PHYSICAL REVIEW B

VOLUME 34, NUMBER 6

Calculation of the mobility of electrons injected in liquid xenon

G. Ascarelli
Physics Department, Purdue University, West Lafayette, Indiana 47907
(Received 3 February 1986)

A model calculation is carried out in which we evaluate the mobility of thermal electrons injected
in liquid xenon. Scattering by both phonons and static density fluctuations is taken into account.
The calculation for the mobility limited by phonon scattering differs from the usual calculation in
crystals by considering both the local changes in the deformation potential and the changes of the
amplitude of the phonons that are caused by the existence of density fluctuations. The calculation
of the mobility limited by scattering from density fluctuations is carried out assuming that they give
rise to a square well (or barrier) potential that will scatter the electrons. The above perturbation,
AV, is related to a density fluctuation An by AVy=V, (i +An)—Vy(A). The scattering volume {2,
where the density fluctuation An is located, is weighted by exp(— r /&) where £ is the correlation
length and r is the radius of Q. The magnitude of the different density fluctuations are weighted by
exp{(An)2Q2/[2nS(0)]}, where S(0)=nksTKr and Kr is the isothermal compressibility. The cal-
culation of the mean free path is carried out using partial waves. As in the case of argon, scattering
by phonons and density fluctuations give comparable contributions to the mobility. However, con-
trary to the case of argon, a constant effective mass that is equal to the reduced mass obtained from
exciton spectra, gives rise to a calculated mobility that is in excellent agreement with the available
experimental data over the whole liquid-vapor coexistence range. There are therefore no adjustable
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parameters in the calculation.

I. INTRODUCTION

During recent years data on the mobility of electrons
injected in insulating liquids has been accumulated.! Al-
though one may question if most of the available time of
flight (TOF) mobility data reflects the drift mobility that
would be calculated using Boltzmann’s equation,z'3 it
came originally as a surprise to this author that the TOF
mobilities are frequently comparable to the mobilities ob-
served in crystalline semiconductors. This must be con-
trasted with the enormous decrease of the mobility that is
observed when one goes from a crystalline to an amor-
phous semiconductor.® In the case of electrons injected in
several liquids near the triple point the TOF mobility is
only about a factor of 2 lower than the mobility observed
in the crystalline phase.>°

One could imagine that the justification for the small
effect that disorder has on the mobility is related to the
van der Walls bonding in rare-gas liquids, in contrast to
the covalent bonding in semiconductors. Only recently’ a
promising model has been developed that is capable of
describing reasonably well the dependence of the experi-
mental mobility on density. In this paper this model is
applied to the case of liquid xenon without the use of ad-
justable parameters.

Basak and Cohen® (BC) calculated the mobility of an
electron injected in a rare gas liquid assuming that a con-
duction band exists and that static density fluctuations
represent the only scattering mechanism. BC related the
scattering potential to the disorder produced by density
fluctuations by introducing a deformation potential.

The deformation potential to be used in the calculation,
dV,/dn, is obtained from measurements® of the density
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dependence of ¥V, , where V), is the position of the con-
duction band minimum with respect to vacuum.

In the BC calculation, fluctuations corresponding to a
local change of density An are considered and the change
of energy of the minimum of the conduction band is ex-
panded in series of An
dv,

dn

d?v,

AVo = dn?

(AnP4 -

1
An + —
- 2

(1)
Successively An is expanded in Fourier series, the ap-
propriate matrix elements between electronic plane wave
states are evaluated and the thermal averages of the
Fourier coefficients of An are used in the calculation. In
the case of slow electrons this results in a scattering prob-
ability that is proportional to S(q), the structure factor of
the liquid for small momentum transfer. For slow elec-
trons, BC approximated S(g) by S(0)=rkzTKy. Here
K1 is the isothermal compressibility. Contrary to experi-
mental evidence, the calculated mobility is zero at the
critical point. Despite this difficulty, over a wide range of
densities, the BC calculation®® provides qualitative agree-
ment with experiment.'® It explains the observation'! of a
mobility maximum that coincides approximately with the
density where dVy/dn = 0 and, with m*=my,, it pro-
vides the correct order of magnitude of the mobility of
electrons in both liquid argon and liquid xenon near the
triple point.

