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Electron heating in a multiple-quantum-well structure below 1 K
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We have measured the electron-energy-loss rate in an n-doped GaAs-Al,Ga;-xAs heterostruc-
ture by finding the power required to establish a steady-state temperature offset between the elec-
trons and the lattice. The measurement utilizes the temperature dependence of the resistance as a
self-thermometer; heat is injected by an additional dc current. We find that for our sample the
energy relaxation rate below 1 K is 7,7 ! =(2.5%10%) T3 sec™'K 72,

The study of two-dimensional electron gases at very low
temperatures has gained a great deal of interest because of
the effects of weak localization and electron-electron in-
teractions on the transport properties of these systems.!
These transport studies have found that temperature-
dependent effects such as the logarithmic increase in resis-
tance appear to saturate at temperatures below ~ 100 mK.
Only with great care can measurements be extended below
this range because the electron-phonon coupling becomes
very weak and the electrons remain at a substantially
higher temperature than the lattice.

In this paper we will describe our measurement of the
temperature dependence of the electron-phonon coupling
in an n-doped GaAs-Al,Ga, —,As heterostructure. This is
done by applying a known power to the electrons and
measuring the resulting increase in their temperature
above the lattice temperature. The resistance of the het-
erostructure has a temperature dependence that is used as
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FIG. 1. The measured sample resistance vs temperature. The
sample in (a) was prepared with a Hall pattern and was used to
measure the mobility. The sample in (b) was a much larger
piece of the same wafer with a scribed H pattern in the surface.
The larger sample was used to reduce the effects of unintended
heating. The temperature dependence of the two samples is
presumed to be similar, with the exception of a fixed geometric
factor.
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the thermometer for the electrons. The temperature
dependence of the electron-phonon coupling is extracted
using a “two-bath” model.

In our experiment we used a 25-layer modulation-doped
GaAs-Al,Ga; - As structure. Each layer is comprised of
the sequence 250 A GaAs, 375 A Aly2sGagrsAs (100 A
undoped, 175 A n-doped to n =5%10'" cm ™3, 100 A un-
doped). The mobility is 11600 cm?/Vs at 77 K. The
number of carriers corresponds to an areal density of
1.7x10'" cm ™2 for a single electron sheet. Thus the Fermi
temperature should be about 70 K so the electrons will be
degenerate below 1 K. We have studied two sections of
this material. The first was a Hall pattern sample 100 um
long by 50 um wide in the voltage-measuring region. This
sample has diffused Sn contacts. The resistance of this
sample is shown in Fig. 1(a). The second sample taken
from the same wafer, and whose data are shown in Figs.
1(b) and 2, is a 6 mm-by-6 mm square section with four
diffused indium contacts placed at the corners. The In
contacts were heat treated at 430° C for approximately 5
min in order to obtain Ohmic connections. We found that
the contact resistance was never greater than 25 Q at the
lowest powers and temperatures used. There was, howev-
er, some alteration in the effective shape of the sample due
to the superconducting transition of the In at the contacts.
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FIG. 2. The measured resistance of the large sample at a
number of lattice temperatures vs the applied power. The values
of the lattice temperature are indicated close to each curve.
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In fact, below T for the In (~3.2 K) there was a complex
current- and magnetic-field-dependent artifact in the
resistance in the region of the contacts. For this reason,
we isolated the contact regions with two parallel scratches
on two opposite sides that extended 1.0-1.5 mm from the
edge near each corner. For later purposes of calculating
surface area, we assume that the entire area is at a con-
stant temperature, since the effective electron thermal dif-
fusion length as derived from our measurements below is
larger than a millimeter at the temperatures used in this
experiment.

Resistance measurements were performed with a four-
wire active bridge utilizing two matched and temper-
ature-compensated instrumentation amplifiers for current
and voltage inputs.>2 We were able to achieve 1:10* resolu-
tion and long-term stability with a measuring power of 1
pW. We injected dc current into the sample current leads
in order to produce heating. The applied heating rate P
was calculated from the measured voltage drop across the
current leads, including the contacts. There is also a resi-
dual power due to noise and other extraneous heat leaks,
as well as the power required for the resistance measure-
ments. We lump these together as Py so that the total heat
inputis Q =P + P,

We cooled the sample in direct contact with pure *He in
a sample cell attached to a dilution refrigerator. Below 1
K the thermal boundary resistance becomes small com-
pared with the electron-phonon resistance so we could take
the lattice temperature to be equal to the surrounding *He
during the heating experiment.

Figure 1(a) shows the resistance of the Hall pattern
sample measured with no additional heating. The resis-
tance appears to be reasonably well described by InT
below 30 K, but the slope decreases as T is reduced. The
origin of the InT behavior is related to the two-dimensional
behavior of the conducting layers, but the details are not
well understood. Our own longitudinal magnetoresistance
measurements” as well as those of others on similar struc-
tures show that it is negative.® The magnetoresistance of
these samples is not understood at this time. We can, how-
ever, use the resistance as a self-thermometer for the elec-
tron gas. For the purposes of our experiment it is not
necessary to understand the origin of the In7 behavior, and
in addition it is not necessary to know the slope of the
resistance in advance. This is fortunate since the mea-
sured slope is affected by residual heating below ~100
mK and eventually goes to zero.

Figure 1(b) shows the resistance at low temperatures of
the large (6-mm-square) sample. We see that although
the resistance is roughly logarithmic, the slope decreases
with decreasing temperature. Eventually, the residual
power causes the resistance to saturate, but this is not the
cause of the curvature above ~ 100 mK. Thus, the effects
of heating and the intrinsic temperature dependence of the
resistance are difficult to separate. Fortunately, with a
self-consistent analysis as described below, using a com-
bination of heating rates and lattice temperatures, the ef-
fect of heating can be readily determined.

