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Specific-heat anomaly of Au(110) (1 x 2) studied by low-energy electron diffraction
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The specific-heat critical exponent a has been measured for the Au(110)(l x2) order-disorder

phase transition using partially integrated low-energy electron diffraction intensities. The result-

ing value, a 0.02 +0.05, is consistent with the predicted Ising universality class of this transi-

tion. Evidence for a reduction in the effective critical temperature due to finite-size effects is also
presented.

Studies of phase transitions on real surfaces provide im-
portant tests of our basic ideas about two-dimensional crit-
ical phenomena. The Au(110)(1&2) surface is an excel-
lent model for studies of continuous order-disorder transi-
tions. The clean surface is inert to the residual gases nor-
mally present in an ultrahigh-vacuum chamber so that
much longer times are available for measurements than is
usually the case. The phase transition is known to belong
to the Ising universality class and the critical exponents P,
y, and v have been measured by Campuzano et al. ' Thus,
Au(110)(1 x 2) can be used for more refined structures of
critical behavior including the role of finite-size effects2
and the kinetics of ordering. 3 In this report we use
Au(110)(1&2) to apply a method proposed by Bartlet,
Einstein, and Roelofs (BER) for extracting the heat-
capacity critical exponent a from low-energy electron dif-
fraction (LEED) data. We also find evidence for finite-
size effects in this system. It is also significant that the
method of BER significantly expands the ability of LEED
to study phase transitions, since the required measure-
ments and analysis are simple, and multiple scattering is
fully accounted for.

BER consider LEED intensities integrated over a small
region centered around a reconstruction-induced fractional
order beam. This integration reduces the sensitivity to
long-range order so that the singular behavior near a phase
transition is that of the average energy E. Thus, the ex-
ponent tt is defined near the critical temperature T, by

E En+ait+'b+ it i
'-+

where En, a ~, b+, and b — are constant coefficients,
t = (T —T, )/T, is the reduced temperature, and + and-
refer to t & 0 and t & 0, respectively. Scaling predicts that
a+ -a and the ratio b+/b is a universal quantity. For
the Ising universality class, a ~ 0, which implies
b+/b 1. As pointed out by BER, most real LEED in-
struments have a finite transfer width co and are therefore
only sensitive to correlations over a finite range I; =m, so
that the required average is obtained automatically.
Furthermore, since multiple scattering is short ranged, its
presence in LEED does not alter the analysis. BER show
explicitly that as long as the diffracted intensity contains
no information about the phase of the order parameter, the

measured LEED intensity has the form

An A t—+8 —it i + . , t &0
(2)

Ao A&t —8+It I
+ t &0,

where An, A t, 8+, and 8 —are constants. As for Eq. (1),
a~ a and 8+/8 - b+/b —.

BER used Monte Carlo simulations for the (ax &%
830 and p(2X 2) ordered phases on a triangular lattice to
show that, depending on the range of t, integration of the
intensity over more than about 0.83% of the Brillouin zone
was sufficient for Eq. (2) to be valid for these cases. In
general, the diameter of the integration region times the
correlation length must be large. Since the integral of the
intensity over the entire Brillouin zone is conserved, s the
radius of the integration must also be much smaller than
the diameter of the zone.

The largest value of i t i for which Eq. (2) is valid is
determined by the instrument and the influence of correc-
tion to scaling terms; the smallest depends on the perfec-
tion of the surface latttice. The smallest i t i t;„is ob-
tained when the correlation length g becomes comparable
to the length scale L of the finite size regions;

t.;„=(L/g, )-"", (3)

where go is the order of several lattice spacings. A more
perfect surface results in a small t;„The lar. gest value

i t i t,„occurs when g is comparable to the transfer
width of the instrument ta;

t,„=(to/& p)

unless there are important corrections to scaling beyond
those indicated in Eq. (1).

