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Acoustic symmetry in crystals belonging to the rhombohedral 3 Laue group is discussed with spe-
cial reference to the ultrasonic properties of PbsGe;O;;. In this material the acoustic symmetry axes
are so close to the crystallographic axes that its elastic behavior is essentially that of a 3m Laue
group crystal. Ultrasonic wave velocities in single crystals of PbsGe;0,; and Pb, ;Bag 3Ge;0y; have
been measured at room temperature as a function of hydrostatic pressure and uniaxial stress. Re-
sults have been used to obtain the second-order elastic constants and their hydrostatic pressure
derivatives. By treating the materials as if they had 3m Laue symmetry, the 14 third-order elastic
constants describing the third-order elasticity of crystals have also been determined. To quantify the
vibrational anharmonicities of the long-wavelength acoustic modes, the mode Griineisen parameters
have been computed and are found to be positive. This finding indicates that there is no significant
acoustic mode softening induced by incipient ferroelectric optic-phonon—acoustic-phonon interac-
tions in these materials at room temperature, which is substantially below that at which the soft op-
tic mode, ferroelectric phase transition takes place.
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I. INTRODUCTION

Pure and doped lead germanate crystals are interesting
and useful ferroelectric, pyroelectric materials. The Curie
point of PbsGe;Oy; is 177°C;"? alloying with barium
reduces the Curie point into a temperature range more ac-
cessible to experimental studies and applications. Here
the elastic constants of PbsGe;0,; and Pb, ;Bag 3Ge;0y;
have been determined from measurements of ultrasonic
wave velocities. For PbsGe;0y; itself the results obtained
can be compared with published data,* while the elastic
constants have been measured for what is believed to be
the first time in the barium-substituted material. The hy-
drostatic pressure derivatives of the elastic constants have
also been determined. A central theme is a study of the
symmetry of the elastic properties: the relationship be-
tween acoustic symmetry and elasticity is developed for
rhombohedral crystals. PbsGe;O;, belongs to the R3
Laue group, crystals of which have a more complicated
elastic behavior than those belonging to the higher sym-
metry R3m Laue group. However, the acoustic axes of
symmetry have been found to be close to the crystallo-
graphic axes so that these materials behave as if they were
R3m crystals so far as second-order elasticity is con-
cerned. On the assumption that acoustic symmetry can be
extended to a first approximation to the next order of
elasticity, sets of third-order elastic constants (TOEC)
have been  determined for  PbsGe;Oy; and
Pb, sBag 3;Ge;0;;. These TOEC have been obtained from
measurements of the hydrostatic pressure and uniaxial
stress derivatives of the velocities of numerous ultrasonic
modes. The TOEC are used to determine the acoustic-
mode Griineisen parameters, knowledge of which is cen-
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tral to an understanding of properties, such as thermal ex-
pansion and nonlinear elasticity, which depend upon vi-
brational anharmonicity.

II. EXPERIMENTAL PROCEDURE

Good optical-quality large single-crystalline boules of
Pb;Ge;0,; and Pb, 1Baj ;Ge;0,;, grown by the Czochral-
ski method, and with well-characterized growth defects,’
were provided by Dr. G. R. Jones of Royal Signals and
Radar Establishment, Malvern. Single-domain specimens
were oriented by Laue back-reflection x-ray photography
to within 0.5° of the selected crystallographic direction.
Ultrasonic samples were cut in the form of rectangular
parallelepipeds by a slow-speed diamond wheel and faces
lapped flat and parallel to better than 10" of arc. A pulse
echo overlap system was used to measure the ultrasonic
wave transit time. A piston and cylinder apparatus, using
castor oil as the liquid pressure transmitting medium, was
used to apply hydrostatic pressures up to about 1.8 108
Pa (=1.8 kbar), measured by a Manganin wire gauge. A
screw press was used to apply uniaxial stress, through a
proving ring to measure the applied force. To measure
the dependence of ultrasonic wave velocity upon hydro-
static pressure and uniaxial stress, an automatic
frequency-controlled gated carrier pulse superposition sys-
tem capable of resolution to 1 part in 10% in these high-
quality crystals, was employed.

