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Recent studies have revealed that the so-called confined resonance states with energy above the

barrier but localized in the barrier material occur in multiple-quantum-well structures.

In this

study we carry out self-consistent calculations of the confined and itinerant electron states of a
GaAs-Ga; -z Al As superlattice within the effective-mass theory. We show that the modifications
of the quantum well due to the Coulombic interactions among electrons and ionized donors cause
the localized states to form in the barrier potential. These states are expected to influence the

transport properties.

Recent developments in molecular-beam epitaxy as a
technique for the growth of ultrathin layers of highly per-
fect crystals have made the production of superlattices pos-
sible.! Semiconductor superlattices or multiple-quantum-
well structures consist of alternating layers of semicon-
ducting single crystals whose electronic properties, in par-
ticular band gaps, are different. Within the effective-mass
approximation a GaAs-Ga;-,Al,As superlattice can be
described by multiple potential wells of the GaAs region
which are separated by the Ga, —,Al,As barrier as high as
the conduction- (valence-) band discontinuity. Electrons
(or holes) confined in these one-dimensional wells provide
a new regime of quantum effects.? In the past the well-
confined states have been extensively studied. Theoretical-
ly, conventional band-structure methods>* with moderate-
ly large supercells, and envelope-function methods,’ have
provided results in reasonable agreement with the experi-
mental observations. However, some important aspects of
the problem could not been taken into consideration in
these theoretical methods. For example, in spite of the
fact that the discontinuities in the potential and thus in the
band gaps are indigenous, and the confined states with
multivalley interactions are directly obtainable, the self-
consistent electronic band-structure caluclations via large
supercells seem to be rather difficult. On the other hand,
investigations by using the envelope function and also by
the effective-mass approximation are simple enough to see
fundamental aspects of the quantum-well states. Even for
these simple methods of calculations the self-consistency,
particularly the screening of the confined electrons, be-
comes very crucial for a correct description of the
quantum-well states.

In this paper we aim to show that self-consistency, espe-
cially of the potential due to the excess charged particles
(electrons, holes, and ionized impurity atoms) in a doped
superlattice is important not only for well states, but also
for resonance states confined in the barrier region. Here
we start with a brief review of these localized states, which
are important for the transport properties of superlattice
structures. Using the empirical pseudopotential calcula-
tions Jaros, Wong, and Gell* have recently reported a new
localized state with a large amplitude above the barrier.
They proposed that the I' states of Ga, -,Al,As crystals
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are forced to form wave packets in this region of the semi-
conductor because of the virtual barrier created by the ab-
sence of higher energies of suitable matching partners in
the GaAs layers. The fact that not only the band-structure
methods but also other simple methods, for example, the
effective-mass approximation, are capable of yielding the
confined resonance states (CRS’s) becomes evident by the
work of Weaire and Kermode.® They pointed out that the
presence of bound (confined well) states at lower energies
causes, via the requirement of orthogonalization, a strong
reduction in the amplitude of higher states in the well re-
gion. Bastard et al.” also reported the presence of a simi-
lar kind of hole state which was named the virtual bound
hole state. They explain the origin of localization as due to
the repulsion by the quantum well.

In this study we report a rather elusive and novel result
and show that the CRS’s normally localized in the
Ga, —yAl,As region may also occur in the original barrier
potential determined by the conduction-band discontinui-
ty. We carried out calculations for the excess electron
states of the GaAs-Ga,;-,Al,As superlattice within the
effective-mass theory. By assuming a free-electron
behavior in the xy plane we solved the one-dimensional
Schrédinger equation in the z direction self-consistently.
Here the periodic potential ¥ (z) contains the Coulomb po-
tentials of the ionized electrons and donor ions and the ex-
change potential as well. Positively charged donor ions are
treated within the jellium model. In the solutions we as-
sumed that self-consistency is reached when the difference
in energy eigenvalues and potentials are within a preset
value (~107% a.u.). The parameters of the superlattice,
such as the height of the barrier, ¥ (which is, in fact, a
function of the Al concentration), the widths of the well
and barrier, d; and d,, and the level of doping were taken
from the work of Mori and Ando® who used the expansion
method. This way we were able to compare our results re-
garding the confined states with their results, and obtain
excellent agreement therefrom.

Considering the central point difference methods the
periodic one-dimensional Schridinger equation is reduced
to a recursion relation.

a‘l’i—1+(ﬁ—k)\l',-+a*\ll,~+1 =0 s
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where ¥; =¥ (k,,z;) is the periodic part of the Bloch wave
in the z direction

h? ,2mk,
a==—2m* 1—i P o,
__h? 4nk? 2
ﬁ—Zm* 2+75 +6 V(Zi),

and A =8%E,,. In these equations & is the step length in the
propagation direction, d =d,+d; is the width of the su-
perlattice unit cell, E, is the subband energy, and %, is the
wave vector. Other quantities have conventional mean-
ings. The periodic boundary conditions for ¥ are taken
into account in constructing the matrix from the recursion
relation. We investigated a noninteracting electron system
and an interacting electron system (with electron-electron
and electron-jellium interactions) in a uniformly doped
and modulation-doped superlattice. It is well known that
the effective mass (m*) and the dielectric constant (eg)
are the essential parameters of the model used in the
present work, and thus care should be taken of their values
and variations across the unit cell. Varying these parame-
ters, we investigated their effect on the calculated quanti-
ties. We observed that our results are not affected in any
essential manner when these parameters are within the
commonly known values. The exchange potential ex-
pressed as a function of the local charge density is an am-
biguous matter in the present method. However, we found
that it is a very small fraction of the total potential. Re-
cent developments in the effective-mass theory applied in
the presence of an interface are extensively discussed in
Ref. 9.

