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A simple procedure to perform Hartree-Fock calculations in solids using extended basis func-
tions is proposed. The method also applies when correlation is added with the self-consistent
Coulomb-hole-plus-screened-exchange (COHSEX) scheme. Application to silicon in the pseudo-
potential approach yields excitation energies which agree with recent results by Hybertsen and
Louie. We find that the simple diagonal COHSEX approximation does not provide satisfactory
indirect excitation energies in silicon but is quite accurate for the direct ones.

The local-density approximation (LDA) to density-
functional theory! has proved to be a powerful tool for ac-
curate studies of ground-state properties of solids. Excita-
tion energies, however, cannot be investigated on the same
footing since, besides the errors due to the use of LDA, the
eigenvalues of the Kohn-Sham density-functional equa-
tions cannot be interpreted as quasiparticle energies. For
semiconductors, for example, the LDA energy gaps are
substantially smaller than experimental data. Several ex-
tensions of LDA, such as nonlocal-density approxima-
tions,? or energy-dependent functionals® have been pro-
posed for the excitation energies. The best results, howev-
er, have been obtained from calculations*® based on
many-body perturbation theory which include exchange
and correlation with the GW approximation of Hedin.®
The full dynamical character of the many-body interaction
is included, and the results compare well with experiment
for diamond, Si, and LiCl. These calculations are ex-
tremely time consuming and therefore have been limited to
a few materials only. An analytical self-energy model has
recently been proposed in an attempt to simplify the com-
putations.’

In this work, we present a procedure which allows one to
calculate GW quasiparticle energies with a reduced nu-
merical effort using a plane-wave basis set. The method is
particularly simple in the limiting case of the Hartree-
Fock approximation where the self-energy reduces to the
exchange operator. The soundness of the technique is
demonstrated by calculating the quasiparticle energies of
silicon with two different approximations: the Hartree-
Fock and the diagonal Coulomb-hole-plus-screened-
exchange (COHSEX) schemes.

For convenience, we describe the technique for the
Hartree-Fock self-energy operator yr. In this case, the
self-consistent band-structure calculation involves ex-
change matrix elements of the type
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where the sum is over all occupied Bloch orbitals ¢,,q and f
and g are basis functions. Using the decomposition of ¢,.q
in plane waves,
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and plane waves as basis functions, the exchange matrix
element becomes
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Evaluation of expression (3) is the time-consuming step
in the Hartree-Fock computation. The expression contains
a sum over occupied states and requires the knowledge of
Bloch functions everywhere in the Brillouin zone. Direct
summation by the special-point technique does not apply
since the summand has an integrable divergence for
k —q=Ggy (a reciprocal-lattice vector) of the form

emk—G, (G'+Go)emi—6,(G+Go) _ mk(G)enmi(G)
|k—q—Gol? lk—q—Gol?

3

(4)

where the equality comes from the fact that Bloch func-
tions at equivalent wave vectors represent the same state.

The difficulty can be removed by adding and subtract-
ing to the right-hand side (rhs) of (3) a reference term
which has the same singularities as the exact expression,
i.e., by writing the matrix element as
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where F(p) is an auxiliary periodic function that diverges
like 1/p? as p vanishes. The term in large parentheses on
the rhs is regular and can be evaluated by the special-point
technique, whereas the integral which appears in the last
term of the rhs is independent of k [since F(p) is a period-
ic function] and can be easily evaluated once a convenient
auxiliary function F(p) has been specified. The choice of
F(p) is not critical except for the fact that, away from its
divergences, it must be smooth enough for the application
of the special-point technique.

Since the matrix elements of the kinetic energy, of the
bare potential, and of the Hartree potential are easily cal-
culated in a plane-wave basis set, this technique allows one
to compute easily the matrix elements of the Fock operator
everywhere in the Brillouin zone and, by iteration, to ob-
tain Hartree-Fock energy bands. The technique, described
here for Zyf, can also be applied if one uses more elab-
orate approximations than Hartree-Fock. An application

of this kind will be described later in this paper. |

(a/2)?

We have applied the technique to the calculation of the
Hartree-Fock and screened-exchange energy bands of sil-
icon, since the excitation energies of this material have re-
cently been discussed in detail within various approxima-
tions.*> We use a nonlocal norm-conserving pseudopoten-
tial that we have constructed following the procedure of
Bachelet, Hamann, and Schliiter.® For consistency in the
treatment of many-body interactions, the potential was de-
rived from the Hartree-Fock valence energies and orbitals
of a Si3* ion. The resulting pseudopotential (see Table I)
gives LDA energy bands which are similar to those ob-
tained with the pseudopotential of Ref. 8, even though the
latter has been derived from the neutral Si atom using the
local-density approximation.