III. SECOND-ORDER ELASTIC CONSTANTS
AND ACOUSTIC SYMMETRY
For a specified crystallographic direction defined by
direction cosines n,n,,n3, three bulk waves can be pro-
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paga}ted with ve_locities and polarizations given by the Ly =n3Cy, +n2Ces+n3Cas+2n,n5Cya ,
Christoffel equations
Li;=2n1n3C4+nn3(C;; —Ces) ,

(Lig —pVy)Uox =0, i=1,2,3. (1) L3=2n1n,Cy4+n3n,(C;3+Cs),

2 ) 2 (2)

Ly =n1Ce+n3Ci+n3Ca—2n3n3Cy4 ,
Here Uy, Ug,,Uy; are the direction cosines of the particle
displacement vectors and the Christoffel coefficients for 3

Laue group symmetry are Ly;=n fC44 +n %C44 +n §C33 .

Lyy=(n}—n3)Cia4nyn3(C13+Cyy) ,

TABLE 1. Mode equations and the ultrasonic wave velocities measured at 291 K.

Propagation  Polarization

direction direction Relationship (p¥?=Cj;) between Measured velocity (10° ms™!)
Mode N U Velocity velocity and elastic constants PbsGe;0;;  Pb,;Bag3GesOy,
Pure
oo [100] [100] ¥, Cn 3.029 3.033
longitudinal
Pure shear [100] v, 3 {(Cos+Caa)+[(Cas—Ces)*+4CH 12} 1.706 1.706
Pure shear [100] Vs 3 {(Ces+Cas)—[(Cag— Ces)*+4C3, V2] 1.671 1.696
Pure
longitudinal [010] [010] ¥, THCH+Ca)+[(Cas—C1 2 +4CHL ]2} 3.086 2.988
Pure shear [010] [100] Vs Ces=7(C;;—Cyy) 1.702 1.696
Quasi shear [010] [0o1] Vs TUCH+Ca)—[(Cyy—C1)*+4CH]? 1724 1.698
Pure [001] [o1] ¥, Cy 3.570 3.432
longitudinal
P t
ure degenerate [001] Ve Cus 1.723 1.723
shear
. 1 1 1,1
uasi 0——— V. 5(5(C11+C33)+Cyy—C 3.080 3.095
Qlongitudinal V2 V2 ’ B
+{[$(C11—C3)—Ci P
+(C13+C44—C14)2}1/2)
Pure shear o—‘sz——‘}—z [100] Vi  +(Ces+Cu)+Cus 1.725 1.695
Quasi shear o—é.—i—‘—/’_z Vi M€ 4Ci)+Cu—Cus 2.035 1.998
—{[$(C11—Cx)—C
+(Ci134+Cas—C141*}'7?)
Ouasi L Via +(3(C114+C33)+Cu+Cr4 3.136 3.065
uasi
00— —— ——
longitudinal V2 V2 +{[3(Cyy—C33)+Cys I
+(C13+Cus+C 1)1} '7?)
Pure shear 0_71_2—71.2- [100] Vi  S(Ce+Cu)—Cu 1.695 1.707
Quasi shear o—‘—lfg-‘lf—2 Vie  H(A(Cy+Ci)+CautCra 2.034 2.009

