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The spin dynamics associated with random hyperfine distortions of an ensemble of muons, which

have thermalized in a solid as static muonium atoms, is approximated with the motion generated by
averaging the spin evolution of a single isolated anisotropic muonium atom over a product of con-

tinuous hyperfine frequency distributions. That is, since each muonium atom in the ensemble is as-

sumed to have a given set of nonunique anisotropic hyperfine frequencies, then the frequency distri-

butions represent the ensemble average of many such muonium atoms. The hyperfine tensor in-

cludes an isotropic Fermi contact term and a symmetric traceless dipole-dipole term. There is no

antisymmetric contribution. In this work the hyperfine tensor is expanded in terms of second-rank

spherical tensors while the expansion coefficients are used to parametrize the distortion. Thus there
are six frequencies associated with an anisotropic muonium atom, one associated with the isotropic
part of the hyperfine tensor and five corresponding to the anisotropic components. Relaxation func-

tions are calculated for muonium in both the zero- and high-field limits. The different anisotropic
components of the hyperfine tensor lead to different (anisotropic) observable motion functions. For
an amorphous or powder sample, only the isotropic motion function is observable, and the different
anisotropic frequencies lead to motion functions with differing shapes. These functions have been

applied to the case of fused quartz where the spin relaxation is well known to be entirely due to ran-

dom hyperfine distortions.

I. INTRODUCTION

Muon-spin-rotation (juSR) experiments' in condensed
matter begin with the thermalization of spin polarized
positive muons in chemical species whose muon magnetic
state is either diamagnetic or paramagnetic. The dynam-
ics of the spin polarization of an ensemble of such muons
is observed via the asymmetric decay of the muon; the
positron is emittixl preferentially along the muon's spin
vector. Commonly, a "time-differential" technique is
used in which a clock is started on an incident muon and
stopped upon the detection of a positron. This informa-
tion is then used to construct a time histogram which has
the form

No exp( sir„)[1+—ADS(r)]+So

where r„=2.2 p,s is the muon s lifetime, No is a normali-
zation constant, Ao is the initial signal amplitude, 80 is a
background constant, and S(t) is the unit normalized sig-
nal. In zero-field and longitudinal-field experiments this
signal is a relaxation function and is usually denoted as
6 (r). On the other hand, in transverse-field experiments
the signal S(t) is the product of a relaxation function and
oscillatory terms. For consistency the symbol G(t) will
be used to denote the signals for both cases in this work
and it will be termed a motion function. These motion
functions are coefficients of the second-rank dynamical
motion tensor which generates the dynamics of the
muon's spin vector. This second-rank motion tensor is
simply the spin-vector —spin-vector autocorrelation tensor
for the muon.

For a static muonium atom in a solid the Hamiltonian
involves operators for the spin degree of freedom for both

the muon and the electron, all degrees of freedom of the
solid and all interactions between the solid and the muoni-
um atom. The spin Hamiltonian of the muonium atom
involves the Zeeman terms associated with the applied
field and the general anisotropic hyperfine tensor which
couples the electron spin to the muon spin. There are five
known relaxation mechanisms by which the muon spin
may depolarize, that is, by interactions with random local
magnetic fields, by chemical reactions, by spin exchange,
by superhyperfine interactions, and by random anisotropic
hyperfine distortions. Relaxation functions for the first
four have been treated in the literature, while they have
not been developed for the latter. This paper addresses it-
self to the solution of this problem. In particular the spin
polarization is determined by the induced distortion in the
electron wave function of each muonium atom. Although
interactions of this type do not lead to a relaxation of the
muon spin polarization for the individual muonium
atoms, depolarization can occur via ensemble dephasing
provided that there is a random distribution in the distor-
tion parameters of the individual muonium atoms in the
ensemble. A full quantal calculation of the dynamics of
the spin vector of the muon for such a situation is very
complicated. Rather than performing such a numerical
calculation an ensemble random hyperfine approximation
is adopted. That is, the interaction of the individual static
muonium atoms with the solid is assumed to be complete-
ly described by a general anisotropic hyperfine tensor with
given nonunique hyperfine frequencies. On the other
hand, the ensemble average over many such muonium
atoms is approximated by a product of averages over con-
tinuous frequency distributions of the motion of a single
muonium atom.
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There are two frames of refere«e to be con»dered,
namely, the lab frame and the crystal frame. The former
is defined by the physical geometry of the counters which
are arranged normal to the directions of an orthonormal
coordinate system labeled X, F,Z. If an external magnetic
field 8 is apphed, then by definition its direction is taken

to be Z. In this coordinate system the incoming muon's

momentum is assumed to lie in the X direction while its
spin vector,

I;„[Zcos8;„+sin8;„(Xcog;„+Y sing;„)],
defines the skew angles 8;„and P;„. The crystal frame, de-
fined by the orthonormal coordinates x,y,z, is related to
the counter frame by the three Euler angles, co'=a, P,y,
through the rotation tensor

R(m')=exp( i J—a) exp('—iJyP) exp( iJ—y),
++

that is, for example, R=R(co'} X. Here, J„= ie —'A is
the infinitesimal rotation tensor while e ' is the Levi-
Cevita third-rank antisymmetric tensor. On the other

A ++
hand, this relation can be inverted, that is, X=R(Q'} 2,
where 0'= —y, —P, —a are the inverse Euler angles. Ob-
servations are performed in the counterframe, whereas,
especially for zero-field experiments, the motion is more
readily described in terms of the crystal frame.