The zero mobility predicted by the theory at the critical
point is a serious difficulty, even more so when one con-
siders the very small observed decrease from its maximum
that is detected in the only available Hall mobility mea-
surement. '?
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Finally, although scattering by static density fluctua-
tions is important, in the absence of a numerical evalua-
tion, it is difficult to imagine that other scattering mecha-
nisms, like e.g. phonon scattering, should be ignored.

This is particularly evident when one realizes that both,
scattered electrons and scattered light, which propagate in
either a uniform or a periodic medium, can only give rise
to constructive interference in the forward direction.'® It
is the inhomogeneities, both static and dynamic, that pro-
duce constructive interference, i.e., scattering, in other
directions. In the case of light this corresponds respec-
tively to Raleigh and Brillouin or Raman scattering.

The remainder of this paper will follow closely the pre-
vious discussion’ for argon. The major difference between
the results for xenon and argon is that in the literature
there are higher frequency measurements of the velocity
of sound for the former than for the latter and that re-
duced exciton mass values exist for liquid xenon while
they are absent in the case of argon. As a result the free
parameter that was used in the calculation of the mobility
in argon is now fixed by experimental* data to
m®*=0.27m near the triple point. If this value of m*
had been used in the BC theory,*? the resulting mobilities
would have been about 25 times too large.

In Sec. II we shall see how a phonon scattering theory
(deformation potential) used in semiconductors'> must be
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modified in order to be applied to a liquid; the drift mo-
bility due to phonon scattering will be calculated.

In Sec. III we will calculate the mobility due to scatter-
ing by static density fluctuations. Although the perturba-
tion potential (A¥,) is similar to BC’s, the details of the
calculations permit us to take into account several points
that they could not consider. In order to simplify the
mathematics we shall assume that the potential resulting
from the density fluctuations is a square well (or barrier).

An important result of the present calculation is that
the mean free path due to scattering by density fluctua-
tions does not become zero at the critical point. Further-
more there is a Ramsauer-like maximum of the energy
dependence of the calculated mean free paths as well as
evidence of sharp resonances that are assigned to the ex-
istence of metastable bound states.

II. SCATTERING BY PHONONS

The well known deformation potential theory that is
used in the case of crystalline semiconductors'’ can be ap-
plied to the case of electrons injected into insulating
liquids, provided that minor corrections are introduced.

In the case of semiconductors the deformation potential
can be redefined in terms of changes of the edge of the
conduction (or valence) band as a function of density, i.e.,
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FIG. 1. Phonon limited mobility according to Eq. (4) (O). Mobility limited by scattering by density fluctuations when the effect of
finite volumes is taken into account [Eq. (7)]; average number of atoms, N, contained in the volume Qu;: N =4 (A), N=32 (@),
N=256 (/). The symbols on the graph correspond to the densities where the mobilities were calculated. An effective mass equal to
0.27m, was used everywhere. The thermodynamic state of the liquid corresponds to the liquid-vapor coexistence line.
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Z = — n dV,/dn rather than as a function of dilation as
is usual in the theory of solids. !®

In a crystalline solid = is uniform and independent of
position. In a liquid instead, density fluctuations will give
rise to local variations of Z. Therefore, while in the
theory of scattering of electrons in a solid one normally
neglects to form an electron wave packet this will be im-
portant in the case of a liquid. The deformation potential
that is important is obviously the deformation potential in
the region where the electron is located.

As will be seen below this correction to = is negligible
everywhere except where Z is zero (and where we would
have infinite mobility) and very close to the critical point
where the velocity of sound becomes zero. We must how-
ever be cautious because of the observed dispersion of the
sound velocity near the critical point.'®~%? In the case of
xenon this means that corrections are important near
~220 K and near the critical point.

The expression'> of the phonon limited electron mobili-
ty in a crystal whose density is p (g/cm®) and at a tem-
perature T is:

_202m)\ ettt pCs

0= 3k§/2m3/2 T3/252(m‘/m0)5/2 : )
In the case of liquid xenon
(6.58x10~2)C}?
Lo . 3)

T TV /dnm* /mP?
where n is in cm~2 , C; is the velocity of sound in cm/s,
]

dv, d*v,
dn? dC, 2 | dn?
X=1+ 2n.._L_.___+2_n - 4n” | an” |
Vo C | dn G | av,
dn dn
2 2
+,,_2 d’c, |dC, |"(n_ 2 4w,
C, dn? dn C, dn?

