PHYSICAL REVIEW B

VOLUME 34, NUMBER 6

15 SEPTEMBER 1986

Dielectric parameters of alkali halides

G. D. Mahan
Department of Physics and Astronomy, The University of Tennessee, Knoxuville, Tennessee 37996-1200
and Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
(Received 10 April 1986)

An ab initio calculation is presented for the refractive indices and Szigeti charge of 12 alkali
halide solids. The polarizabilities of the anions and cations are calculated separately, and the refrac-
tive indices are obtained from the Clausius-Mosotti relation. The Szigeti charge is obtained by a cal-
culation of the deformation dipole parameters. Both the polarizabilities and deformation dipole pa-
rameters are calculated with use of the local-density approximation. The parameters are found for
each ion where the crystalline environment is simulated by a cage of pseudopotentials. The results

agree well with experimental data.

I. INTRODUCTION

The Born-Mayer model provided one of the earliest
theories of alkali halide crystals. This model assumed
that the ions were spherical, polarizable, and interacted
with only central forces. This model gave a good account
of the cohesive energy and the compressibility but was not
very successful in describing lattice dynamics. Later
came refinements of the theory such as the deformation
dipole theory,' various shell models,2~* and ion deforma-
bility.? These theories provided a better model of lattice
dynamics. There also arose competing theories such as
the ionicity theory,®’ where significant charge transfer is
assumed—contrary to the Born-Mayer model.

These various theories contain a variety of parameters
which are fitted to the experimental data. Very seldom
are these parameters calculated from first principles. The
present paper is somewhat of a milestone in that we report
first-principles ab initio calculations of many of the im-
portant parameters which characterize the dielectric and
vibrational properties of alkali halides.

Our basic premise is that the Born-Mayer model is
valid except for the addition of polarization forces. The
ions are each assumed to be spherical, although they
slightly interpenetrate. The validity of this viewpoint was
shown by Jennison and Kunz.® After finishing their self-
consistent band-structure calculations, they found that the
Coulomb potential at each nucleus was equal to the ideal
Madelung potential. Thus their charge distributions are
spherical. They concluded that the ionicity theories are
wrong, and that there is no appreciable charge transfer.

Several years ago we developed a method of calculating
the ionic polarizabilities of ions in solids.*!® The polari-
zability is found for a central ion. The neighboring ions
are represented as a lattice of pseudopotentials which are
spherically averaged. These calculations made several
new predictions regarding the polarizability of ions in
solids: (i) the polarizability of the cations is a constant a*
independent of the solid; (ii) the polarizability of the anion
a~ changed with each alkali halide, depending mainly on
lattice constant. We also showed that the experimental
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data, where at +a~ is found from the Clausius-Mosotti
relation

at +a"=03Vy/4n)e,—1) /e, +2) , (1)

support the hypothesis that ¢~ varies with lattice con-
stant. These findings contradict the old and established
view of Tessman, Kahn, and Schockley11 that the polari-
zability of each ion is fixed. Instead, we find that the
anions are quite compressible and change their volume,
hence their polarizability in each alkali halide. This pre-
diction was confirmed by Colella and collaborators,'?
whose x-ray density maps support the view that the
anions remain spherical but compressed in the alkali
halides.

Part of the present results are new values for the polari-
zability of ions in solids. The earlier calculations were
among the first to find static response functions using the
local-density approximation (LDA). Since then, much
has been learned about the calculational technology. The
present method differs from the earlier ones in three
respects: (i) there is a better choice of correlation energy,
(i) there is no self-interaction correction, and (iii) they
employ the self-consistent field (SCF). The results are
also much more accurate than our earlier results. The
agreement with experiment is quite good; the results are
within 1—2 % of the data, except for the sodium halides
where we are about 6% high.