Expressions for the observable longitudinal, coplanar
transverse, and perpendicular transverse motion functions,
which involve both counter and crystal frame motion
functions, are reviewed in Se:. II. The continuous ensem-
ble approximation for the random anisotropic hyperfine
interaction is defined in Sec. 111 while, in Sec. IV, the
motion functions are expressed in terms of the motion
tensors associated with isolated anisotropic muonium
atoms. In the latter the eigenvectors of isolated isotropic
muonium atoms are used as basis functions. In See. V
zero-field motion functions associated with two simple ex-
amples are considered, namely, anisotropic hyperfine ten-
sors with (i) nonzero co~o and (ii) nonzero coio, co2+i while,
in Sec. VI, large applied external field motion functions
are considered for the general anisotropic hyperfine ten-
sor. Finally, in Sec. VII, these motion functions are used
to fit low-temperature fused-quartz data.

frame spherical tensor resolution of G(t). In particular,
the muon's spin expectation value,

( I) (r) =I;„[Gi(t)X+ 6'(t)X+ Gcy(t}Y],

Gz (i)=cos8;„Gq (t)+ sin8;„[ cosP;„G„(t)

+(sing;„)Gz (r)],

(2.2)

GL (r) =ImGii(r)+Re62i(t),

GL (r)= —ReGii(r)+ImGii(t),

three coplanar transverse (CT) motion functions,

Gcg(t) = —ImGii(t)+Re62i(t),

G~c(t) =GM(t)+ 2 ( 3
)1/2620(t) —Re622(t),

Gcr(t}=—(2) ~ Gio(t) —ImGqi(t)

(2.3)

(2.4)

and three perpendicular transverse (PT) motion functions,

GFr(t) =ReGii(t)+Im62i(t),

Gg(t)=(2) Gio(t) —Im622(t),

Gg(t)=GOQ(t}+ —,'( —,
' )' 620(t)+Re622(t) .

(2 5)

The standard longitudinal motion function is GL(t), while
the standard transverse-field motion functions are either
Gcr(t) or GP&(t) On th.e other hand, all nine motion
functions can, in principle, be observed ' if the skew an-
gle 8;, is assumed to be fixed such that sin8;„&cos8;„+0
and if three values of the skew angle P;„are used. If this
is accomplished through the use of a spin rotator ' (a
Wein-field filter designed to rotate the muon spin to the
desired orientation), then the apparatus does not need to
be altered to obtain all nine motion functions. These ob-
servable motion functions contain the isotropic, antisym-
metric, and symmetric traceless expansion coefficients of
the counterframe spherical tensor resolution of the motion
tensors, that is,

involves three observable longitudinal (L) motion func-
tions,

Gi. (&) =600(t)-(-, )'"6&0(t),

II. OBSERVABLE RELAXATION FUNCTION

For a muonium atom, the expectation value of the
muon's dimensionless spin vector I,

G(t)=600(t)U (i/2' )e '—E~Gi~(t)+E~G2M(t),

600(t) = —,U:G(t), Gi~(t) =( —i/2' )E' e ':G(t),

( I)(t)=TrI(r)[1„/@+I.I;„]l,p, (0)=G(r) I;„,
(2.1)

G( t) =Tr exp(iHt /i') I exp( i Ht /R) IA (0), — 62~(t)=E:G(&), GL, ~(t)=( —1) GiM(t)* .

(2.6)

has motion generated by the corresponding muon dynarm-

cal motion tensor G(t), which is the muon-spin-vector
time autocorrelation tensor. This expectation value in-
volves the Hamiltonian H for the muonium-environment
system and the initial spin-density operators for muoni-
um, [1&/4+I I;„]l„and for the solid, p, (0}. It can be
written in terms of nine observable motion functions
which are related to the nine coefficients of the counter-

The summation convention for repeated indices is as-

sumed throughout. Here U is the unit second-rank tensor,
~e '-E~ are the antisymmetric second-rank tensors con-
structed from the Levi-Cevita tensor and the counter
frame spherical vectors EM, and E~ are the second-rank1

symmetric traceless counter frame spherical tensors.
These spherical vectors and tensors and their contravari-
ant counterparts, E =(EM)', are"
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8+i ——+(i /2'~ )(X+iY), Eo— —iZ,

E,'=( i, )'"[—H+-,'(XX+YY)],

E+i——+ —,[(XZ+ZX)+i (ZY+ YZ)],

E+i————,[(XX—YY)+i(XY+YX)] .

(2.7)

While these observable motion functions have been ex-
pressed in terms of the counterframe motion functions
they may also be expressed in terms of the crystal-frame
motion functions, gL, (r), through the rotation transfor-
mation,

GL~(&) =gI.m{r}Rmw«') (2.8)

In this way expressions similar to those in Eq. (2.6) are
obtained, except using the crystal frame spherical tensors.
Equation (2.8) is derived using the relation, '

e 0 E =(Lm ~R,'p'(Q') ~LM&=R'M(Q'), (2.9)

between the counter- and crystal-frame spherical tensors.
This relation involves the matrix elements of the quantal
rotation operation.