In Fig. 1 the potential profiles, ¥ (z), the lowest eight
subbands, the Fermi level, and the charge densities are
presented in the lower panels of (a), (b), and (c), corre-
sponding to noninteracting, uniformly doped and
modulation-doped systems, respectively. The correspond-
ing wave functions ¥,(k,=0,z) are illustrated in the
upper panels. As shown in Fig. 1(a) the wave function of
the state n =7, which is just above the barrier in the nonin-
teracting case (for a noninteracting free-electron gas) has
large amplitude in the barrier region. As far as the energy
location and the localization are concerned this state is
reminiscent of the confined resonance states reported for a
cell with different parameters. We identify this state as
CRS. This result is in agreement with the interpretation
of state n=7 as that derived from the lowest I" valley of
the alloy by Ninno, Wong, Gell, and Jaros.'® It appears
that the localization in the barrier region recedes as the
subband energy rises above the barrier.

By comparing the potential profiles in Figs. 1(a) and
1(b) we see that in a uniformly doped superlattice a para-
bolic repulsive potential in the well region and an attrac-
tive potential in the barrier region are superimposed on the
original potential. The repulsive potential arises because
of the repulsion of the electrons occupying the confined
states. The positively charged donor ions give rise to the
attractive potential in the barrier region. In band-
structure language these modifications in the potential
barrier correspond to band bendings. The effect of the
repulsive and attractive potential appears as shifts of the
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subbands. As seen in Fig. 1(b), the subbands below the
potential minimum of the barrier are raised with respect to
the subbands of the noninteracting electron system. In
contrast to that the subbands above this minimum are
lowered because of the additional binding provided by the
superimposed attractive potential so that subbands 6 and 5
become closer to each other. Furthermore, the state n=6
in Fig. 1(b) is localized in the Ga; —,Al,As barrier region.
Interestingly, this state appears in the original barrier po-
tential, V.

In Fig. 1(c), the modification of the square-well poten-
tial for a superlattice with modulated doping becomes even
more pronounced because of the separation of positively
and negatively charged particles. Similar to the case of
uniform doping, the subbands are shifted because of the
superimposed potential. Since the repulsive and attractive
potentials here are much stronger than for uniform doping,
the shifts in energies are accordingly larger, the Fermi lev-
el appears in a higher energy, and also the number of con-
fined states is reduced as compared to the previous cases.
In this case the state localized in the barrier appears ~100
meV below the similar state seen in Fig. 1(a). This state
(n=>5) has very large amplitude in the Ga;—,Al,As re-
gion and is ~80 meV below the original potential barrier
Vo. It is most interesting to note that the forms of the
states localized in the Ga;—,Al,As region [state 6 in Fig.
1(b) and state 5 in Fig. 1(c)] are not significantly altered
from that of the state 7 of Fig. 1(a), which was named as
the confined resonance state. It appears that the effective
barrier height is reduced as a result of the Coulombic in-
teraction of excess charges, and thus the localized state of
the noninteracting electron system [state 7 in Fig. 1(a)]
shifts downward. On the basis of their similarities we
identify these localized states [state 6 in Fig. 1(b) and
state 5 in Fig. 1(c)] as the confined resonance states. It is
seen that the stronger the attractive potential is the lower
the CRS.

In conclusion, the Coulombic interactions among
charged particles (ionized electrons and donor ions) are
important and give rise to an appreciable amount of modi-
fication in the potential profile and band bending. This
modification causes the subbands to shift and the Fermi
level to rise. Moreover, the confined resonance states,
which were previously reported to occur above the bar-
rier,* form on the lower-lying states in the original barrier
potential. This result has several important implications:
First of all, the band bending due to the ionized donors and
excess electrons in the conduction band reduces the effec-
itve barrier height, and thus it is an important factor for a
realistic description of the confined resonance states.
Therefore, this effect has to be included in the electronic
band-structure or envelope-function models, wherefrom
the quantum-well states are derived. Otherwise the ab-
sence of the Coulombic potential may lead to serious
discrepancies. Another striking observation emerging
from this study is that depending upon the level of doping
and the size of the barrier, the position of the CRS with
respect to the Fermi level undergoes a change affecting the
transport properties and the mobility. Previously, low-
temperature mobilities parallel to the layers in a
modulation-doped superlattice were shown to decrease
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FIG. 1. Electronic states, potential, and charge density of the GaAs-Ga, -xAl,As superlattice calculated within the effective-mass
theory. In lower panels: Thick lines, total one-dimensional potential, ¥'(z); the straight lines with numbers from 1 to 8 are subbands;
dotted lines are total electronic charge density. In the upper panels the periodic part of the corresponding Bloch functions are illus-
trated. (a) Noninteracting electron gas, (b) uniform doping, (c) modulation doping with the Coulombic potential of electrons and
jonized donors. The unit cell parameters used: The width of the well d, =221 A, the width of the barrier d,=218 A, the barrier
height (or the discontinuity of the conduction band of GaAs and Ga;-,Al,As) ¥o=300 meV, the electron concentration in a unit
area Ns =3.06x10'2cm 2. The effective mass of electrons m* =0.068m¢ and the static dielectric constant o =12.9.

upon the inclusion of the band-binding effects.® In the present case the parameters of the supercell (Vy, d,, d>, and excess
electron density) can be adjusted in such a manner that a CRS is lowered or may even dip into the Fermi level. Eventual-
ly, confined electrons can easily hop across the barrier, and thus the superlattice has higher conductivity along the z direc-
tion. This transition, which is reminiscent of a metal-insulator transition, should easily be observable experimentally.
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