All quantities are calculated at the average density.

In contrast to the case of argon the velocity of sound in
liquid xenon has been measured over a wide range of fre-
quencies. Measurements of the velocity of sound at > 100
MHz are appropriate for the calculation of the momen-
tum exchanged by a thermal electron in an electron pho-
non collision.'®~? The forementioned dispersion of the
velocity of sound is not significant at these high frequen-
cies for T <289 K, the highest temperature considered in
the calculation.

Data on the relation between temperature and densi-
ty>*~2¢ in xenon appear to be of a quality similar to those
for argon.

When both types of data are taken into consideration it
is found that except near the mobilty maximum where

dv,
dn
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Vo in eV.

Corrections to the above expression arise because the
value of n and dV;,/dn must be calculated at the location
where the electron is scattered. Furthermore, if a phonon
encounters a region of different density, the wave is par-
tially reflected and the amplitude of the phonon inside the
density fluctuation is lower than that in the uniform
medium.

Since these corrections will be small almost everywhere,
we shall not consider the full formalism of the Boltzmann
equation. We shall instead assume that the electron can
be localized in a volume ! whose dimensions are the
thermal wavelength of the electron, ie.,
Q =A% = 2mmkzT/h*)~3/? in which the density may
differ from the average density 7 , i.e., n=#(1+An /7).
In this volume the amplitude of the incoming phonon
differs from that in the homogeneous medium. Similarly
we must consider the changes of the deformation poten-
tial in this volume. All of these changes give rise to
corrections of the mobility. The significant quantity is
therefore the probability of having a density fluctuation
An in the volume A>.

Following the same steps as in Ref. 7 we find that the
phonon limited mobility is:

Ho
u= X’ 4)
where 1 is the mobility calculated in the absence of den-
sity fluctuations. The correction factor X is

dc,
dn
-2 -1
, 14V | | dV, (An)?
o an e (5

dVy/dn =0, the value of X is extremely close to 1 for
densities above 6.2 10* cm™3. Asa reference, the criti-
cal density and the critical temperature of xenon are,?’
respectively, n, =5.04x10?! cm~3 and T,=289.734 K.

The mobility of electrons limited by phonon scattering
in liquid xenon along the liquid vapor coexistence line is
shown in Fig. 1.

III. SCATTERING BY DENSITY FLUCTUATIONS

As in the case of Ref. 7, we calculate the density fluc-
tuations contribution to the mobility of thermal electrons
by considering the scattering of an electron by a square
well (or barrier) using the technique of partial waves.?32°

Following the suggestion of Basak and Cohen® we shall
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assume that if in a volume () the density differs from the
average density n by An the scattering potential will be
AVy=V,(fi+An)—V,y(7f). In our case we shall not as-
sume that Ar is small and that AV, can be expanded in
series. However, in order to simplify the calculation, we
shall assume that the density in the volume Q is uniform
and equal to 7 +An. Furthermore, we shall assume that
the volume Q is spherical.

Since the volumes Q must fill all space (we neglect the
fact that spheres cannot fill all space) their density is Q.
This does not imply, however, that there will be a nonzero
density fluctuation An in each one of the above volumes.
However, the assumption of a uniform density fluctuation
in the volume ) implies unphysical discontinuities in the
density.

Provided the radius of such a volume () is large in com-
parison with the correlation length &, the probability P,
of finding a density fluctuation of magnitude®® An in Q is

2
P, xexp— AMAn)" . 6)

27nS (0)
Here S(0) is the structure factor for zero momentum
transfer. Amit®! suggested that near the critical point,
when § becomes comparable to the radius 7 of the volume
), because of finite size scaling, the compressibility

should be
2—7
Sar } )

(K7)esi=Kr €
where 1/&2=1/£+1/r* . The exponent?’ 7 is equal to
0.05. There is a corresponding change in Eq. (6).

The probability of choosing a radius r (and therefore a
volume Q=%7r’) is P,, where

Pyce™"% . (8)

AT=3S

_ 2
(e —ﬂ(An)Z/ZnS(O)e"(r/g))% [fov fo ”U(O,An,ﬂ,q)(l—cose)dd:sin() dB}

There are clearly physical limitations on the possible
values of An . The final density in the volume Q cannot
be either negative or larger than that of the solid at 0 K.