The Au(110) sample is the same one used in a Ruther-
ford backscattering study. It was oriented to within
+'0.5' of the (110) plane and cleaned in ultrahigh vacu-
um with 1-keV argon-ion sputtering followed by annealing
at 1070 K. Temperature was measured with two type-E
thermocouples held against the side of the crystal by Pt
mounting ~ires. The temperature was maintained con-
stant to within + 0.2 K during each measurement. Dif-
fracted intensities were measured with a movable Faraday
collector whose circular aperture subtended 3.0X 10 Sr
at the sample. A retarding grid behind the aperture was

34 4379 1986 The American Physical Society



4380 D. E. CLARK, %. N. UNERTL, AND P. H. KLEBAN

biased 0.9 V below the primary beam voltage. Only one
value of the detector aperture was used; a more complete
test of the validity of the BER method would require using
several aperture sizes (i.e., varying the region of integra-
tion).

Figure 1 shows the intensity of the (0, ——,
' ) beam as a

function of temperature for a 62-eV primary beam in-

cident at 45 along the [1TO) direction. The inflection
point provides an estimate of Tc =695 K. Below 650 K,
the measured full width at half maximum (FWHM) of
this beam was 0.43 ~0.02 nm ' in good agreement with
the value 0.42 nm ' estimated for our LEED instrument
using the procedure described by Park, Houston, and
Schreiner. 9 For the results presented in Figs. 1 and 2, this
instrument response corresponds to integration over a
range of scattered wave vectors equal to about 5.6% of the
(1 X2) Brillouin-zone length along the [lTO] direction.
Ratios of the FWHM measured for the (0, —2 ) and

(0, —1) beams were also in good agreement with calculat-
ed values and provide evidence that the beam width was
dominated by instrumental effects rather than finite-size
effects. This was not the case for Ref. 1.

Figure 1 also shows examples of a (0, ——,
' ) beam angu-

lar profile measured at 478 K by fixing the angle of in-
cidence and the detector position and varying the incidence
energy. Possible artifacts associated with this method are
described elsewhere, 'e but are not important for the
analysis reported here. The intensity far away from the
maximum was used to define a linear background intensity
due to thermal diffuse scattering (TDS) and intrinsic sur-
face imperfections. Profiles measured at temperatures far
enough above T„so that fluctuations in the (1&2) phase
no longer contribute significantly, show this linear approx-
imation to be accurate to better than 10% of the back-
ground intensity. After background subtraction, the ex-
ponential Debye-Wailer dependence of the intensity was
determined using data with T & 600 K. The effective De-
bye temperature was found to be 102.5 K in good agree-
ment with previous estimates. 7" This value for the Debye
temperture was assumed to apply over the entire tempera-
ture range of the data, T «900 K.

We used the following procedure to analyze the critical
behavior of the corrected data. T, was systematically
varied between 640 and 740 K. For each choice of T„Ao
was chosen by a linear extrapolation between the nearest
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data points on each side of T,. The fata were then plotted
on a ln(I(r) —Ao] vs ln)r ) graph, and the longest
straight-line portion on each side of T, was determined by
a linear least-squares fitting. Examples for T, values of
680, 695, and 710 K are shown in Fig. 2. The best overall
fit was taken to be that which most closely yielded
sr+ sr and had nearly equal correlation coefficients for
r &0 and i&0.

The best fits were obtained for 692 K & T, & 698 K, and
the average value of u+ and rs over this range of T, was
sr 0.02+'0.05. This result is in excellent agreement with
the expected Ising value, a 0.

We also estimated the critical exponent v 1.1+'0.1

and 690 K & T, & 700 K from the measured increase in

the FWHM of the (0, ——,
' ) beam in the range

0.02 &r &0.07. This result agrees with the Ising value
v 1 and gives added confidence in our results for a and
Tc'

These results for a and v rule out the possibility that the
transition is first order. For the case of no coexistence re-
gion, the BER analysis would yield a 1 (Ref. 4), and the
increase in FWHM would be abrupt. For the case of a
coexistence region of width d, T, the integrated intensity of
the fractional order diffraction beam would decrease
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FIG. l. (a) Measured intensity vs temperature before (0) and
after (+) correction for the Debye-Wailer factor. (b) (0, ——,

' )
diffraction beam profile at T 478 K. The background correc-
tion used in the analysis is indicated by the dashed line.