IG. RANDOM HYPERFINE DISTORTIONS

In an applied magnetic field B the spin Hamilton-
ian for an isolated anisotropic muonium atom, HM„
=R(y, S—y„I).8+ANSI, involves the Zeeman interac-
tions and the hyperfine tensor. The former contains the
dimensionless spin operators for the muon I and the elec-
trans S, and their gyromagnetic ratios y&

——2m &(0.0136
MHz/G and y, =2ir X2.80 MHz/G, respectively, while
the latter,

H„„=A'W:81=Ay,S.(B{r}&

W=ooU+e w&m~m = ~ooU+E sr&zsr ~i~,
(3.1)

W2~ —RM' (Q')a)2—
has coefficients which are defined in the crystal frame.
The constants, aio ——( —', )', a2+i ——2 and az+2 ———,',
are chosen to minimize the number of numerical con-
stants involved in the isotropic eigenvector matrix repre-
sentation of the anisotropic terms. This hyperfine tensor
may be derived, ' in first-order perturbation theory, from
the magnetic interaction B(r) between the electron and
the muon, that is,

tisymmetric components. Equation (3.2) involves the

symmetric traceless second-rank tensor, [r]' '=Fr' —U/3,
associated with 'P while the counterframe coefficients of
this tensor are simply linear combinations of the crystal-
frame coefficients with the rotation matrices acting as the
expansion coefficients. The Hamiltonian for the total sys-
tem is then the sum of this muonium spin Hamiltonian
and the Hamiltonian for its interactions with the solid.
All such interactions are assumed in this work to only
lead to distortions of the electronic wave function of each
muonium atom with an associated nonunique anisotropic
hyperfine tensor. That is, the electronic states of the
muonium atoms, which, for example, may be described by
linear combinations of atomic hydrogen orbitals, contain
contributions from, at least, the 2s and Zp states. Indeed,
whatever the electronic configuration is, there are at most
six coefficients associated with the hyperfine tensor. Such
distortions do not lead to relaxation of the muon spin vec-
tor for the individual atoms. However, the ensemble of
muonium atoms relaxes by ensemble dephasing since each
muonium atom in the ensemble has an independent set of
hyperfine frequencies. A simple continuous random hy-
perfine approximation is adopted here to describe this en-

semble relaxation. That is, the total Hamiltonian is re-
placed by the spin Hamiltonian for an isolated muonium
atom while the ensemble average (trace over the ensemble
density operator) is replaced by a product of integrals,

TVs(0)=g f d~c~+cM(~a~), (3.3)
LM

over a set of random continuous distributions associated
with each frequency in the muonium hyperfine tensor.
Thus the spin-spin autocorrelation tensor for the muoni-
um ensemble,

[G(r)]""=gf" d, ~, (, )[G(r)]M",
I.,M

[G(t)] "=Tr[I(t)I], (3.4)

is the average over the product of the random hyperfine
(RH) distributions of the muon motion tensor whose
dynamics is generated by the muonium spin Hamiltonian.
Equation (3.4) constitutes the random hyperfine distortion
model for the observable muon-spin-motion functions.

IV. ANISOTROPIC MUONIUM
AUTOCORRELATION TENSOR

=iily, S.f dr/(r)'B(r)1({r),

B(r)= —V x(IX V)(iriy„/r)

=Ay&I. I4nU5(r)+(3/r )[r]' 'I,

choo
——(birr) „y,/3)(5(r) &,

a co = —[3iiiy, y„(8m/15}'~ ](r 'Y, (r) & .

(3.2)

The evaluation of the random hyperfine motion tensor
requires expressions for the spin-spin autocorrelation ten-
sor associated with the rnuonium-atom spin Hamiltonian,
HM„. To solve this problem it is convenient to expand
the eigenfunctions of the general muonium atom in terms
of the eigenfunctions of the isotropic hyperfine Hamil-
tonian since, in general, the isotropic hyperfine frequency
is much larger than the anisotropic frequencies. In partic-
ular, the eigenfunctions of the isotropic Hamiltonian are

It has no antisymmetric contributions since the magnetic
interaction between the electron and the muon has no an-

~1&,= )a~&, ~2&,= ~PP&,

~

3 &0——
~
aP& sin(A, /2)+

~
Pa & cos(A, /2),
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and

I
4}p=

I
aP }cos(k/2) —

I
Pa ) sin(A, /2),

with eigenenergies,

E i
——(copp+4coM„}A/4,

E2 ——(coop —4' M„)A'/4,

E3 [co o——a+ 4Q]fi /4,

and

E4 ———[3o)pp+ 4Q]A/4,

respectively. These eigenfunctions and eigenenergies in-
volve the muonium gyromagnetic ratio, yM„———,

'
(y, —y„),

the muonium I.armor frequency, oiM„——yMQ, the beat
frequency, Q= —,

'
coop[(1+x )'~ —1], and the angle

A, =arcsin[1/(1+x2)'~2]. This beat frequency and angle
involve a parameter x =B/Bk which is the ratio of the
field strength B to the hyperfine field Bk ——oiop/(y, +y„)

(=1585 G in the ground electronic state). The quantiza-
tion axis is the direction of the field 8(Z) while, by defi-
nition, IaP)= Iag, ). It is standard terminology in
@SR to refer to the states

I 1)p, I 2)p, and
I
3)p as triplet

muonium and the state
I
4)p as singlet muonium. This,

of course, is corrix:t terminology for zero field only since
these states are not eigenfunctions of the total spin,
F=S+I, for applied fields. As well, the labels of the
second and third eigenfunctions have been interchanged
with respect to the standard terminology.