There are also limitations on the choice of 2. Both P,
and P, reflect results of statistical mechanics. Therefore
the number of atoms contained in Q must be sufficiently
large to satisfy this requirement. Computer simulations
in volumes containing at least 108 atoms (and periodic
boundary conditions) succeed in reproducing several ther-
modynamic properties®’*? of a fluid. Such a volume ap-
pears therefore sufficient to satisfy some of the limitations
imposed by statistical mechanics.

We are however also using both an effective mass ap-
proximation and the concept of deformation potential. It
is not clear what is the number of atoms that must be in
Q to satisfy the large orbit requirement implicit in the ap-
proximation. From the theory of shallow impurity states
in semiconductors®* this number appears to be of the or-
der of 10°.

Since we do not have good arguments for choosing a
minimum size =, to which the calculation should
apply, we carried out our calculation considering different
Qnin containing on average, at each temperature, from 4
to 256 atoms. The values of Q;, at the lower limit are
probably inappropriate while those containing N ~256
atoms might be satisfactory. We decided, however, to
show the result corresponding to different values Q.,;, so
as to give the reader an impression on how the calculated
mobility depends on this parameter. Despite the expected
errors when N =4 the result might give us a hint of what
to expect in the case of small clusters. As will be seen
subsequently the total mobility is not very sensitive to the
choice of N.

The mean free path A appropriate for the electrical
conductivity is:

An 1
x |33 o —Q(An2/[27S (0], —(r /6) ! ’ )
An r
where
o(an,0,9)=27 [ " 0(6,An,0,q)(1—cosB)sindd o
= %‘ [ Sil’l280 -+ 3Sin281 -+ 58in252 -+ 7Sin283 -+ 9Sin284 — ZSinﬁosiIIa]COS( 61 —_ 80)
— 8sindsind,co0s(8; — 6, ) — 12s5ind,5ind;c0s(53 — 8, ) — 168ind,45ind3cos(85,—83)] - (10)

Here s to g waves are considered with phase shifts labeled
8y to 8;. The latter are calculated as in Refs. 28 and 29.

The first term in parentheses in Eq. (9) is proportional
to the probability, P,P, , of having a volume  in which
there is a density fluctuation An. The last term is the nor-
malization of the above ;Jrobability.

In the case of argon,” we limited ourselves to g waves
because it was found that their introduction did not

f

change significantly the electron mobility. Similar con-
clusions are applicable to xenon. The high angular
momentum waves (primarily f waves) are the source of
the “spikes” and resonances seen in the A vs E curves
(Figs. 2—4). For the purpose of comparison the constant
mean free path associated with scattering by phonons is
also indicated in the figure.

High angular momentum waves arise either from high
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FIG. 2. Mean free path A as a function of electron energy. Average number of atoms in volume Qp,, N=4 and 256. The line la-

beled pn indicates the mean free path associated with phonon scattering; m* /mo= 0.27. The density is 1.302X 1022cm 3, T=180

K.

energy electrons or large . Electrons whose energy is
large compared with kpT give minor contributions to the
mobility of thermal electrons.
weighted by the factor P, that is small when r >>§. The
values of (An)? in these volumes will be significantly
smaller than those corresponding to smaller radii because
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of the form of P,. As a result of these considerations the
effect of g waves becomes important only towards the
highest electron energies we considered when the tempera-
ture is near T,.

We have chosen to carry out sums rather than integrals
because the integrals cannot be carried out analytically.

M{W
‘ o WW\M
Y A
Sl NI
_ | | } F .
1 /a6 {' ; ,‘h:\’ . |
_ ;!
— '-’,Vf W LN .
| W \
.000  1.250 2.500  3.750 ;;O::T 6.250 7.500  8.750 )

FIG. 3. Same as Fig. 2 with T=250 K. Density 1.028 X 10?2cm 3.
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FIG. 4. Same as Fig. 2 with T=289 K. Density, 6.19x 10* cm~3.