The basic method is explained further in Sec. II. A per-
turbation such as 8V =e&?z on the central ion causes a
charge distortion n =L 8§V where L is an operator linear
in the field & but not in z. The dipole polarizability a is
given as the average of ez:

p=a&=(ezbn), a=e*(zLz) . )

Recently, we collaborated'? in showing that the polariza-
tion of a central ion causes indirect ionic interactions (I3)
between its first neighbors. This process can be calculated
by the same computer code which finds the polarizability.
Now the perturbation has the form of 8V =Q-F where Q
is the infinitesimal displacement of the neighboring ion,
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and F(r) is the force on the electrons of the central ion
due to this displacement. Second-order perturbation
theory shows that there is an energy term due to pairs of
displacements for two neighbors of the central ion:

AE = 2 Qinjv<FvLFy> .
ij

The bracket ( FLF) provides a force tensor between pairs
of displacements.

The effective charge e* was originally conceived by Szi-
geti.!* Its explanation in terms of deformation dipole was
suggested by Hardy and Karo! and is well described in
standard treatments on lattice dynamics.'>~!7 Here one
calculates the induced dipole moment on a central ion
caused by the displacement of a neighbor. This quantity
is just the cross term between the above two interactions:

p=(ezLF-Q)=eyQ, yu,=(r,LF,),

We have introduced the dimensionless tensor y which
gives the magnitude of the induced moment caused by a
neighboring displacement. The Szigeti charge is just

e*=e(1-T), T=2(y,+2y,), 3)

where y;, are the longitudinal and transverse components
of the tensor.

Here we present calculations of the correlations (zLz)
and (zLF). Results for (FLF) are presented elsewhere.

Together they provide the parameters needed for the
theory of €, €, ¢*, and the lattice dynamics.

II. NUMERICAL METHODS

The numerical quantities calculated in this paper can be
expressed as the elements of some tensors. The tensors
usually have a small number of nonzero components.
Here we describe the method used to calculate them. The
general method is similar to that used earlier for the ionic
polarizabilities.”!® The Mth polarizability a, is the
response of the ion to an external perturbation of the form
ey rMPy,(©) where g, is infinitesimal. The present calcu-
lations also find the response to more complicated func-
tions of r: the force on an electron from the motion of a
neighboring ion.

As discussed in Sec. I, the electron states are calculated
using LDA for a central ion. A first neighbor whose
center is at Rg causes a perturbation ¥ (r—Rpg). The cen-
tral ion in an alkali halide has six such neighbors which
are spherically averaged to emulate the crystal potential in
the immediate locality of the central ion. V(r—Rpg) can
be expanded in spherical harmonics:

V(r—Rp)= 3 v/(r,R)P/(Op) . @)
4

The crystal potential is approximated as V, (r)=6vy(r,R).
Earlier it was shown that this makes a square well poten-
tial which confines the electrons in negative ions and
tends to make the halides contract in the solid. The stan-
dard LDA procedure is to first solve an effective
Schrodinger-type equation for all of the ground-state
eigenvalues €; and eigenfunctions ¢; which are solutions
of the self-consistent equations
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(——V2-22/r+VH+Vc+ch'_'sj)lﬁfzo ’
n(r)=3;|¢;|?,

where Vy is the Hartree potential for electron-electron in-
teractions, V. is the exchange-correlation energy of Gun-
narsson and Lundqvist,'® and ¥, is the crystal potential.

The six first neighbors form a shell around the central
ion. An infinitesimal motion of one of these neighbors
causes a distortion in the central ion. This distortion is
calculated by considering the effects of an infinitesimal
perturbation

8V=QF, F=-VV, (6)

where Q is the infinitesimal displacement. From first-
order perturbation theory, one can show that this induces
a change in the wave function ¥; which obeys an equation

(HQ'“E])lli}:( - VSCF+8} )1’b] ,

én(r')
lr—r'|

VXC

8()8
+6n(r 5

Vsce=8V+2 [ d° €

dn=23 ¢jy;,
J

where Vscr is the self-consistent-field potential, €; is the
first-order change in the energy, and 8n is the first-order
change in the density. Using Vscp instead of 8V is what
makes the L operator nonlinear in Sec. I. After finding
8n, its integral is taken with F,(r) to find the tensor for
the indirect force between neighbors and with ez to find
the parameter ¥ which determines the Szigeti charge.

