limit that the time difference goes to in-
finity and the imaginary part goes to zero, as can be seen
by converting each expression into a time integral. Be-
cause the interaction potential conserves parallel momen-
tum, we can factor from each of the matrix elements a
parallel momentum conserving § function

78K, +0Qu+G—K) (B7)

which gives unity when integrated over. The expansion
coefficients have chosen so that the overlap integral over
k is zero if one of the arguments is displaced by a surface
reciprocal-lattice vector
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and their modulus squared becomes a 8 function as the in-
itial momentum uncertainty goes to zero. Integrating
over the § functions gives the inelastic scattering probabil-
ity result, Eq. (4.8). Replacing the outgoing static surface
scattering state by a bound state and performing the same
manipulations gives Eq. (4.9) for the trapping probability.

The derivation of the elastic scattering probability
proceeds in the same manner, complicated by the presence
of outgoing states scattered from the static surface. The
elastic scattering from the static surface is described by a
reflection coefficient, R (k,k;) that includes the possibili-
ty of diffraction

[ @ =%k, X k)

_zk (kg k;)(2m)*8 (K, — K — _a)X
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(B9)

Inserting Eq. (4.5) into Eq. (4.4) gives an equation for the
zero-phonon-change scattering state in terms of itself and
the self-energy, Eq. (4.11). The elastic scattering probabil-
ity is given by inserting the resulting expression into the
first term on the right-hand side of Eq. (4.7). After fac-
toring out & functions from all of the terms using the
same tricks that we have used for the inelastic scattering
probabilities for the terms in which the self-energy ap-

: —im lk z
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pears, the derivation of Eq. (4.10) proceeds in much the
same manner as the derivation of Eq. (4.8). The second
term, containing the self-energy, in Eq. (4.10) cancels the
part of the elastic scattering intensity that has been lost to
inelastic scattering. The energy conserving 6 function re-
stricts possible outgoing states to those that have the same
energy as the incident particle, i.e., elastic scattering.

Rotational degrees of freedom only complicate these
derivations by adding a rotational state subscript to al-
most all of the factors. The rotational transitions can be
treated in the same way that diffraction was treated in the
elastic scattering probability.

The rest of this Appendix is concerned with the calcu-
lation of these scattering probabilities from the asymptot-
ic forms of the scattering states. For the inelastic scatter-
ing probabilities we need the asymptotic form of the static
surface Green function in the limit that the z component
of the first argument goes to infinity

lim Gi(r,r,E)
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(k;*=2mE —(K')?,

where the K’ integration is restricted to those values for
which (k;)?>0. Using this form and Eq. (4.5), the
asymptotic form of the wave function is

[ a3 e Vg e

(B11)

The flux density in this state for large distances (squaring it and multiplying by the outgoing velocity) divided by the in-
cident velocity gives the contribution from each mode to the inelastic scattering probability. Summing this result over all
of the phonon modes weighted by the thermal occupation of each mode and multiplying by energy and parallel momen-
tum conserving & functions gives the result for the inelastic scattering distribution Eq. (4.12). A similar treatment of the
elastic scattering probability yields Eq. (4.10). These results show that the scattering probabilities can be given by the
flux in each outgoing channel of the zero- and one-phonon-change amplitudes divided by the incident flux.

The expression for the trapping probability, Eq. (4.9) can be calculated from the behavior of the static surface Green
function in the limit that the infinitesimal imaginary part goes to zero

d*K' X(r,n,K")X(r',n,K')*

lim Ur,r,E)= . (B12)
1—0.E—E g (27?2  E—E,x+in
Using this expression the one-phonon-change amplitude at the bound-state energy becomes
1 dZK' ' 3. ’ % ryk g (4)
lxm il (1k,4,0)]= 27 X(r,n,K) | [ d2rX(r',n,K)* V(0 Ui k
K'=K—-0Q,, E,x=m(Ey—ow,;) . (B13)

Since the bound-state wave functions are normalized to
the area of the surface, Eq. (4.2), squaring the amplitude,

weighted by the thermal occupation and multiplying by
energy and parallel momentum conserving § functions

integrating the result over all space, dividing by the area
of the surface, and multiplying by the imaginary part
squared gives the contribution to the trapping for each
phonon mode. Summing over all the phonon modes

gives the result for the trapping probability Eq. (4.13).
This result can also be derived from the absorption of
probability from the system due to the small imaginary
part and trapping. In this case we have to evaluate Eq.
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(B13) for energies near the bound state, square the ampli-
tudes, multiply by the absorption rate, 77, and integrate
over both all space and the energies near the bound states.
For small enough 7 all the matrix elements are constant
so the energy integral is just the integral of a Lorentzian,
which gives the additional factor of 7 that appears in Eq.
(B13).

The only difficulty that arises in using these results for
the flat surface approximation is that the spectral repre-
sentation of the Green function no longer has the same
form as it does in Eq. (B4) because the motions parallel
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and perpendicular to the surface decouple. In particular,
in the bound-state terms there are the same number of
bound states for every parallel momentum, some of which
have a positive total energy. In a real system the slightest
coupling of the two motions would couple these positive
energy states to the continuum and they are no longer
bound states. This defect of the flat surface approxima-
tion is not important for one-phonon-change scattering at
normal incidence but would complicate the interpretation
of the results for off-normal scattering conditions when
the final parallel momentum can be high.
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