The sums are instead ideally suited for a computer calcu-

lation. The chosen limits for r are such that

-7 —6 . . . 4 3
e ™ 7=10""° while 7, is given by Qunin= 57" min -

There are physical limits on the possible densities in the
volume Q: n, and 0. Here n, is the density of the solid.
The limits chosen for An are therefore either An = ny,—n
and An = —n or a value of An such that P, decreased
by 10%, whichever is smallest. The values of r were
chosen so as to progressively double Q to e "¢ = 1076,
The chosen values of An were such that the interval be-
tween (An)p., and (An)y;, was divided into 100 equal in-
tervals. The values of ¢ were chosen in such a way that
the energy was incremented in intervals of kzT /20 up to
10 kpT.

The values of the correlation length £ are known
above ~273 K. Theory predicts® that

& = Egt"(1+At'?) 68))

where t = (T,—T)/T,. Both the exponent v and the
value of &, have been gneasured.” Their values are
respectively 0.57 and 1.8 A. The constant 4 is expected3®
to be ~1. The choice of 4 can only affect the mobility
near the triple point.

Despite the small range of temperatures over which &
has been measured in xenon, we shall use Eq. (11) down to
the triple point. It may be worthwhile to point out that,
despite the expected universality of the exponent v its
value for xenon (0.57) differs from the value measured for
argon®’ (0.63). The coefficient &, although it is not sup-
posed to be a universal constant, is nearly twice as large
for xenon as for argon. The ratio of the values of &, is
however much larger than what one would intuitively ex-
pect, i.e., equal to the ratio of n!’? for the two substances.
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The use of a critical exponent v equal to either 0.57 or
0.63 does not however qualitatively change the calculated
mobilities.

Minimal differences were obtained when comparing
calculations carried out, in double precision using either
the Control Data Corporation CDC 6600 (120 bits) or the
Digital Equipment Corporation PDP 11-44 (64 bits).
This indicates that round-off errors are not significant.
The computing times for the calculation were near 13 min
for the CDC when the temperature of the fluid is assumed
equal to 289 K. The time on the PDP is about 7 times
longer. Near the triple point the times are decreased by a
factor of approximately 2.

Initially disregard the sharp spikes in the A vs E curves
(Figs. 2—4). An overall maximum is noticeable. It moves
to lower energies both with increasing the size of Q;, and
with increasing temperatures. It becomes less pronounced
when the temperature approaches the critical point. Simi-
lar results were found for argon’ and were interpreted as a
Ramsauer effect produced by the scattering from a densi-
ty fluctuation in the volume Q;,. The same interpreta-
tion applies here.

When £ becomes comparable to r, several volumes
larger than Q_;, are weighted with comparable probabili-
ties P,. They give contributions to the mean free path
whose maxima correspond to different energies. The re-
sulting A vs E curve has a much less well defined ex-
tremum. This maximum disappears near the critical
point if one does not use a finite size scaling correction of
a form similar to that suggested by Amit.*! Notice, how-
ever, that the pseudo Ramsauer maximum appears at en-
ergies of a few tens of meV, i.e., 10 times smaller than
what is observed in the case of gases.3®
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The mobility was calculated from the above A vs E
data using a Boltzmann distribution, i.e.,

E;
S A; exp (—E; /kgT)
2128 mo i | ksT 12
un = VT m* E, 372
2 ;B—T exp (—E;/kgT)

Figures 1 and 5 display the mobility calculated using
Eq. (12) and m*/my=0.27 for several values of Q.
Figure 1 corresponds to the case when S(0) is calculated
with the correction for finite size scaling suggested by
Amit*! [Eq. (10)]. It is instead ignored in the calculation
leading to Fig. 5. The symbols on each one of the curves
correspond to the densities where the mobility was calcu-
lated. In between the mobility was freely interpolated.
The growth of the maximum of the mobility in correspon-
dence to the density where dV/dn =0 is clearly shown in
both sets of curves. Although the calculation has not
been extended to the critical point on account of the diver-
gences of S(0) and &, there is no indication that the mo-
bility should be zeroat T = T,.

The fact that the mobility does not go to zero at the
critical point can be understood qualitatively. The most
probable value of the volume in which there is a density
fluctuation is Q~&°. In this volume, the average of the
square of the density fluctuation is
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Since near the critical point S(0) o« £277 it is clear that
(An)? « £2-1/£3, Thus although both & and S(0) diverge
near the critical point, the rms fluctuation that is impor-
tant for the calculation of the mobility does not diverge.
What becomes large instead is the rms fluctuations in a
fixed volume. Thus the scattering cross section remains
finite although much larger than e.g. near the triple point
where the value of | dV,/dn | is comparable. A further
contribution to the finite cross section are the previously
mentioned limits on the possible values of the density
fluctuations.