These isotropic eigenfunctions may be used as basis
functions for the expansion of the general eigenfunctions,

I fr & =&ik
I
k &o «.=~;/4),

of HM„. Explicit expressions for the motion functions,
Eqs. (2.2)—(2.6}, are given in Appendix A. On the other
hand, the matrix representation of the hyperfine Hamil-
tonian involves four matrices, three of which are block di-
agonal, that is

(oiao+4oiMU)

0 (oooo —4oiM. )

0 (copp+ 4Q )

0 —(+3oipp+4Q)

—1 0 0 0
0 —1 0 0

H,p
——(fl/4)( W,p )

0 0 2SC 2S

(4.1)

H22 H2 2 ————(A'/4)
—%22

—W2'2 0 0

0 0 0

0 0
0 0

These matrices, which correspond to the even m components of the spherical tensor expansion of the hyperfine tensor,
involve the sine, S =sin( —,

' 8), and cosine, C =cos( —,
' 8), of the angle 8= —,m —A, , while the matrix associated with the odd

m components couple the two blocks, that is

H2] ——Hi i
——(A'/4)

21 21

S~21 S~21

C8'21 SS'21
—CS'21 —SR'21

(4.2)

The evaluation of the random hyperfine relaxation functions for a single crystal then involve the evaluation of the
counterframe hyperfine frequencies obtained from the product of the rotation matrices and the given crystal-frame hy-
perfine frequencies. This is followed by the evaluation of the eigenfunctions of HM„using Eqs. (4.1) and (4.2). Their
coefficients in this isotropic hyperfine basis are then used to obtain the observable relaxation functions, Eqs. (A2)—(A4),
which are then averaged over with the random hyperfine frequency distributions.

For zero-field experiments the angle 8 becomes zero and the hyperfine tensor reduces to the following when the axis of
quantization is taken as the crystal-frame axis z,
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(topo —or2Q)

—N22

—Z2

(tooo —tozo)

—COg ~ (tooo+2~zo)

O

(4.3)

Since the symmetric traceless components of the hyper-
fine tensor do not couple to the singlet state, then it is an
eigenfunction in zero field. As well the only dependence
on the Euler angles occurs through the relation, Eq. (2.8),
between the counter- and crystal-frame relaxation func-
tions. The frequencies are independent of the orientation.

V. ZERO-PIJ.LD RELAXATION FUNCTIONS

To illustrate this random hyperfine approximation for
zero-applied-field experiments two specific types of aniso-
tropic muonium atoms are considered, that is, (i) those
with nonzero cori and (ii) those with notizero tpzp, orz+z.
These forms of anisotropic hyperfine tensors are chosen
because, in certain situations, their motion can be solved
analytically. As well, the motion functions can be written
in terms of a "triplet" signal, which is independent of the
average isotropic hyperfine frequency, and a "singlet" sig-
nal which involves the cosine aud, possibly, the sine of the
product of the isotropic hyperfine frequency and the time.
These signals are so named because, in zero fields and
with no anisotropic hyperfine frequencies, the triplet sig-
nal is that from transitions between two true triplet states,
while the singlet signal arises from transitions between a
true triplet state and the true singlet state. While in ap-
plied fields and with anisotropic hyperfine tensors the
states are no longer triplets and singlets, this nomencla-
ture provides a simple way of distinguishing the various
signals.

A. Cylindrical an(lotropy

Muonium atoms with cylindrical symmetry about some
given axis have nonzero orzo as well as nonzero coop. In
general, there may be more than one orientation of this

cylindrical axis with respect to the given crystal frame
(x,y,z). If all the sites have identical symmetry axes (z)
then the resulting zero-field motion can be easily comput-
ed. In particular, the crystal-frame Hamiltonian is diago-
nal for this situation; see Eq. (4.3). Thus its eigenfunc-
tions are the isotropic eigenfunctions and its eigenenergies
are the diagonal elements. There are, of course, sixteen
frequencies associated with this 4X4 Hamiltonian matrix,
four of which are trivially zero. The remaining twelve ap-
pear in two groups of six with equal magnitudes but op-
posite signs. For the present Hamiltonian there is a single
(zero) triplet frequency wiz ——0 and a pair of degenerate
triplet frequencies w» ——wz& —— 3')zp/—4 The s.inglet fre-
quencies have the same symmetry; that is, there is a single
(nonzero) singlet frequency W34 —tpoQ +N io/2and a pair
of degenerate frequencies, wz4 ——toiq —-coop —cozp/4. Thus,
the nonzero crystal-frame motion functions associated
with this Hamiltonian are of the form

gpp(t)=6 ' icos(wjt),

gzo(t)= 6 [ 2 cos(w)it)+T cos(wight) —cos(w)it))
(5.1)

Xexp[ (a)LM tpLM) —/2crLM] . (5.2)

+6 [ g cos(w]4t)+ g cos(wi4t) —cos(w$4t)],

where the explicit values of the frequencies are given
above. Random hyperfme motion functions are obtained
from these single muonium-atom motion functions by
averaging over the frequency distributions, Eq. (3.4). To
illustrate this procedure Gaussian distributions with
nonzero average frequencies, toLM, are assumed, that is,

FLM(LM ) (2~trLM )