—{[$(C11—=C33)+Cis]?
+(Ci3+Cay+C1a)*}'?)
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The elastic stiffness constant matrix in the crystallograph-
ic axis (X,Y,Z) reference frame for a 3 crystal is
Cn Co Ci Cy —Cys O
Cp Cn Ci —Ciu Cys 0
Ci; C; Cx 0 0 0
Cy —-Cu O Cy 0
—Cy; Cp O 0 Cu Cu
0 0 0 Cys Cu Ceso

where Cgq= %—(C 11— C12). Measurements were made on
[100], [010], [0 1/V2 1/V2], and [0 —1/V2 1/V2] sam-
ples; solutions of the equation of motion for these propa-
gation directions, together with the ultrasonic wave veloc-
ities measured at room temperature (291 K), are given in
Table 1. Setting up the ultrasonic experiments requires
knowledge of the polarization vectors. For the quasishear
and quasilongitudinal modes propagated in the [010]
direction the particle displacement vector makes an angle
6 with the XY plane given by

tanf@= Uy /Upy=C14/(Cyy—pVis) @)

which is accidentally zero for both lead germanate and
barium-doped lead germanate. For the two pure-shear
waves which can be propagated in the [100] direction, the
particle displacement vector makes an angle ¢ with the
XY plane given by

tan¢=——[C14/(C44—pV§y3)] (5)

and is again accidently zero. For propagation in the
[0—1/V21/V2] direction, the particle displacement
vector makes an angle of § with the XY plane for the
quasilongitudinal mode where

tand=+(Ci4++C 1 +5Cus
—pV12)/5(Ci34+Cay+Cha) . 6)

For the quasishear mode of velocity V4, the correspond-
ing angle is 8+4+7/2. For PbsGe;O,; and
Pb, ;Bag 3GesO;; 8 has been calculated as 54°31’ and
51°53', respectively. The densities of both PbsGe;O,; and
Pb, ;Bay 3Ge;0,; were measured by Archimedes’ principle
as 7390 kgm™>. The second-order adiabatic elastic stiff-
ness constants (SOEC) of PbsGe;0,;, compared with
values reported previously, and of Pb,-Baj;Ge;0;; are
given in Table II. The uncertainties arising from mode
consistencies, errors in density and ultrasonic path length
measurements, and the small piezoelectric correction
amount to about 1%. For the compound itself the SOEC
obtained are nearly identical to the earlier data.>* The
components of the adiabatic elastic compliances are
shown in Table III.

If an ultrasonic wave is propagated through a crystal,
the symmetry of the system includes an inversion center
because it does not matter in which direction the wave
travels. Hence it is the Laue group which is relevant to
elasticity theory. Furthermore, for certain crystal systems
the minimum number of invariants required to detail the
elastic behavior need not—in a restricted sense—be the

TABLE 1II. Adiabatic SOEC of PbsGe;O;; and
Pb, ;Ba; ;Ge;0); at room temperature (291 K). (Units are 10'°
Nm~2)

PbsGe;0y, Pb, ;Bag 3Ge;0yy

C” a Ref. 4 Ref. 3 a

C 6.78 6.80 6.84 6.8

Ci, 2.50 2.57 2.68 2.54
Ci3 1.79 1.89 1.79 1.93
Cis 0.004 0.00 0.00 0.00
Cys 0.00 0.00 0.12 0.00
Cis 9.42 9.42 9.43 8.70
Cys 2.20 2.23 2.26 2.20
Ces 2.14 2.11 2.08 2.13

2Present work.

elastic stiffnesses Cjj; referred to the conventional crys-
tallographic coordinate axes as a basis. By a suitable
choice of coordinates, including pure mode axes which in
themselves are not crystal symmetry axes, the number of
invariant components of the elastic stiffness tensor can be
reduced.%” Thus, using an orthogonal basis of vectors e,
(a=0,+1,—1) on which the second-order elastic stiffness
tensor components are referred to as C,,.(a,b,c,d

=0,+1,—1) and transform as
Cz;bcd:e-i(a+b+c+d)¢cabcd (7

it can be shown that if e, is directed along the major sym-
metry axis L", the tensor components C,,,, become zero

when
ei(a+b+€+d)(211'/n):’é1 . (8)

The angle ¢ is a rotation about the L" axis (the threefold
axis in a 3 rhombohedral crystal).