We should consider the errors intrinsic in this kind of
calculation. The use of square wells and barriers implies
unphysical discontinuities of the density. This author be-
lieves that this approximation may overestimate the
scattering cross section. The regular increments of Q give
rise to some periodicity in the “spikes” seen in Figs. 2 to
4. It was previously seen with the calculation of the mo-
bility of injected electrons in argon, that if the sizes of r
[Eq. (9)] are obtained from random increments of Q, this
periodicity disappears, although the calculated mobilities
are not significantly affected. The use of the effective
mass precludes the consideration of scattering by spatially
small density fluctuations like e.g. those that would result
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Density ( IO22 cm's)

10 [ 12 13 14

FIG. 5. Density fluctuation limited mobility corresponding to volumes Q.;, containing on average N=4 (A), 32 (®), 256 (V)
atoms. No correction for small volumes; m* /my=0.27. The symbols on the graph correspond to the densities where the mobilities
were calculated. The thermodynamic state of the fluid corresponds to the liquid-vapor coexistence line.
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from the displacement of a single atom with respect to its
neighbors. It is hoped however that the results corre-
sponding to values of Q;, containing e.g. either four or
eight atoms may give an indication of the possible trends.
On the basis of our results, it appears that the principal
effect will be a broadening of the mobility maximum pos-
sibly accompanied by a small shift towards higher densi-
ties. The errors are however difficult to quantify.

Despite the fact that both £ and K are taken from ex-
perimental data'®3%3 there are errors due to uncertaini-
ties of T, as well as discrepancies in the relation between
n and T quoted by different authors.3~2¢ These errors
appear to be much smaller in the case of xenon than in the
case of argon. When we were in doubt about the choice
between different sets of data we preferred those that
better matched an extrapolation, using the theory of criti-
cal phenomena, of similar data that had been measured
near the critical point.

Finally the expression for £, suggested by Amit is at
best valid only in the vicinity of the critical point. It was
however used in the calculation of P; down to the triple
point. Its effect on the mobility can be gauged by com-
paring Figs. 1 and 5.

The present calculation does not take into account the
coherent scattering by several density fluctuations. We do
not know how to estimate its importance, but we suspect
it is small on account of the long mean free paths that are
calculated.

A partial justification for the choice of the effective
mass and its comparison with experiment appears ap-
propriate. The reduced mass obtained from the binding
energy of the n=1 exciton'* is 0.27m,. To assume that
the reduced mass is equal to the electron mass implies the
existence of a very large hole mass. Furthermore the
question arises if the reduced mass obtained from the
n=1 exciton state without the use of a quantum defect is
only an upper limit of the reduced mass of the exciton.

The only guide we have for these considerations arises
from calculations in solids. Resca et al.** found that for
the n=1 uv exciton in xenon the quantum defect is nearly
10 times smaller than for higher s-like exciton states.
However, when considering a similar calculation for core
excitons*! (p- and d-like as in contrast to the s-like exci-
tons produced in the uv range), they not only find a much
larger quantum defect but also a reduced mass nearly
twice as large as for the s excitons. If this conclusion
would be correct it would imply that the electron and hole
effective masses in the solid are similar and near 0.65m,.

Reilly*? estimates the effective band at the toF of
valence band of xenon to be near 4m, while Fowler*® cal-
culates that for krypton the heavy hole mass is very aniso-
tropic and varies between 3.4mg, and 7.1m,. A large hole
mass is necessary to understand the existence of a self-
trapped exciton**~* that resembles the corresponding
case in alkali halides. This is particularly plausible when
one recalls that e.g. xenon is isoelectronic with Csl.

