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A method is presented for relating a ground-state density distribution to the effective single-

particle potential which has this density for its ground state for a noninteracting system of parti-

cles. The method is useful for systems consisting of a small number of spinless fermions and in

the case of two particles a second-order, nonlinear differential equation relates the density and the

effective potential. The question of U representability is addressed through examples of densities

for one- and three-dimensional systems. It is found that densities of the form e " for two-

particle systems are not ground-state U representable. The added flexibility of three dimensions

over one allows an effective potential which does not necessarily have the chosen density as its

ground state, but as its lowest nondegenerate state.

Density-functional theory addresses the relationship be-
tween the ground-state density of a many-particle system
and the ground-state energy and Hamiltonian of the sys-
tem. Hohenberg and Kohn' showed that the external local
potential acting on the system is a unique functional, apart
from an additive constant, of the ground-state density as-
suming that the ground state is nondegenerate. Given the
form of the interactions the system is equally well charac-
terized by its ground-state density as by the external field.
A further development of the theory was achieved by
Kohn and Sham2 through the introduction of an auxiliary
system of noninteracting particles having the same
ground-state density as the interacting system of interest
and moving in some effective one-body potential V,tt. This
effective potential must also be a unique functional of the
ground-state density. There is therefore interest in the
functional relationship between the one-body potential and
the corresponding ground-state density for a noninteract-
ing system because of the application to the interacting
many-body problem through the auxiliary noninteracting
system of particles introduced by Kohn and Sham. In this
Rapid Communication we consider the relationship for
systems consisting of a small number of fermions.

Consider N noninteracting fermions moving in a one-
body potential V ff and having a ground-state density dis-
tribution n. Neglecting spin we may write the ground-
state density in terms of the 1V lowest single-particle ener-

gy eigenfunctions tit;,

This establishes an implicit functional relationship for n in
terms of V,qf since the y; are solutions of the single-
particle wave equation. We wish to address the inverse
problem and mvestIgate the functional relationship for V,g
in terms of n Aside from its. intrinsic interest a sitnple re-
lationship ~ould shed light on the class of functions which
can be realized as ground-state densities of noninteracting
particles in an external field. This is the so-called ground-
state, noninteracting V-representability problem which we
shall abbreviate to U representability in what follows.

For N 1 the solution of the inverse problem is given

trivially by

V,tt(r) — 'vt Jn +so,l 1 (2)

tl (x ) titty+ titt (5)

but little progress has been reported for %~2. There
have been attempts to deduce effective potentials from
electron densities for atomic systems. Notable among
these is the work of Talman and Shadwick who use a vari-
ational method to minimize the total energy of an atom
with a single Slater determinant as a trial wave function,
but unlike the Hartree-Fock method the orbitals are re-
stricted to be solutions of single-particle wave equations
with a local effective field. Almbladh and Pedroza5 have
obtained effective potentials from Hartree-Fock and corre-
lated electron densities for light atoms through a trial-
and-error approach based on a potential with adjustable
parameters. Although the latter method can, in principle,
yield potentials to any desired accuracy it is in practice ap-
proximate by its nature and the functional form of the re-
lationship between V,tt and n cannot readily. be investigat-
ed. It also requires a priori knowledge of the form of the
effective potential. Werden and Davidson6 have reported
a similar iterative approach based on linear response
theory for the one-dimensional case.

This article offers an exact solution to the problem
which facihtates study of the functional form for a small
number of particles. For convenience we consider the sim-
plest nontrivial case of two noninteracting spinless fer-
mions bound in one dimension. Let n(x) be the given
ground-state density and V,tt(x ) be the corresponding ef-
fective potential. Suppose yo and yt are the two lowest
single-particle states corresponding to V,tt so that tito and

titt satisfy the single-particle Schrodinger equations

I d tito + Vcfrgo ~os ~

dx

d $p'~ + Vcgp~ 8~ iII'~

dx

with si & eo, there being no degeneracy for bound states in
one dimension. Furthermore,
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From (3) and (5) we have, respectively,

1 I de~err- — +&o,
2 po dx

2
0'o 4n Yi .