FIG. 2. Plots of corrected intensities vs reduced temperature.
The dashed lines sho~ the behavior expected for an Ising system
with u 0 and the solid lines the behavior for a three-state Potts
system with a 0.33.
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linearly (tt 0) according to the lever rule. However,
since disordered regions would nucleate and grow within
the ordered (1 x2) regions, atoms remaining in the (1 x 2)
phase retain their original long-range correlations over
most of the coexistence region. Thus, half-order beam
FWHM's would remain constant over most of the mixed-
phase region. A linear increase over the remainder of the
region, as observed, would be accidental. Kinetic limita-
tions due to nucleation and growth phenomena could also
lead to hysteresis effects which were not observed.

A small value of tz might also result if t;„approaches
tm, „due to small L values. '2 However, as discussed below,
our measured T, provides evidence that finite-size regions
on our crystal are substantially larger than the 20 sub-
strate spacings obtained for the crystal used in Ref. l.
Thus, we believe it unlikely that finite-size rounding has a
significant influence on our results other than limiting
lt;„I for fits of tz.

Good fits for a were obtained for

0.004 ~ t &0.035.

The diameter of finite-size regions, as estimated from Eq.
(3) with $0 about one lattice spacing, is therefore about
250 Au(110) lattice spacings along [ITQl or about 100
nm. This result indicates that the substrate was of very
good quality, and that its contribution to the measured
beam FWHM is negligible compared to the instrumental
broadening. The value of a is not very sensitive to t,„as
is also pointed out by BER. This lack of sensitivity to t,„
may explain the overlap of the independently determined t
ranges over which linear fits were obtained for a and v.
Identical results for a are obtained if the fitting region is
restricted to the t,„given in Eq. (4).

We note that the analysis described above does not
determine the linear term A tt in Eq. (2). This is necessi-
tated by the fact that a is zero in the Ising case, so that the
critical singularity is also linear in I t I. The results of
BER suggest that ignoring At causes the value of tz ex-
tracted from the analysis to be too large. Although our
analysis does not enable the coefficients 8+ to be extract-
ed, inspection of Fig. 2 shows that (31+8+)/(A t+8 —)

is nearly unity. A more sophisticated fitting procedure is
not warranted given the accuracy of the data

The critical temperature of 695+ 3 K is substantially
larger than the 650~1.5 K obtained by Campuzano
et a/. ' This difference is consistent with that expected
from finite-size effects. The effective critical temperature
T, is expected to vary with the scale L of finite-size regions
approximately as"

T, —T, —=AT=aL 'T, ,

where a is a constant and L is measured in lattice spacings
[0.408 nm along the [ITQ] direction for Au(110)l.

Landau' has determined a for the case of a finite sim-
ple Ising model with free boundary conditions using Monte
Carlo simulations and finds a 1.25~0.04, verifying an
earlier result of Ferdinand and Fisher'3 who also present
general arguments that a should be of order unity indepen-
dent of the details of the Hamiltonians. Assuming that
our measured T, is close to that for an ideal surface and
taking T, 650 K from Campuzano et a/. ' yields L =20
lattice spacings. This is in excellent agreement with the
mean-size estimated for ordered (I x 2) regions on the Au
crystal used by Campuzano et a/. ' Their data show that
the full width at half maximum of the fractional-order dif-
fraction beam is about 0.05 of the spacing between in-
tegral order beams, which also corresponds to ordered re-
gions about 20 substrate lattice spacings wide.

In conclusion, we have measured the specific-heat ex-
ponent for Au(110)(1 x2) using the method of integrated
intensities proposed by Bartelt et a/. The resulting
tz 0.02+'0.05 is in excellent agreement with the predict-
ed value. This result also illustrates that the method great-
ly increases the utility of LEED as a technique to study
critical phenomena. We have also presented evidence for a
dependence of the effective critical temperature on finite-
size effects consistent with theoretical predictions.
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