Such a transformation with a basis vector (Z) along a
threefold axis for a 3 rhombohedral crystal gives

Cla= — Chy=Clss=C4 cos(36)+ Cys sin(34) ,
Chs=C's=Clyg= — C1a sin(3¢) + Cys cos(34) ,
C33=C3, Ciy=Cyu=Cs;s, 9
Ci3=Cp;3=Cy,

C34=C35=Cis=C3=0.

TABLE IIl. Adiabatic elastic compliances of PbsGe;O;; and
Pb, ;Bag 3Ge;0y; at 291 K (units are 1071 N~ m?).

Pb;Ge;0y, Pb, 1Bag 3Ge;0y,

Su a Ref. 3 a

Sh 0.175 0.177 0.176

Sz —0.059 —0.064 —0.059

Si3 —0.023 —0.022 —0.026

Sta 0.00 0.00 0.00

Ss 0.00 0.00 0.00

Si3 0.115 0.114 0.125

S 0.455 0.445 0.455

See 0.47 0.483 0.47

2Present work.
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The rotation ¢ transforms from the crystallographic axes
X and Y to pure mode axes X' and Y'. The elastic stiff-
ness tensor components Cyj, Ci3, Cyy, Cya, Cgs, and Cy3
are invariant for this rotation. When the transformation
angle takes the particular value ¢ 4 given by

Cys
Cu

-1

$4=1 tan (10)

then Cj)s becomes zero. The axial direction X' at the an-
gle ¢ 4 is a pure mode axis, referred to as an acoustic sym-
metry axis.® The elastic stiffness matrix Cj; referred to
the transformed axial set X',Y',Z (Y’ completes the
orthogonal axial set) then takes the form for that of the
3m rhombohedral Laue group crystals
Ch Cnp Ci Cy O
Ch Cy Ci3 —Cyu O
Cs Ci Gy O 0
Cs4 —Cy 0 Cyu 0 O
0 0 0 0 Cu Cu
0 0 0 0 Ciy Cg

o O O

(1

Therefore, in this frame of reference the symmetry of the
elastic properties of 3 Laue group crystals is the same as
that of 3m Laue group crystals. Then the number of in-
dependent elastic constants is reduced from seven (Cj;) to
six (Cyy); the angle ¢, made by the acoustic symmetry
axis X' with the crystallographic axis X is another un-
known, and can be determined from Egs. (9) once the elas-
tic constants have been measured. In 3m crystals the
presence of vertical planes of symmetry and/or dyad axes
in the Z planes requires that C,s (or S,s) be zero: the
pure mode axes coincide with the crystallographic axes
and there are only six independent elastic stiffness com-
ponents. Three acoustic symmetry axes exist in the Z
plane because Eq. (10) has three equal roots separated by
/3 in a 21 cycle (or six if it is recalled that there is an in-
version center added for propagation of a lattice vibration
so that mode velocity is the same in the X’ and —X’
directions). The acoustic symmetry axes are so-called be-
cause the elastic properties referred to them as a basis ex-
hibit the same acoustic symmetry properties as those in
the higher-symmetry Laue group.® The elastic properties
are symmetrical with respect to acoustic mirror planes
normal to the acoustic symmetry axes.

The measurements of the elastic stiffness tensor com-
ponents of PbsGe;0;; and Pb, ;Baj ;Ge;0;; (Table II) en-
able determination of the positions of the acoustic symme-
try axes in these crystals. In fact the observation that C,s
is so close to zero shows that for both materials the acous-
tic symmetry axes lie within experimental error along the
Y axis (and also in the two threehold rotation-symmetry-
related directions at +120° to the Y axis in the Z plane).
In general, reference of the elastic properties to the acous-
tic symmetry axes as a basis affords a useful simplifica-
tion for crystals belonging to the 3 Laue group; in the case
of PbsGe;0,; and Pb, ;Baj 3Ge;0,; the elastic behavior
already corresponds very closely to that of a 3m Laue
group crystal. Actually a further simplification is also
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possible. Since C,4 is also effectively zero within experi-
mental error, the two materials of this study could be
treated elastically as if they were hexagonal crystals be-
longing to the HI Laue group having only five invariant
parameters: C117 C13, C33, C44, and C66‘