It is also useful to define the dimensionless frequency distributions, fLM(z) =exp( —z ). Thus, for example, the random
hyperfine isotropic motion function associated with the Gaussian distribution is the following:

gpp(t)=6 '[I+2cos(m, it)hzp(3t/4)]+6 '[cos(mi4t)hpp(t)hip( —,
' t) +2co( sm4ti) h(ptp) h(ztp/4)],

hLM(t) =f dz fLM(z)cos[2'~to LMtz] =exp( tLM /4), —
(5.3)

where the dimensionless time is tLM 2' crLMt an——d where mtj is the appropriate eigenfrequency evaluated with the aver-
age hyperfine frequencies, orLM. The functions hLM(t) are relaxation functions. If the sample of interest is a powder or
amorphous then all the Euler angles must be averaged over with equal weights. Thus the only nonzero observable
motion functions, GL(t), Gpz(t), and Gg(t), are all given by the isotropic crystal frame motion functions, Eq. (5.3).
The singlet motion functions decay to zero for long times while the triplet motion functions have long-time tails of one
sixth (one third of the initial triplet muonium polarization). This long-time tail, which occurs because there is a nontrivi-
al zero-frequency component of the triplet motion, is a distinctive trademark of cylindrical anisotropy. It is lost when
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other anisotropic components are included as the doubly degenerate eigenenergies are split, that is, when there is no

longer a nontrivial zero frequency. Thus, when an experiment is performed using powders, the long-time behavior im-

mediately demonstrates the lack of, or presence of, anisotropies other than the cylindrical one.
The cylindrical random hyperf]ne crystal-frame motion functions,

gzp(t)=6 [cos(w]zt)hzp(t) —1]+6 [cos(w]4t)hpp(t/4) —cos(]Jilt)hop(t}hzp( 2 t)] (5.4)

are obse~able lf experiments me peeo~~ on single cnstals. In pa~icular, if the cgstal and counter fromm are
synonymous, Q'] ——0, the nonzero observable random hyperf]ne motion functions are

GL(t I
Qi}= 2 [1+cos(N34t)hpp(t)hzo( 2 t}]

GCT(t
~
Qi) =GFr(t

~
Qi) =

2 Cos(w]3t)hzp(3t/4)+ —,
'

Cos(w]4t)hpp(t)hzp(t/4) .
(5.5)

The two transverse motion functions, which are equal, decay to zero for long times while the longitudinal motion func-
tion has a one half time tail. In contrast, for Qz ——0, —zr/2, 0, the observable longitudinal and perpendicular transverse
motion functions are the same as the transverse Q'i motion functions while the coplanar transverse motion function be-
comes the same as the Qi longitudinal motion function.

B. Planar plus cylindrical anisotmpies

Muonium atoms with L =2, I=0,2, —2 anisotropies are now considered. Again all the sites are assumed to have
identical crystal axes. The crystal-frame Hamiltonian, Eq. (4.3), is block diagonal for this combination of anisotropies
and has eigenfunctions and eigenenergies of the form

I 0]&=2 '"[
I »0+exP(]422) I2&o]~ E]=(&/4)(~ao —~20+~22) i

I 02& =2 ' [ I 1&o—exp(]buzz) I 2&o] ~z =(&/4)(00 —bozo —22)

143& I
3&0 ~3 (])2/4)(~00+2 20» I 6&=14&o ~4=«/4}( —3~00»

(5.6)

wherein the frequencies p]22 and F02 z are written as 0]22 exp(i/22) and o]22 exp( —i/22), respectively. There are no degen-
erate frequencies associated with this Hamiltonian; that is, the triplet frequencies are w]2 2 Nzz N]3 — (30]20 t022)/4p

and wzz ———(30]20+tozz)/4, while the singlet frequencies are w]4 ——o]00—(cozp —o]22)/4, w24 ——o]00—(o]zp+p]22)/4, a]id
N3$ —o]00+ 2 o]20 Making use of these eigenvectors and eigenenergies and Eqs. (Al) and (A5) the nonzero crystal-frame
motion functlolis gpp(t) and gzp(t) are of the same general form as Eq. (5.1) but with the above frequencies while the
gzz(t) motion functions are of the form

gzz(t)=4 [cos(wzzt) — co( sN])z+tco( sNg ])—tcos(wzgt)]exP( —]f22) .

Random hyperfine motion functions are again obtained by averaging these single-particle motion functions over the
appropriate distribution functions. The isotropic and cylindrical functions are given by Eq. (5.2) while the planar Gauss-
ian function,

I'22(tpzz 422) =F22(~22)I"2 2(~2 z)

= (2n'ozz) ' expI —(2ozz) '[(tpzz —to 22) +4tozzo] zz sin ( —,
'

pzz ——,
'

pzz)] j, (5.8)

is taken to be the product of the two one-dimensional functions with the same spread. With these distribution functions,
the isotropic random hyperf]ne motion function becomes

6gQQ(t) cos( N ]zt)h 22( t) sin(w ]zt}kzz ( t}+ [Cos( N]3 t) +cos( Nzzt) ]hzp( 3t /4)h 22(t /4)

—[sin(w]zt)+sin(N23t)]hzp(3t/4)kzz(t/4)+ [cos(w]&t)+cos(mzqt)]hop(t)hzp(t/4)hzz(t/4)

—[»n(w]4t)+»n(N24t)]hop(t)hzo(«4}kzz(«4)+cos(N24t}hoo«»20( 2 t),

hzz(t) =2 I dx(x +r)exp[ —x —2]2 (x)]I„(2a(x))cos(tzzx},

kzz(t) =2 f dx (x +r) exp[ —x —2a (x)]I„(2a(x))sin(tzzx),

(5.9)
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where I„(x) is a modified Bessel function" of order n .
Here a (x) is r(x +r), where r is the ratio of the average
frequency to the sPread, Plzz/2'~zozz. Two sPecial limits
of the relaxation functions h and k are of interest, that is,
very broad distributions with r ~~ 1 and very very narrow
distributions with r »1. For n =0, 1 these functions
reduce to

h22(t)r((1 1 (t22)+[ 2 t22] ~

hzz(t)„«, -(rm'~ /4)(1 ——,'tzz)exp( tzz—/4),

These relaxation functions involve Dawson's integral, '