S
'

a single-particle ground state it has no n es
b hosen to be positive defmite iexcep

f (7) in (6)boundaries). Consequently, the substitution o
yields

1.0

2 Qn l/fi +so2' —y2 dx2
(8)

and

1 dpi+
dx

ao) pi
2Jn —

iifi

n the substitution of (8) in (4). With q.E . (9)results upon e su
regar e as a secd d second-order nonhnear differen

'
q

andin yi a re a ions i1 t' hip is established between n an yi' nof 1 andhrou h (8) also with V,ff. The determination o ilfi

the constant a ai —ao&0 requires pp
boun ary con itions.d't'ons. If —L ~x ~L the boundary con i-
tions are

(i) iffi(-L) -yi(L) -0, 10
p+L,

(11)(ii) ' dx ilfi2-1,

(iii) yi must have only one node . (12)

One node ensures that yi is the first excited sing e-particle
state. ese oun.1 Th boundary conditions determine unique y yi

an addi-d
' t f n and hence also V,ff apart from an a

a altive constant. To determine ai and ao separately, appea
d the hysical situation. One procedure or

thendeter11111111ig eff 1sV
'

to solve (8) for an arbitrary a and en
adjust a so that (11) is satisfied.

Th t 'on of this approach to the case N&2 ise ex ensi —1) cou led dif-straightforward and yields a set of (W —) coup
ferential equations.

For N 2 the transformation

WB cos8,

yi vn sin8

in (8) leads to the following simplification:

d 8+1 dn d8+
n dx dx

of 8/2~8~n/2. We note that the dependence o
and hence V,ff on the density comes through the ogari

rential e ua-
tion (9) and equivalently (13) can be deduced from a vari-
atlonal prlnclp e. or ex1

' '
1 For example (13) is the Euler-Lagrange

0 ~

equation obtalne y minq
'

b d b 'nimization of the (kinetic energy)
functional T g" xn xfd (d8/dx) subject to the normahza-
tion condition Jdx n sin~8 1. That is

'2
—a dxnsin 8 0

4 x~
FIG. 1. The solutions of Eq. (13) with n y + f (dashed

curve) and n y y uo+ f (full curve); y„ is an harmonic oscillator
eigenfunction.

termined multi-gives (13) with a being a Lagrange undetermine

le we have investigated particle densities
for two spinless fermions moving in t e simp e a

'
1 x2/2. Given a density, the numerical solution opotential x . iven a

(13) f 8 nd a posed on difficulties, and the correspon-
ing effective potential was easily obtained from
cases were consl ere . e'd d The density for the ground state of
the system o taine y ob

'
d b ccupying the two lowest oscillator

back the original oscillator potential as re-states gave ac e o
for an excit-d For the second case we constructe n for anquire . or e
cond excited

single-particle oscillator states being occupied. The corre-
h' h h this n as its ground-state density

was t en deduced. The results for 8 and V,ff for these two
cases are shown m igs.h

' F 1 and 2. The functions 8 are

3.

3 X(aa)

FIG. 2. The effective potentials deduce d from densities
n y$+yj (dashed curve —,x ) and n y +yI + full curve),
m ere y„ is an arn harmonic oscillator eigenfunction.
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featureless and are typical of our experience. The V,g for
the second case differs from that for the first, the original
oscillator potential x /2, through the introduction of sym-
metric peaks which tend to raise the first excited state en-

ergy with respect to the single-particle ground and second
excited states. Evidently, the density in the second case,
although it comes from an excited two-particle state of the
oscillator, is V representable.

We now extend the method to three dimensions in anti-
cipation of application to atoms. By analogy with the
development of (9) we have for the case of N 2,

4 f(a.tL)

+
2Jn l/fi

'7 Qn /Iiii/I i~el/fi

R ig Jpcos8

R2, v psin8,
(i7)

with p r2n and —fr/2» 8» n/2. The effective potential
is given by

1 1 d
jeff 2 +1s 0

2 &is dr

where n is the particle density. The boundary conditions
on (17) are with R2, Jp as r~ ~: (i) 8~ —fr/2,

r ~, (ii) f dr pcos28 1, and (iii) 8 must have only
one node.