Both (5) and (7) are differential equations with spheri-
cally symmetric potentials. Their solutions can be ex-
panded in terms of radial functions and spherical harmon-
ics. Only the radial function needs to be solved numeri-
cally. Standard techniques are used for solving the eigen-
value equation for the ground state. The techniques are
less well known for solving the inhomogeneous differen-
tial equation for the first-order changes ¢’. The angular
momentum theorem for closed shells limits the number of
radial functions.

The solutions can be classified into two general types.
(i) The angular momentum ! of ¥ is not equal to the angu-
lar momentum [’ of ¥'. Then the radial equation is solved
by introducing two parameters A and B which are deter-
mined by two constraints. The parameters 4 and B are
the slope of the radial function at the origin and at the
last end point: both initial and final values are set to zero.
Numerov’s method is used to iterate the solution outward
from the origin and inward from the far point. The two
constraints are that these two solutions have the same
value and slope at some predetermined match point.

The other case is when / =I', which can happen when
6V has even angular momentum. Then the inhomogene-
ous differential equation (7) also has a solution to the
homogeneous equation, so that ¥’ has a random mixture
of . Usually one wants (¢ |¢’') =0 so that this admix-
ture is zero. This can be imposed as a third constraint,
but that introduces the need for a third variational param-
eter. After much trial and error, we discovered that it is
the first-order energy ¢’. This quantity is zero unless
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I =1, and then it should be
g;={y; |8V |¢)) .

When ¢’ is allowed to vary, it chooses a value which is
identical to the calculated one within four or five signifi-
cant digits. However, the small difference is needed to
eliminate the unwanted homogeneous solution to the dif-
ferential equation.

Earlier we gave the angular momentum decomposition
of s, p, and d shells perturbed by a 8V of the form
rMP,,(©). Exactly the same formulas are found for gen-
eral functions of r: for potentials of the form f(r)Py(O).
We have generalized these results to show that the same
formulas for 8n(r) are found for an angular perturbation
of the form f(7)P3;(O)exp(im¢).

After the perturbed density 6n(r) has been found self-
consistently, one can calculate the correlation of this per-
turbation with any other function Z(r) of r

(E|8V)= [ d> E(r sn(r) .

The symbol (= | 8¥) means to correlate = with the densi-
ty change caused by 8V. Of course, one could also calcu-
late {8V | E), which is the correlation of §¥ with the den-
sity change caused by the perturbation Z(r). Without
SCF one finds that (Z|8V)=(8V |E). They are not
equal when the fields are made self-consistent because the
screening is different for each perturbation. Then one
asks the question of which is correct since they are dif-
ferent. The answer is that if one is trying to correlate two
different perturbations, the correct procedure is to average
them:

(E|8M=3(E|8V)+(8V|E)). (8)

This identity is not based upon any mean value theorem.
Instead, we wrote out the LDA equations for two pertur-
bations, derived the equations (7) for ¢’ from variational
theory, and then evaluated the ground-state energy. The
cross term linking two perturbations has the above form
as the average of the two quantities.

III. RESULTS AND DISCUSSION

Numerical calculations were done for the 12 alkali
halides of flourine, chlorine, and bromine, with lithium,
sodium, potassium, and rubidium. Iodine and cesium are
omitted because our codes are not relativistic. We also
confined our calculations to the rocksalt structure. The
alkali pseudopotential is taken from our earlier compila-
tion.’

Table I shows low-temperature results for the polariza-
bilities. The first column lists the solid. The second and
third columns list our calculated values for a™ and a™.
The sum a* +a~ is listed in the next column. The last
column lists the experimental value of at +a~ derived
from the Clausius-Mosotti relation. The data are taken
from Lowndes and Martin.!® Our results for the sodium
halides are too high by 5%, but the agreement is within
2% for the other cases. We think the agreement is quite
good since there are no adjustable parameters in the
theory. We believe this is the easiest and most successful

TABLE I. Ionic polarizabilities (A*).

ab initio Data®
Salt at a” at+a at+a~
LiF 0.032 0.85 0.88 0.91
NaF 0.136 1.11 1.25 1.17
KF 0.69 1.26 1.95 1.98
RbF 1.08 1.36 2.44 2.49
LiCl 0.032 2.86 2.89 2.94
NaCl 0.136 3.29 3.43 3.24
KCl 0.68 348 4.16 4.15
RbCl 1.08 3.65 4.73 4.78
LiBr 0.032 3.97 4.00 4.09
NaBr 0.135 4.46 4.60 4.38
KBr 0.68 4.64 5.32 5.29
RbBr 1.08 4.85 5.93 5.96

2Reference 19.

method for calculating the polarizabilities and refractive
index.