F[x]=exp( —x ) I dzexp(z ) . (5.11)

As required very narrow distributions (r »1) have only
[cos(pit}]-type frequency dependence with very long-lived
Gaussian relaxation functions. The frequency distribu-
tions in this case can be identified with the frequency dis-
tributions in their Fourier transform power spectra. Ex-
pressions for the remaining crystal and laboratory frame
motion functions are given in Appendix B.

k»(t)„, , ——t» exp( —t»/4),2

k22(t)r((1 ( r/4) jtzz (2+t22)~[ 2 t22]I

h zz(t)-h 22(t), »i-exP( tzz—/4),

4 22(t) -kzz(t)r ))l -(4r) ' exP( tzz
—/4) 0.-

(5.10)

VI. LARGE-APPLIED-FIELD
RELAXATION FUNCTIONS

When an external field is applied both the frequencies
and the amplitudes depend upon the Euler angles. How-
ever, when the field is large, the isotropic frequencies will
dominate and the full Hamiltonian can be approximated
by its diagonal elements alone, that is,

H =(A/4)

(tPpp+4PlM. —~zp)

0 (Plpp —4PlMu —~zp)

(copp+40+2C Wzp)

( —3P)pp —40+2S Wzp )

(6.1)

Such an approximation is the standard secular high-field approximation' of nuclear magnetic resonance. In this ap-
proximation the amphtudes are independent of the Euler angles while the frequencies are dependent on them. This
dependence is given by Eq. (3.1) which relates the counterframe anisotropic hyperfine frequencies to the crystal-frame
frequencies, namely, Wzp is

3(cos p ——,kozp/2+( —,)' sin p[plzlcosa —plzlsina]+( —, )' sin p[plzzcos2a —plzzsin2a] .

Indeed, the triple frequencies are wlz ——2plM„, pl» ——cpM„—0—(1+2C ) Wzp/4, and wz3 ———[plM„+0
+(1+2C ) $Vzp/4], while the singlet frequencies are w l4 ——Plpp+tPM„—0—(1+2S )Plzp/4, w24 ——Plpp —P3M„+0
—(1+2$ ) Wzp/4, and w~ ——tPpp+20+ (C —S }8'zp/2. The nonzero observable motion functions associated with this
Hamiltonian are

Gt (t)=T~[1+cos A, +sin A cos(w3gt)],

GCT(t)=GpT(t) =
2 cos ( 2 A )[cos(wl3t)+cos(wzgt}]+ T~ sill ( 2 A )[cos(wi4t)+cos(w23t)]

Gg (t)= GpT(t) =—,
' —cos ( —,

'
A, )[—sin(wilt)+sin(wz4t)]+ —,

'
sin ( —,

'
A, )[sin(wi„t) —sin(w23t)] .

(6.2)

There is one longitudinal motion function and four transverse motion functions which are grouped in two sets of
equivalent pairs that are related by a simple phase. This is, of course, the standard motion of an isotropic muoniurn
atom in an external field with shifted frequencies due to the anisotropic hyperfine components. Assuming Gaussian dis-
tributions, the observable longitudinal and transverse random hyperflne motion functions, for a given counter-crystal-
frame orientation,

GL(t) = —, t 1+cos A+sin 1,cos(w34t)H [(C —Sz)t/2] I,
GcT(t)= & [COS ( &

A, )cos(wl3t)+Sin ( &
A, }COS(w23t)]H[(1+2C )t/4]

+ —,
' [sin ( —,

'
A, )cos(w, 4t)+cos ( —,

'
A, )cos(w24t)]hpp(t)H[(1+2S )t/4],

6pT(t) = —,[—cos ( —,A, )sin(wizt)+sin ( —,
'

A)sin(w23t)]H [(1+2C )t/4]

+ —,
' [sin ( —,

'
A, )sin(wl4, t) —cos ( —,

'
A, )sin(wzqt)]hpp(t)H [(1+2S )t/4],

involve a common relaxation function,

(6.3)



RALPH ERIC TURNER AND DALE R. HARSHMAN

&l&1=~2&~'"8f «fzo(*~ f, &*f2&~*~ fo d1f2lW f, d~f22~~~

X I dU f»(U)cosI g IIo[3z(cos p —
g ) +6 $21 s111 p(x cosIZ —f sIIlcx) +6 $» sIIl p(II cos2IK —U sln2IK)] I

=expI —(3IIo/16)[3(cos p ——,
'

)+ 2II& sin 2p+2sII sin p] I, (6.4)

where sI ——OI /O'2o. For a powder sample, where the
Euler angles are averaged with equal weights, this com-
mon relaxation function becomes

H[I]=I dy exp[ 3b(y—)t zo/16]
(6.5)

b (y) =3(y' ——,
' )'+ Ss', Iy'(1 —y')+2S»(1 —y')' .