Knowledge of the complete set of elastic stiffness tensor
components permits determination of a material’s
response to a moderate applied stress system. Particularly
useful in relating theoretically the interatomic binding
forces and elasticity are the linear (Byy and Bz) and
volume (By) compressibilities

Bxy=Su+Si2+S13 (12)
Bz=2S13+S33 , (13)
By=2S,1+S33+4S3+2S,, (14)

which (in units of 1072 m®N~!) are 9.3, 6.95, and 25.5,
respectively, for PbsGe;0;, and 9.1, 7.3, and 25.5, respec-
tively, for Pb, ;Bag ;Ge;0;. Thus barium-doped lead ger-
manate is rather more compressible along the trigonal
direction than PbsGe;O;;. The bulk moduli (1/8y) of
both materials are 3.9 10'° Nm—2,

IV. HYDROSTATIC PRESSURE DERIVATIVES
OF THE ELASTIC CONSTANTS

The ultrasonic wave transit times have been measured
as a function of hydrostatic pressure using a pulse super-
position technique’ which leads to the gradient f' of the
measured superposition frequency f as a function of pres-
sure. To bypass the need to calculate directly the changes
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FIG. 1. Relative changes induced by hydrostatic pressure on
the natural wave velocities of ultrasonic modes propagated in
PbsGe;0;,. The modal configurations and values of (poW?)p—g
derived from these data are listed in Table I'V.
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FIG. 2. Relative changes induced by hydrostatic pressure on the natural wave velocities of ultrasonic modes propagated in
Pb, ;Bay ;Ge;0,,. The modal configurations and values of (poH2)p_¢ derived from these data are listed in Table IV.

in crystal dimensions induced by the application of pres- Pb, ;Bag 3Ge30;;. The hydrostatic pressure derivatives
sure, the “natural velocity” W technique'® has been used. (poW?)p —o obtained from these measurements are collect-
The effects of hydrostatic pressure on the natural velocity  ed in Table IV. The hydrostatic pressure derivatives
are shown in Fig. 1 for PbsGe;O,, and in Fig. 2 for  (3Cy; /0P)p_, were obtained using!

J

9C, 1 /3P=Cy[(2f"/f0)+2S13+S33], N|[[100], U||[100]
0Ce6/3P=Cgs[(2f"/f0)+2S13+S33], N||[010], U||[100]
3C;33/8P=Cy;3[(2f"/fo)+2811 +2S13—S33], N||[001], UJ|[001]
3Cu/dP=Cu[(2f'/fo)+251 +251,—S53], N||[001], UL[001]
3C' /AP =C'[(2f'/fo)+S1,+S12+513] (see Table I)
o0C"/oP=C"[(2f"'/fo)+2S13+S33] (see Table I),

(15)

where

C'=5{(C;1+C33)/2+Cyy—C14—[(C1/2—C33/2—C14)*+(C3+Cas — C14)*1'/?}

TABLE V. Hydrostatic pressure derivatives of effective (3C;;/0P) and thermodynamic (By;)
second-order elastic constants of crystals with rhombohedral structure.