We have made application to the Be atom. This falls
within the domain of the method if we account for electron
spin by doubly occupying the two lowest effective single-
particle states. Using the Hartree-Fock density for n gave
an effective potential V„which is defined as the difference
between the total effective potential and the Hartree po-
tential. We also took the configuration-interaction (CI)
electron density from the work of Bunge and this gave an
effective potential V„, which includes both exchange and
correlation effects. To find absolute potentials it is neces-
sary to know either s~, or s2, . In principle, s2, can be ob-
tained from the asymptotic form of the density but the
asymptotic form (Hartree-Fock or CI) is not sufficiently
accurate for our purposes and we have used the fact that
s2, equals the ionization energy. ' The effective poten-
tials for these cases are illustrated in Fig. 3. The
exchange-correlation potential is in agreement with that
obtained by Almbladh and Pedroza as is also the energy
difference e2, —ei, . Calculation of the single-particle en-

ergy eigenvalues for the two effective potentials confirm
that the 1s and 2s states lie lowest, the nearest other state
being the 2p which was found to be 0.13 a.u. above the 2s
for the CI case. Both densities are therefore U represent-
able.

where e ei —eo. The straightforward extension to /~/' & 2
gives again N —1 coupled equations. If the system is
spherically symmetric, and with the assumption that the
two lowest states are s states, we have the following com-
pact form for (15) analogous to (13) for the one-
dimensional case

d 8+ 1 dp d8+ . (28)
dr2 p dr dr

where the radial wave functions are given by

FIG. 3. The effective exchange and exchange-correlation po-
tential of Be deduced from Hartree-Fock and CI density, respec-
tively {fuii curves). The dashed curve is the effective correlation
potential, U, U„,—U„, magnified ten times.

where R„/ is the radial hydrogenic function for Z 2 and
where a+P 1. The effective potential was found for a
number of vaues of a between 0 and 1. However, the den-

sity (19) does not correspond to the ground state of these
potentials but rather to the lowest nondegenerate Is2s
state as the 2p state lies lower in energy than the 2s state.
The difference between ez, and e2~ approaches zero as
a 1.

We next consider two-particle densities of the form e
where a const. With densities of this form (16) can be
scaled by substituting x ar to yield

d28 2 d8 e+ ——1 + sin(28) 0 . (20)
2 x dx a2

The normalization condition becomes
fu OO

dxx2e "sin28 1
N O

and the effective potential can also be scaled

V ff{r) a V ff(x)

(2i)

It was therefore necessary for us to perform calculations of
the effective potential (22) for only one value of a. The ra-
dial Schrodinger equations can be similarly scaled and nu-

merical solution for the single-particle eigenvalues reveals
that for all 0 & 0 8&s & 82p & 83& & 82s As in the previous
example the assumed 1s2s two-particle state is not the
ground state for the effective potentials. Furthermore, any

Finally, we consider two cases for which the density is
not v representable. Both are spherically symmetric densi-
ties and no difficulties were encountered in solving (16)
for 8 and using (17) and (18) to deduce V,ff. The first ex-
ample is due to Levy" and to Lich' and is presented by
them as illustrations of their general arguments on v

representability. The density is constructed from a linear
combination of degenerate ground-state densities as fol-
lows:

(i9)
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other assumed ground state, e.g., Is2p, cannot give a
spherically symmetric density. We conclude that in both
of these cases the densities are not ground-state U

representable at least for N 2. The result for the former
case verifies the arguments of Levy" and Lich. '2 The case
of the exponential density is a new and surprising result
since the exponential form is frequently a first choice for a
trial function in any variational calculation on a bound
system. The class of functions which are acceptable as
densities for noninteracting systems in that they are
ground-state U representable may be more restricted than
had previously been imagined.

In the cases of spherically symmetric densities we have
only considered the possibility of spherically symmetric ef-
fective potentials. It is not inconceivable that anisotropic
effective potentials exist with (19) or the exponential form
as their ground state densities but the possibility seems re-
mote. Nevertheless, the consequences of allowing aniso-
tropy are worthy of study.

We have presented a method to deduce the effective po-
tential of density-functional theory from the ground-state
density. For the case of two noninteracting fermions the

method reduces to the solution of a single second-order
nonlinear differential equation. For N noninteracting fer-
mions we have (N —1) coupled differential equations.
This provides a more direct functional relationship be-
tween the density and the effective potential than has been
reported previously except for the trivial case of N 1, and
questions of U representability may be more readily ad-
dressed through this method. The N 2 cases investigated
show no exceptions to U representability for one dimension.
This contrasts with three dimensions where, for example,
densities of the form e '" are not noninteracting, ground-
state U representable, at least for N 2. Clearly the ex-
istence of a solution to (16) for the three-dimensional case
for a given density is a necessary but not sufficient condi-
tion for the density to be noninteracting, ground-state v

representable.
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