Using the method of steepest-descent integrals of this type
are found to have the following long-time behavior

exp[ —(r'Io/5)(-,'+s', I+s»)],
that have been chosen such that the short-time behaviors
are consistent. Although the cylindrical plus oIII and
cylindrical plus eI» both differ from the respective Gauss-
ian approximations, it is unlikely that the small deviations
will be observable. For the fully anisotropic case the exact
function and the exponential approximation to it are in-
distinguishable.

H[t], „—[2m/3b (yo)] (4/IIo)

XexP[ 3b (yo—)tio/16] . (6.6)
VII. APPLICATION TO FUSED-QUARTZ DATA

If there is only cylindrical distortion, ski ——s» ——0, then
the maximum of the integrand occurs at yo ——3 '/2 where
the function b (yo) is zero. Thus, for cylindrical anisotro-

py the relaxation function approaches zero asymptotically
as I ' In cont.rast, for sII and/or s» nonzero, the func-
tion b (yo ) is nonzero so that the resulting relaxation func-
tions approach zero asymptotically as t 'exp( —at ).
Four types of relaxation functions are depicted in Fig. 1.
The pure cylindrical relaxation function is clearly distin-
guishable from the cases of the cylindrical plus oII&,
cylindrical plus co», and fully anisotropic relaxation func-
tions. These latter relaxation functions are compared, in
Figs. 2, 3, and 4, to Gaussian relaxation functions,

1.0

For muonium in bulk silica, the muon-spin polarization
may relax only via random anisotropic hyperfine distor-
tions. '7 In an amorphous environment such as bulk fused
silica, the hyperfine distortions could only be distributed
randomly, both in orientation and magnitude. It is also
well known that muonium is static in bulk fused quartz
below 50 K.'7' Because of these two features, muonium
in bulk fused silica provides an excellent test case for the
zero- and high-transverse-field random hyperfine spin-
relaxation functions developed here. For amorphous sam-
ples only the isotropic motion function is observable in
zero-field experiments. For example, experiments on
powdered silicon dioxide's and on fused qu~&z' ' have
been performed at TRIUMF. In these experiments static
muonium is found on the surfaces of the powder grains or

0.8
Q

0.6
O

0.4

IX

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 1. High-transverse-field relaxation functions for
cylindrical, cylindrical plus co2&, cyhndrical plus ~~2, and fu9y
anisotropic hyperfine tensors. These relaxation functions have,
respectively, the slowest to fastest asymptotic approach to zero.
The spreads have all been taken to be 10 ps ', as they are in
Figs. 2, 3, and 4.
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0.8
x
O
O

0.6
4

LY
0.2
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0.0 0.1 0.2 0.3 0.4 0.5

FIG. 2. Comparison of the high-transverse-field relaxation
functions for cylindrical plus ~2i anisotropies mth a Gaussian
function which has the same early time behavior. The Gaussian
function decays to zero first.
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the noncylindrical components. As well, the fitted param-
eters in zero field should predict the fitted high-
transverse-field relaxation rate to within experimental er-
ror. Such a fitting procedure can be performed for low-

temperature fused quartz. For example, the zero-field
data' at 7 K have been fit to Eq. (7.2), see Fig. 7, with
half-widths at half-height of cr2p 4——7.+1.3 ji,s ' and

o22 ——6.2+0.S ps '. These values suggest that the initial
slope, or relaxation rate, of the high-transverse-field relax-
ation function should be m TF

——2.9+0.6 ji,s '. The actual
fitted value, ' '" 3.4+0.5 ps ', is, indeed, consistent with
this predicted value. Thus the zero- and high-transverse-
field relaxation functions predicted by the random hyper-
fine approximation describe the data to within experimen-
tal errors with one set of parameters. The two relaxation
functions are compared in Fig. 8.

VIII. CONCLUSION

To conclude, a static relaxation theory describing the
time evolution of the muon-spin ensemble polarization,

for the case of random hyperfine distortions of the muoni-
um hyperfine interaction, has been developed. Relaxation
functions have bein calculated for both the zero- and
high-field limits. The new zero-field functions, in partic-
ular, were shown to have distinctive line shapes and long-
time behaviors, exhibiting a strong dependence on the dis-
tortion symmetry. This theory was applied to zero- and
high-transverse-field data for muonium in fused quartz,
by assuming the distortion parameters to be distributed
according to Lorentzian-type distributions.

A.PPENDIX A

Upon use of the isotropic eigenfunctions as basis func-
tions for the expansion of the general eigenfunctions,

l P;) =cik l k)p, of HM„ the counterframe spherical ten-
sor coefficients of the isolated anisotropic muonium-atom
spin-spin autocorrelation tensor are

Gpp«)={1 } 'I II"I'+ II" I'+ II' I'+2cos{wjt}[IIj I'+
I Ifj I'+ II'j I'])

G»(t) = ——,
'

sin(w jt) I Im[If&(I j )']—i Im[I j(I&)']I,

Gip(t) = —(2) '~isbn(wijt)Im[I j(Ifj)'],

Gm(t) ——( —, ) '4
I —,[II, I + IIf, I

—II,'- I']+2cos(wjt)(Y[II,, I' IIfj I ]—II' I'))