Near the triple point, in order to get agreement between
the calculated mobility and the experimental data,>*748
the electron effective mass must be between 0.26m, and
0.28mgy. On the other hand to get agreement with the
data from Ref. 49 an effective mass ~0.23m, is required.
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FIG. 6. Variation of the mobility as a function of effective
mass for selected densities. The correction characterized by Eq.
(7) has been taken into account. The different “curves” corre-
spond to the cases when g, contains on average N=256,
N=32, or N=4 atoms (left to right). The mobilities were only
calculated in correspondence to m®*/mg equal to 1, 0.5, and
0.25. The lines are just a guide for the eye. The states of the
fluid correspond to the liquid-vapor coexistence line. The num-
bers next to each line correspond to densities in units of 10%
cm3,

Overall, considering the errors in the calculation of the
reduced mass from exciton spectra,'* it appears that in
the liquid, the electron mass must be near 0.27m and the
hole mass must be much larger to explain the observed
self-trapping.*® This does not exclude that the electron ef-
fective mass will be a function of density, that may well
resemble the density dependence of V. Clearly the elec-
tron mass in the dilute gas must equal m.

The reader should refer to Ref. 7 for a further discus-
sion comparing the results of this kind of calculation with
others in the literature.

In Fig. 6 we compare the mobilities associated with
scattering by density fluctuations when the effective mass
is either mg, 0.5mq, or 0.25m,. The points have been
joined by lines so as to guide the eye. It is seen that, ex-
cept in the case when the volume Q.;, contains 256
atoms, and the temperature is very near the critical tem-
perature, the mobility varies approximately as
(mo/m*)*>. This is the dependence calculated by BC us-
ing the Born approximation.

In Fig. 7 we give the combined mobility considering
scattering by both phonons and density fluctuations.
These are the values that must be compared with experi-
ment.

The combined mobilities are calculated using the com-
bined mean free paths, i.e.
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FIG. 7. Mobility calculated considering both scattering by phonons and by density fluctuations for the cases when Q,, contains on
average 4 (/) or 256 (/) atoms while m * /m;=0.27. Each of the symbols corresponds to a density where the mobility was calculat-
ed. The experimental data of Ref. 47 is represented by M, that of Ref. 5 by [, that of Ref 48 by O, and that of Ref. 49 by X. The

state of the fluid corresponds to the liquid-vapor coexistence line.

Ap,Alq)

—_— (14)
A, +Alq)

Alq) =

in Eq. (12). Here A(g) is the mean free path arising from
density fluctuations while A, is the energy independent
mean free path®® arising from phonon scattering that can
be calculated from Eq. (3):

172

2aem*kg T
—_—| . (15)

eZ

3
Ap=_4—.

Experimental measurements of the time of flight mobil-
ity>*'—% are indicated in Fig. (7). Discrepancies between
the experimental results are obvious. Insufficient infor-
mation on the experimental procedures in Ref. 49 makes
it difficult to judge the reliability of the data. However,
the mobility of electrons in liquid xenon near the triple
point was measured by other authors"**® who found re-
sults close to those in Ref. 47. The data of Ref. 47 may
have experimental errors arising from the measurement of
temperature, insofar as the temperature of the outer wall
of the thick glass ampoule containing the sample was

measured instead of the temperature of the fluid itself. If
such errors are significant, they may influence the agree-
ment between theory and experiment. The scatter of the
data from Ref. 47 from those from Ref. 5 and 48 may
give an indication of the experimental errors.

A better agreement between experiment and the calcula-
tion can be obtained by considering a density dependent
effective mass. The presently available data does not
however justify the introduction of four additional param-
eters to describe a variation of m* with density of the
kind found for the variation of ¥V, with density.

Besides some support for the existence of localized
states that influence time of flight measurements, the
present calculation provides another explanation for the
apparent saturation of the time of flight velocity observed
at high electric fields.

In the usual theory of phonon scattering the mean free
path is independent of the electron energy and the result-
ing drift velocity is proportional to the square root of the
applied field (F3).

The existence of a maximum in the variation of A with
E due to scattering by density fluctuations implies that
above a certain energy, A is a decreasing function of ener-
gy. Therefore, particularly at energies where the scatter-
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ing by density fluctuations is dominant, the drift velocity
should vary with field more slowly than F®°. The ex-
istence of the spikes in Figs. 2 to 4 that we interpreted as
resonances associated with high angular momenta, 2
would presumably form a continuum if the radii of the
density fluctuations would be varied continuously. These
resonances should further decrease the mean free path of
high energy electrons. The localized states that give rise
to these resonances should also significantly influence the
energy relaxation. A more precise statement requires a
much better knowledge of the processes involving energy
losses that have been completely neglected in the present
calculation.
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