Bi Quartz Calcite AlL,O;
Pb5Ge30” Pb,;jBﬁo_gGCgO“ Ref. 11 Ref. 12 Ref. 13 Ref. 14

aC,, /3P 5.33 4.33 6.38 3.28 3.02 3.591
9C,, /3P 2.59 1.79 2.38 8.66 2.05 0.336
aC,; /0P 3.41 4.43 4.69 5.97 3.19 1.121
aC,, /0P 0.00 0.00 1.70 1.93 —1.25 0.211
9C,s /3P 0.0 0.0
dC;3 /0P 11.96 11.42 6.62 10.84 2.80 2.967
dCy /0P 1.15 1.51 3.37 2.66 0.92 2.394

9Ce /0P 1.39 1.35 2.00 —2.69 0.49 1.628
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and

C"=1{(Ces+Caa)+[(Cay—Ces)*+4C3,1'72)

and are compared with those of other crystals having the
rhombohedral structure in Table V. N and U correspond
to the wave propagation and polarization directions,
respectively.

The ferroelectric phase transition takes PbsGe;O;; from
the point group 3 in the ferroelectric phase to 6 in the
paraelectric phase® and is driven by optic-phonon mode
softening.!>!® The elastic constants C,;, Ci;, Cj;, and
C,; show, as a function of temperature, downward-
directed cusplike anomalies in the vicinity of the Curie
point, anomalies probably caused by the soft Raman ac-
tive mode giving an internal strain contribution to the
elastic constants.* The temperature-dependent reduction
of the elastic stiffness is not reflected in the effects of hy-
drostatic pressure: each (3Cy;/3P) is positive, whereas a
strong soft optic-mode—acoustic-mode interaction might
be expected to produce negative derivatives. The finding
of positive derivatives is not surprising—the pressure ef-
fects have been measured at room temperature, substan-
tially below the Curie point for both materials.

V. THIRD-ORDER ELASTIC CONSTANTS
AND ACOUSTIC-MODE GRUNEISEN PARAMETERS

The values of dC;5/0P and dC /0P are zero within
experimental error. Hence the shift of the acoustic sym-
metry axes with respect to the crystallographic axes is
negligibly small at the comparatively low hydrostatic pa-
rameters used in the experiment; it was decided to treat
PbsGe;0,; and Pb, ;Bag ;Ge;0,; elastically as 3m Laue
group crystals at third order—probably a reasonable ap-
proximation, although not so good as at second order.
For it to be accurate, shifts of the acoustic symmetry axes
with uniaxial stress should be small in comparison with
changes produced by such a stress on the ultrasonic wave
velocities. To obtain the TOEC, the velocity changes in-
duced by uniaxial stress have been measured for 20
modes, to be employed in addition to the ten modes exam-
ined under hydrostatic pressure. The results obtained for
PbsGe;0,, are shown in Fig. 3; similar data sets have been
measured for Pb, ;Bay 3Ga;0,;. To obtain sets of TOEC
(Table V1), values of (poW?)p_, obtained from these data
have been combined with those obtained under hydrostat-
ic pressure in a least-mean-squares fit to the relationships
given in Tables IV and VII.

The anharmonicity of lattice vibrations is responsible
for thermal expansion as well as the nonlinear behavior of
a crystal under finite strain. Thermal expansion data is
usually interpreted in the light of the thermal Griineisen
parameter ¥, which for a uniaxial crystal has two com-
ponents:

YP'=[(C11 +C2)ay +Cr3a3]V/Cp=+0.84
for PbsGC_';OH
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FIG. 3. Relative changes induced by uniaxial stress on the
natural wave velocities of ultrasonic modes propagated in
PbsGe;0;;. The modal and stress configurations are listed in
Table VII.

il =(2C3a11+C33033)V /C, = +0.91
for PbsGe;04,

in directions in the XY plane and Z axis, respectively.
Thus the value for ' for PbsGe;0y; is given by

=2y +7[1/3=0.86 . (16)
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TABLE VI. The third-order elastic constants (in units of 10'' Nm~2) of PbsGe;O;;, and Pb, ;Bag 3;Ge;O;, treated in the 3m Laue
group approximation compared with those of other rhombohedral crystals.