Figure 2 shows the measured resistance versus applied
power for several lattice temperatures. Except at the
lowest temperature, we see that there is a range of applied
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power where the resistance is almost power independent.
At these low powers the electron temperature is dictated
by the lattice temperature. Then at high power the resis-
tance approaches a universal curve. This universal curve
represents the situation where the electron temperature is
dominated by the effects of the power.

The thermal relaxation of electrons to the lattice can be
well represented by a “two-bath” model where the elec-
trons are at a well-defined elevated temperature 7, above
the lattice bath 7;. The temperature rise is given by the
ratio between the electron-phonon energy relaxation rate
7, ! and the electron heat capacity C,. We assume an
equilibrium has been reached in which the rate that heat
enters the electron system, dQ, equals the rate at which it
leaves: dQ =1, 'C.dT,.. If we take C.=yT and assume
that z,”! follows a power law, 7, ! =aT?, we get

0=a(1l-Tf) , (1)

where a'=ay/(p+2) and =p +2.

There is a crossover between the high- and low-power
regime that represents the bends in each curve. If we as-
sume that at least over a limited temperature range the
resistance is given by

R=—AIT.+B , (2)

then from Eq. (1), we find that R —B<«In(Q/a’'+T}).
Since it turns out that 8>>1 we move rapidly from the
low-power behavior with R being given by TF to high-
power behavior with R depending on the power. The
crossover is at Q = a'T?.

Since deviations of our low-power resistance curve [Fig.
1(b)] from Eq. (2) involve both intrinsic effects and the ef-
fect of residual heating, we cannot determine the parame-
ters A and B in Eq. (2) with sufficient accuracy from the
low-power measurement alone. However, since the deter-
mination of the crossover power does not depend on our
choice of slope in the resistance versus temperature curve,
we can then confidently perform a least-squares curve fit
to the entire set of data shown in Fig. 2, utilizing Eq. (1)
and assuming that the resistance follows Eq. (2). We fit
the data simultaneously to Eq. (1), substituting Eq. (2) for
the electron temperature, minimizing the squared devia-
tions for R. This fit allows a’, B, 4, and B to be free pa-
rameters and results in a minimum X2. P, was determined
separately from the lowest-lattice-temperature curve, to be
2.8x107 12 W. The fit is quite good with an average error
for each point of 0.04 Q leaving a reduced X2 of close to 1.
Using standard statistical techniques,* we can estimate the
accuracy of the determination of g by calculating the vari-
ation of the reduced 2? with 8 holding the other parame-
ters fixed. The error limits correspond to the points where
the reduced X*> doubles. With this analysis we get
B=5.0%£0.2 or p =3.0x0.2. To emphasize that this fit is
not sensitive to the parameters in Eq. (2) we also made a
much cruder analysis, consisting of simply estimating the
power at the bend for each curve in Fig. 2 so that
Q =a'TP. This analysis also gives §=5.

The best fit to our data allows us to estimate the product
ay as defined in the discussion of Eq. (1) to be =5x107¢
W/K3. We can get an estimate of the electron-phonon re-
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laxation time if we assume a two-dimensional electron gas
with an effective mass® m* =0.0665m,. We use 18 cm?
for our effective sample area (assuming 50 two-dimen-
sional electron sheets) and estimate y=1.9x107!2 J/K2.
Then the energy relaxation rate becomes 7, '=aT?”
=(2.5%10°)T?sec 'K

For GaAs quantum wells Price® has calculated the
theoretical rate of energy loss from the electron system to
acoustic phonons in the low-temperature limit. He finds
that a simple deformation coupling to LA phonons is negli-
gibly small in our temperature range. However, the
piezoelectric coupling of acoustic phonons to electrons
gives the correct temperature dependence and (after con-
verting to our notation) an energy relaxation rate for our
sample density of 7, ! =6.6X% 10873 sec "' K 3. As for the
two-order-of-magnitude discrepancy with experiment we
note that the precise prefactor of the calculation is known
to be unreliable. Price assumed a Fermi function for the
electron distribution, but then demonstrated that this is an
unsubstantiated assumption. He expects that a proper nu-
merical evaluation will merely change the prefactor while
retaining the same temperature dependence.

We should also make clear the distinction between our
results and the much-higher-temperature work by Shah,
Pinczuk, Gossard, and Wie.%mann7 and Yang, Carlson-
Swindle, Lyon and Worlock.® In their temperature range
(T>30 K) the dominant cooling mechanism is
electron-LO-phonon coupling. In our range (7 <0.5 K)
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this mechanism is exponentially suppressed and expected
to be many orders of magnitude smaller than the
piezoelectric coupling to acoustic phonons we observe.

A recent experiment by Roukes et al.® measured the en-
ergy relaxation rate in a metal film. Since the resistance
of their metal film was essentially temperature indepen-
dent at low temperatures they could not utilize the resis-
tance as a simple self-thermometer, and instead measured
Johnson noise to find the temperature. Despite the consid-
erably different material they also found that p =3.
Roukes et al. found that their corresponding energy relax-
ation rate was 7, ! =9x 10773 sec "' K ~3 which is a factor
of 36 higher than our value.

In conclusion, we find that the thermal relaxation of
electrons in this quantum well system is sufficiently slow
to account for the difficulty in obtaining temperature-
dependent effects at very low temperatures. An extrapola-
tion of our results shows that we will need to reduce all
measuring and noise powers to less than 10™'® W in order
to extend measurements to near 10 mK.
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