The Hartree-Fock calculation was performed including
plane waves with energy up to 19.5 Ry. The exchange ma-
trix elements were calculated for a limited part of the Fock
matrix corresponding to an energy cutoff of 15 Ry, using
the auxiliary function

F(p)=

which reflects the fcc periodicity of the lattice. Its mean
value in the Brillouin zone (BZ) is
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where K(x) is the complete elliptic integral of the first
kind. The smooth part of the exchange matrix elements,
i.e., the term in large parentheses on the rhs of (5), was
calculated with the single mean-value point technique.
The Hartree-Fock energies of the most important states
are given in Table II. Convergence tests with two mean-
value points show that the accuracy of these values is

TABLE I. Hartree-Fock pseudopotential of the Si** ion. The
notation of the parameters is the same as in Ref. 8. We have
used a(core) =2.00, a(core) =1.00, and a(5) =a(6) =0 for all
angular momenta. All values are in atomic units.

=0 =1 =2
a(l) 1.00000 1.37500 3.70000
a(2) 3.47535 2.50100 3.73000
a(l) 1.30077518 3.20829776 337682.25781250
a(2) 12.26687221 441675764 —337686.17187500
a(3) —0.42976021 —0.71499994 —4789.818 84766
a(4) 30.99871189 3.18848371 —5367.83227539

3 —cos(apy/2) cos(ap,/2) —cos(ap,/2) cos(ap,/2) — cos(ap,/2) cos(ap,/2) ’

()]

Ibetter than 0.2 eV. We find, for example, that, upon going
from one to two mean-value points, the £y and Eg energy
gaps change by +0.07 and —0.06 eV, respectively.
Hartree-Fock energy bands of silicon have been previously
calculated by Dovesi, Causa, and Angonoa’ and
Ohkoshi. !

TABLE II. Principal band energies in Si obtained with dif-
ferent approximations and compared with experimental values.
The d-COHSEX values from Hybertsen and Louie have been es-
timated from Fig. 1 of Ref. 5. Energies are given in eV and mea-
sured with respect to the valence-band maximum.

d-COHSEX

HF d-COHSEX (perturbation) Expt. LDA

Tise 9.27° 3.24 3.20 3.4 255
ry, 11.04° 4.41 4.43 42>  3.40
X 6.87 0.83 0.75 1.3 0.61
Ly, 8.13 2.14 2.08 2.1° 24" 1.54
Ls. 10.16 3.97 3.93 41" 3.33
E, 6.438 0.68" 0.60 1.17° 0.48
Lic—Ly, 9.61 3.48! 3.46 3.5 3.9 274
Xic— X4 1071 4.19 4.20 429 45> 351

fReference 14.
85 8 in Ref. 10.
%0.52 in Ref. 5.
i3 28 in Ref. 5.

28.15 in Ref. 10.
bReference 13.
€9.40 in Ref. 9.
dReference 2.
°Reference 15.
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Our Hartree-Fock band structure differs appreciably
from that by Dovesi et al., and this is probably due to an
inadequate convergence of the latter calculation as dis-
cussed by the authors themselves. Better agreement exists
with the results by Ohkoshi. His valence-band structure
agrees with ours within 0.2 eV which is a remarkable re-
sult if one considers that the two calculations use different
cutoff energies and different pseudopotentials. However,
important differences (about 1 eV and therefore well out-
side our numerical uncertainty) exist for the valence-to-
conduction excitation energies, our values being systemati-
cally larger. We attribute these differences to a numerical
inaccuracy in the Brillouin-zone integration of the ex-
change divergence in the work by Ohkoshi. With the use
of 10 mean-value points, Ohkoshi evaluates accurately the
regular part of the exchange matrix elements given in the
term in large parentheses in (5), but not the singular part.
We have, in fact, integrated over the Brillouin zone the
auxiliary function given in (6) using Ohkoshi’s smoothing
technique and 10 mean-value points, and found only 92%
of the exact result given in (7). This result is consistent
with Ohkoshi’s underestimate of the excitation energies by
about 1 eV, since the contribution to the energy gaps from
the singular term in (5) amounts to about 15 eV.

We also report in Table II experimental energy-band
levels. As usual, Hartree-Fock gaps are larger than exper-
imental values by a factor of 2 or more. However,
Hartree-Fock calculations are the reference for a proper
evaluation of correlation effects. In this work we include
correlation through a simplified version of the GW approx-
imation. We use the diagonal COHSEX (d-COHSEX)
approximation, which was already used by Brinkman and
Goodman!' in their pioneering work on the effects of
correlation on the energy bands of valence semiconductors.
It consists of considering only static diagonal screening
lie., (q.q ) ~£(q,q)8(q,q)] in Hedin’s formulation. We
use the dielectric function

2 2
=gt
e(q) P tadle (8)

with gg=11.4 and a=0.93 a.u., which reproduces the re-
sults of RPA calculations.'?> The d-COHSEX approxima-
tion neglects local-field and dynamic screening effects
which contribute appreciably to the energy gaps in Si.’
Our goal here is to present a second application of our pro-
cedure and to stress that its use is not limited to Hartree-
Fock computations. In the d-COHSEX scheme, the
Coulomb potential appearing in expression (3) is replaced
by a screened potential, and, accordingly, the auxiliary
function F(p) must be scaled by &.