The alkali polarizabilities shown in Table I are smaller
than the ones we published earlier for free ions. The
difference occurs because these alkali ions are slightly
compressed in the solid. When run for free ions, the same
computer code reproduces our earlier results. It is in-
teresting that the alkali polarizabilities are nearly the same
for all of the halides. This confirms our previous findings
that the cation polarizability is independent of halide salt.

Table II shows our calculated values for the quadrupole
and octupole polarizabilities of the halide ions in the al-
kali halide solid. Again we regard these values as more
accurate than our earlier ones.

Table III shows our calculated values of the Szigeti
charge. The top entry is for the halide ion, while the bot-
tom entry is for the alkali. The lithium ion was not
evaluated since one expects the answer to be small, and
LDA is not accurate for two electron atoms. The experi-
mental data are again taken from Lowndes and Martin.
If R is the vector between the central ion and its neighbor,
and Q is the displacement of the neighbor, then y, is for
Q||R and 7, is for QLR. In both cases the induced mo-
ment is in the direction of Q. These values are best ap-

TABLE II. Quadrupole and octupole polarizabilities.

Alkali F~ Cl~ Br~
Quadrupole (A%)
Lit 0.89 4.83 7.84
Na* 0.057 1.34 6.08 9.48
K+ 0.50 1.62 6.70 10.2
Rb* 1.02 1.84 7.26 11.0

Octupole (A7)

Lit 1.84 16.8 324
Na* 0.042 3.25 232 42.28
K+ 0.73 4.35 27.0 47.1
Rb* 1.90 5.22 30.3 52.5
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TABLE III. Szigeti charge. e*=e(1—T), [=2(y,+2y,). Top entry: halide; lower entry: alkali.

Theory Data®
Salt Y1 Ve r e*/e e*/e

LiF 0.044 0.069 0.365 0.64 0.81

NaF —0.016 0.067 0.236 0.77 0.83
—0.025 0.011 —0.006

KF 0.004 0.049 0.204 0.82 0.88
—0.085 0.037 —0.022

RbF —0.003 0.046 0.177 0.85 0.92
—0.117 0.050 —0.034

LiCl —0.086 0.138 0.380 0.62 0.77

NaCl —0.110 0.124 0.276 0.75 0.76
—0.024 0.007 —0.021

KCl —0.067 0.093 0.239 0.83 0.79
—0.082 0.024 —0.066

RbCl —0.065 0.086 0.216 0.86 0.85
—0.108 0.034 —0.081

LiBr —0.102 0.159 0.432 0.57 0.66

NaBr —0.136 0.143 0.300 0.73 0.73
—0.024 0.006 —0.025

KBr —0.091 0.110 0.259 0.82 0.76
—0.082 0.022 —0.077

RbBr —0.87 0.101 0.230 0.88 0.83
—0.118 0.030 —0.114

2Reference 19.

preciated by comparing them to the classical prediction of
the dipole-induced-dipole model

y1——2a/R3 y,—a/R?,

where a is the polarizability of the central ion. The clas-
sical prediction is that y;= —2y, so that I" equals zero.

Our computed results for the halides do not come close
to agreeing with this classical prediction. The magnitude
of y; is smaller than ¥, in every case. For some florines
7. is positive rather than negative. The alkali ions behave
more classically and come closer to satisfying the classical
identity ;= —2y,. It is interesting that I' is always posi-
tive for the halides and negative for the alkalis.

Our agreement is poor for the lithium salts. The agree-
ment with experiment is good for the other nine cases.
Since these ab initio calculations have no adjustable pa-
rameters, we regard the agreement as satisfactory. Cer-

tainly these results show that the deformation dipole
model can explain the origins of the deviation of e*/e
from unity.

The method was also used to calculate the force con-
stants between two neighbors of the central ion, as found
from the correlation (FLF). These values are reported
elsewhere. *
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