Bi Quartz Calcite Al,O3 LiNbO;
Constant PbsGe;Oy; Pb, ;Bay ;Ge;0y Ref. 11 Ref. 17 Ref. 13 Ref. 14 Ref. 18
Cin —5.06 —5.35 —7.14 —2.10 -5.79 —38.7 —5.12
Ciz —0.248 —0.33 1.16 —3.45 —1.47 —10.9 4.54
Cis —1.69 —1.5 —1.78 0.12 —1.93 —9.63 7.28
Cia 0.30 0.52 -3.77 —1.63 2.18 0.55 —4.10
Ci —0.81 —1.65 —1.27 —2.94 —0.41 —2.89 0.79
Cia 0.18 —0.31 —0.70 —0.15 —0.10 —0.39 0.55
Ci33 —4.2 —4.98 —1.62 —-3.12 —2.39 —0.22 —0.34
Ci3s —0.54 —0.74 0.43 0.02 0.82 —1.31 —-0.01
Clus —0.71 —1.02 —0.50 —1.34 —0.69 —3.02 —0.37
Ciss —1.36 —1.5 —4.06 —2.00 —1.39 —11.6 —5.99
Cin —5.5 —-53 —5.77 —3.32 —6.75 —45.2 —5.99
Cii; —17.06 —4.7 —4.03 —8.15 —4.98 —324 —4.78
Cia4 —0.49 —0.29 —0.95 —1.10 —1.95 —10.9 —5.40
Cuus —0.12 —0.37 1.77 —2.76 0.33 —0.19 —0.41

This thermodynamic parameter '
age of mode Griineisen parameters

is the weighted aver-

y*hzzciyi/zci, yi=—@lnw;/dIV), (17

where w; is the frequency of mode i and C; is the heat
capacity per mode. Thus y'® includes contributions from
all the modes of vibration. The TOEC can be used to pro-
vide a measure of the contributions specifically from the
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long-wavelength acoustic modes alone.

The acoustic-mode Griineisen parameters have been
calculated as a function of propagation direction for
PbsGe;0,, and Pb, ;Bag ;Ge;0;. The methods adopted
and the necessary relationships have been detailed!' for
3m Laue group crystals and are applicable to 3 crystals by
a transformation from crystallographic to acoustic sym-
metry axes (negligible in the present case). The results ob-
tained plotted in Figs. 4 and 5 are positive for all
modes—reemphasizing the absence of softening of the
long-wavelength acoustic-phonon modes.

For PbsGe;0,; the Debye temperature [ =230 K (Ref.

Mode GriUneisen Parameters
-

R 1 1 1 1 1
60 30 120 150 180

Propagat iﬁ&of]\ Direction (degreesfmﬁ]

0.0 - 1
0

oo

FIG. 4. The zone center acoustic-mode Griineisen parameters as a function of propagation direction in (a) the YZ and (b) the XZ

planes of PbsGe;0;.
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(Continued).

TABLE VIIL

Stress
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Propagation
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FIG. 5. The zone center acoustic-mode Griineisen parameters
as a function of propagation direction in (a) the YZ and (b) the

For Pb;Ge;0;; the Debye temperature [ =230 K (Ref.

temperature to be taken

as the high-temperature limit, when the heat capacity

constant k. Then the

mean Griineisen parameter y} takes the form of
(1/3N )Eq’ » yP". Here the superscript Br refers to the
tensorial gamma defined by Brugger and Fritz?® and dis-
cussed in Appendix A of Ref. 21. This summation has
been carried out over a large number of acoustic modes to
obtain high-temperature limits ('}’ﬁr)y and (y)y for
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PbsGe;0,; of + 1.68 and 0.80, respectively, at 291 K.
Hence the mean zone center acoustic-mode Griineisen pa-
rameter is + 1.09 in the high-temperature limit. Com-
parison of this value with 0.86 for y™ indicates that the
acoustic phonons deeper into the zone and the optic pho-
nons together have a mean Griineisen gamma rather less
than unity: the soft ferroelectric mode can only have a
slight influence on ™ at room temperature.
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