G2i(t)=4 '[I;";It'+t'IP;;+2cos(wjt)(Re[I j(Ij)']+iRe[I(z(Ii'j)']l,

G22(t}=—4 '(7'[ IIii I

—IIfi I
]+i'IicI,";+2cos(wjt)I z [ lIij I

—IIfj l
]+i Re[Iij(Ifj)']I }

while the observable longitudinal motion functions become

6 i (t)= —,
'
[ l I,'; l

2+2 cos(w;, t)
l
Ij l

~],

Gi (t) = —,
'

sin(w jt)1m[Ij(Ij )']+—,[I;;"I,';+2 cos(co;, t)ReI j(Ij )'],
Gf, (t}=2 sin(wjt)Im[Ifj(I&) ]+ & [IfIq+2cos(wjt)ReIfz(I j) ],

the observable coplanar transverse motion functions become

GcT(t) = ——, sin(wjt)Im[Iij(I j)']+ ,' [I;;"I;+2 cos(w—jt)ReIj(Ij )'],
GcT(t)= —,'[lI;";l +3cos(w;, t) lI, l ],
GCT(t) = —,

' sin(wjt)Im[I j(Ifj)']+ ,' [I,';I~+2 cos(wj—t)ReIj(If~)'],

and the observable perpendicular transverse motion functions become

6PT(t}= ——,
'

sin(wjt)lin[I~j(Ifj )']—,' [IP;;+2cos(w jt)ReIfj(—Ij)'],
GFr(t) = ——, sin(w I t)1m[I&(Ifj) ]+ ,' [IN, Ij'+2 cos(w 1t)ReI—J(Ifj )'],
G' (~)=t-,'[lIf, l'+3cos(w, ,t}lIf, l'].

These relaxation functions contain the counterframe components of the muon-spin vector, that is,

Ifj =cos( —,jI.)[A '{'3+A g~]+sin{ —,A )[A g3
—3 'i'~],

Ifj i cos( —,
' l, 1[8'{' ———8j ]—sin{ —,j{,)[8'{' —8$ ],

Ij =C'{'z cos(A)Cf&+ s—in(A, )A ,j~,

(A 1)

(A2)

(A3)

(A5)
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~ ~ o

wherein Akpt =c;kcjl+c;'(cJk, 8kj( ——ckcJI —c,"tc~k, and Ckjf ——c kc~k —c;(cjt .The summation in Eqs. (Al)—(A4) over ij is re-
stricted to i &j. In general, both the frequencies and the amplitudes are functions of the Euler angles which relate the
frames.

APPENDIX B

The remaining nonzero planar plus cylindrical crystal from random hyperfine motion functions,

6 gzp(f) =
2 [Cos(w(3t)+Cos(W23t)]hzp(3t/4)hzz(f/4)

2 [S (W13f}+ n(W23f}]hzp(3f/4}k22(t/4) cos(wlzf)h22(

+sin(w(zt)kzz( —,
' t)+ —,

'
[cos(wl4t}+cos(W24t)]hpp(t)hzp(t/4)hzz(t/4)

——,
'

[sin(w(4f)+»n(W24f)]hpp(t)hzp(f/4)kzz(t/4) —cos(W34f)hpp(t)hzQ( 2 I),
4gzz(f }— [COS( W lit) COS( W23t) ]h zp( 3t/4)h 22(t 14)exp( I (t(2—2)

+ [sin(w(3t) —sin(w23t}]hzp(3f/4}kzz(t/4)exp( —I(()22)

+ [cos(w(4t) —cos(L(t24t)]hpp(t)hzp(t/4)h zz(t/4)exp( —i())22)

—[sin( w 14t) —sin( w24t )]h Qp( t)h zp( t /4)k 22 (t /4)exp( —i $22),

(81)

are observable if experiments are performed on single crystals. In particular, when the counter and crystal frames are
synonymous, the observable longitudinal motion functions are given by

GL(t) = —,
'

[cos(w(zt)hzz( —,
' t) —sin(w(zt)kzz( 1 t)]+ 2 cos(W34t)hpp(t)hzp( —,

' t),
(82)

the observable coplanar transverse motion functions are given by

(83)

GCT(t) =0,
GCT(t) —4 [cos(w13t)h (t14)—sin(w»t)k (t/4)]hzp(3tl4)+4 [cos(w23t)h&(t/4) —sin(w23t)k&(t/4)]hzp(3f 14)

+4 '[cos(w(4t)hP(t/4)+sin(w(4t)kP(t/4)]hpp(t)hzp(t/4)

+4 '[cos(W24t)h~(t/4) —stn(W24t}k~(t/4)]hpp(t)hzp(t/4),

Gg'(f) = 4 [cos(wllf) —co(s W2t3)] ist zzhpz(3t/4)h 22(t14)—4 [sin(rp(3t) —S1 (nrp32t)]si pnzzhpz(3f/4)kzz(f/4)

+4 [C O(sW4 1)I+C O(sW42t)] tSn(t)zzhp(pt) hz(pf/4)hzz(f/4)

—4 '[sin(LQ14t) —sin(w24t)]sinpzzhpp(t)hzp(t/4)kzz(t/4),

and the observable perpendicular transverse motion functions are given by

GPT(f}=0 GPT(f}=GPT(f»

GPT(t) = 4 '[Cos(W13t)hP(t/4) —sin(w13t)kP(t/4)]hzp(3t/4)

+4 '[cos(w23t)h (t/4) —sin(LQ23t)k (t/4)]hzp(3tl4)

+4 '[cos(w(4t)hP(t/4) —sin(w(4t)kP(t/4)]hpp(t)hzp(t/4)

+4 '[cos(w24t)h (t/4) —sin(w24t)k (t/4)]hpp(t)hzp(t/4),

vrhere

bp „(t)=bzp(t)+cosfzzbzz(t), b =h, k .
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