The results of the d-COHSEX calculation are given in
Table II and have an accuracy better than 0.1 eV. All
Hartree-Fock gaps are reduced by dielectric screening, but
the results show that even this approximation is too crude
to describe properly the self-energy of silicon. For exam-
ple, the lowest indirect gap is now considerably underes-
timated. However, the lowest direct excitation energies,
and, in particular, those at L and X are in satisfactory
agreement with experimental data. The agreement with
the diagonal COHSEX results of Ref. 5 is good, consider-
ing the fact that different dielectric functions and different
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TABLE III. Fourier coefficients of the valence charge density
in silicon obtained with the various approximations discussed in
the text and using the single mean-value point technique. All
values are given in electrons per unit cell.

G Hartree LDA d-COHSEX HF
(1,1,1) —1.42 —-1.67 —-1.59 -1.77
(2,2,0) 0.14 0.13 0.14 0.16
(3,1,1) 0.30 0.36 0.35 0.42
(2,2,2) 0.20 0.31 0.29 0.43
(4,0,0) 0.34 0.40 0.38 0.43

pseudopotentials are used in the two calculations.

In order to compare the d-COHSEX and the local-
density approximations, a test LDA calculation was per-
formed using our Hartree-Fock (HF) potential and
Wigner’s interpolation formula for exchange and correla-
tion. The resulting LDA energy gaps, given in Table II,
systematically underestimate the experimental data. The
d-COHSEX results are generally in better agreement with
experiment than the LDA results even if the two schemes
underestimate the fundamental indirect gap by compar-
able amounts.

To conclude, we compare the wave functions obtained
with the various approximations discussed above. For
valence states, we give in Table III the Fourier coefficients
of the valence charge density obtained in the Hartree,
Hartree-Fock, d-COHSEX, and LDA approximations.
The d-COHSEX charge density is similar to the LDA re-
sult, whereas the Hartree and Hartree-Fock densities are
quite different from the others. As expected, the Hartree
charge density is more diffuse in the unit cell than the
LDA one, while the Hartree-Fock charge density is more
concentrated at the bond sites. Analysis of wave functions
at several points of the Brillouin zone leads to the same
conclusion, i.e., the d-COHSEX and LDA approximations
provide similar valence wave functions. As an example, we
give in Table IV the overlap integrals between correspond-
ing states at the L point obtained with the three approxi-
mations. The data reported in the table show that the

TABLE IV. Overlap integrals between corresponding states
at the L point obtained with the Hartree-Fock, d-COHSEX, and
LDA approximations. The table gives the deviation of the over-
laps from unity in units of 107>,

HF vs LDA LDA vs d-COHSEX HF vs d-COHSEX

Ly, 20 6 8
Ly, 72 10 49
Ly, 50 11 23
L. 75 81 16
Lj. 69 66 1
Ly, 240 414 5
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similarity between LDA and d-COHSEX functions does
not hold for conduction states, where the d-COHSEX
functions are closer to the Hartree-Fock functions than to
the LDA ones. These results are important since they
show that self-consistent COHSEX (or d-COHSEX) cal-
culations can be avoided if one performs an LDA calcula-
tion, approximates Xcoysgx in terms of LDA functions,
and then adds the effects of (Zconsgx —ZiLpa) in pertur-
bation theory. Results obtained with this perturbation
scheme are given in the third column of Table II and show
that the deviations in band-gap energies between the fully
self-consistent and the perturbation treatment are less
than 0.1 eV. Perturbation schemes of this kind have been
used in the past by several authors,*>!! and their validity
is confirmed by our results. It is worth mentioning, howev-
er, that this approach is not applicable to Hartree-Fock
calculations since (i) the difference operator (Zyr
—ZXipa) is not a small perturbation, and (ii) Ty cannot
be constructed in terms of LDA functions.

Hartree-Fock and improved Hartree-Fock calculations
are common for atoms and molecules, but not for solids,
since they are extremely time consuming for infinite
periodic systems. They have been performed for a few ma-
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terials only and, given the numerical complexity, different
authors have found, for a given material, quite different
results. Moreover, these computations have usually been
carried out using localized basis functions, whereas the
most convenient functions in solid-state calculations are
plane waves or modified plane waves. In this paper we
have proposed a procedure that allows one to perform easi-
ly Hartree-Fock and improved Hartree-Fock calculations
in solids using a plane-wave basis set. With this technique,
fully converged Hartree-Fock and COHSEX calculations
become feasible with a numerical effort comparable to
that of a LDA calculation. These computations can there-
fore become a common practice in solid-state theory and
can be the first step towards the accurate prediction of ex-
citation energies as recent investigations® have demon-
strated.
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