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Stark-Wannier resonances and delocalization in one-dimensional incommensurate systems
with a finite electric field

J. F. %eisz and C. Slutzky
Grupo de Fisica y Ciencia de los Materiales, Instituto de Desarrollo Tecnologico para la Industria Qui mica (INTECj,

Universidad Nacional del Litoral Co—nsejo Nacional de Investigaciones Cientificas y Tecnicas,

Gii emes 3450, 3000 Santa Fe, Republic ofArgentina
I'Received 18 November 1985)

A model is explored for which weak electric fields are applied to crystals with incommensurate

potentials in one dimension, within the localized regime. The results indicate a delocalizing effect
due to the electric field, in agreement with tunneling models previously proposed for nonlinear con-

duction effects for the low-temperature semiconducting phase of quasi-one-dimensional solids and

also yields a series of Stark-%annier resonances found by other authors in different models. The ef-

fects of disorder tend to wipe out the resonances. The resonances would occur for somewhat higher
values of electric field than the weak electric fields, sufficient to cause a delocalizing effect in the
case of pure charge-density-wave crystals.

I. INTRODUCTION II. THE MODEL

It is known that crystals containing charge-density
waves (CDW's), in their low-temperature, semiconducting
phase, are characterized by a nonlinear conductance as a
function of the applied field e. It is found that for e) er
where eT is a threshold value, that the conductance may
be described as'

c,„=c„—near,0 (2.1)

%e consider a linear chain with nearest-neighbor hop-
ping matrix element V. The diagonal site energies are
taken according to

G=G. ( )+Gb( r)e— where
1.1)

where G is the total conductance which eventually satu-
rates to a value G, +Gb which would be observed in the
absence of a CDW. The natural interpretation for the re-

sults for the conductance for weak fields obtained here is
that it arises from a tunneling effect across the CDW-
induced gapa, similar to the proposals of Bardeen. i ~ One
should remark, though, that other kinds of models have
been proposed, such as CD% depinning„so that the situ-
ation is still not clear.

We consider a one-dimensional tight-binding model for
a CD% in which the localization length may be calculat-
ed. The calculation of G is carried out by postulating that
the Landauer formula is still valid for strongly localized
states with weak applied fields for which the tunneling ef-
fect is indeed found. For slightly larger values of electric
field a series of Stark-Wannier resonances are found in
y(e) (the inverse localization length as a function of the
applied field) and are similar to the Stark resonances
found by other authors in different models. In particular
much work has been done on a nearly-free-electron model
containing a distribution of delta functions. '

It has been pointed out that translational invariance is
not prerequisite in finding Stark resonances, since these
are observed also in disordered models. It comes as no
surprise then that they turn up also in incommensurate
CDW structures. Nonlinear effects are also found in the
conductance of superlattices and this model may also be
applicable there.

e„=8' cos(Qna ) (2.2a)

or

e„=Wsgn[cos(Qna)], (2.2b)

where sgn is the sign(um) function, Q =2~/A, , where A, is
the period of the CDW, and W is the amplitude of the
CDW. Off-diagonal corrections due to the electric field
can be neglected only for weak electric fields.

There is also an important factor to be considered when
calculations are performed with a finite electric field.
This is the fact that as a result of band tilting the electron
is confined within a distance lq B/ee due to B—r—agg re-
flection at band edges. (This is in the absence of pho-
nons. ) One can state then that two regimes are of interest
depending on the electric field e and localization length 1.

(i) Material effects dominate when 1 ~ la.
(ii) The electric field dominates when ltt & I.
In this work we limit the study to region I, which

translates into the condition eea/8 ~ y where 8 is the to-
tal bandwidth, y the inverse localization length, and a is
the lattice spacing. Region II is probably physically un-
realistic in the absence of phonons which would help the
electrons to conduct in the presence of the field.

With diagonal site energies (e„E2,e3, . . . ) a continued-
fraction expansion for the right self-energy is given by
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V2
(2.3}

The CD% is taken to be incommensurate with A=ma
giving e„=Wcos(2n) or a~ =Wsgn[cos(2n)] potential.
In the case of Wcos(Qna) it is well known that there is a
metal-insulator transition for e =0 at

~

W
~

=2 V. ' "
Since the calculations must be carried out in the localized
regimes one takes

~

W
~

& W, =2V. The effects that we
find can only be qualitatively correct since W, is about 50
times larger than the actual observed order parameter for
the metal-insulator transition. The discrepancy is prob-
ably due to shape distortions from the cosine and three-
dimensional effects. Thus for the rectangular potential
states with very small 8'are already localized.

The localization length can be taken as the convergence
length of (2.3),' ' for which the difference between suc-
cessive convergents is less than a given error e:

1

Q.Q. +i

Simple recursion relations can be given for P„and Q„:

Pn+1 an+1Pn+Pn —1 ~

Qn+ 1 =~n +1Qn +Qn —I ~

(2.4)

For the special case of exponential localization (strongly
localized states) one can assume the following divergence
for P„and Q„as a function of n:

p„+Q„~er" .

the variation of electrical potential eeL is negligible com-
pared to fluctuations of the effectively localizing poten-
tial, that states should still be exponentially localized
within I.. Numerically one checks the exponential con-
vergence of the continued fraction. Thus while the transi-
tion to power-law localization is never really seen in this
model, due to the single initial band, the physical require-
ment to see exponentially localized states remain
ear/8 &y and L &lz.

III. RESULTS

We summarize our results as follows.
(a} Results without an electric field are given in Figs.

1(a) and 1(b) in the case of Eqs. (2.2a) and (2.2b), respec-
tively. The results are in agreement with previous calcula-
tions.

(b) There is a delocalization for weak electric fields

given by y(e)=y(0) —Ae where A ~0 is a constant
which occurs in the region of strongly localized states
(Fig. 2). The fit is made allowing only a very small per-

(o)
C)

0,6—

Although y is perfectly well defined in the absence of
an electric field this is no longer necessarily so when e&0.
It seems safer then to use the criteria that I is attained
when P„+Q„ is larger than some predetermined large
number. In (2.4) a„ is given by

r

0.3
(b)

(2.5) O.Z—

In practice it was found that for strongly localized states
there was exponential localization which remains so for
weak electric fields, although a change to a power-law lo-
calization is expecttxi for larger fields.

Calculation of y must, however, be limited to a suffi-
ciently short length to avoid the region in which the e
field is dominant. The limit on electric field depends on
the localizing potential. In the case of the cosine one has
eae/8 &ln(W/W, )=y. For short lengths and e&0, y
does not depend on the length that is used. However,
since sufficiently long lengths always cause the electric
field effect to dominate it is necessary to limit this length.

Due to band tilting of the finite band the states will ap-
pear to be localized even in the normally extended region
W'~ 8'„so as mentioned previously an obvious require-
ment to see material dominated effects is L & Iii where L
is the sample length. It is also apparent that as long as

O, t—

0.8

FIG. 1. (a) This figure shows the inverse localization length

y as a function of 8'/V for ~ =0 for the potential
c,„=8'cos{2n). The metal-insulator transition is not exactly at
8' /V=2 only because of the finite length used in the numeri-
cal calculations. y =0 for 8' g 8' . The theoretical expression
for W & 8', is y=ln(W/W, ). (b) This figure shows y(e=0) as
a function of ( IV/V) for the potentia1 e„=Wsgn[cos{2n)].
States very close to 8'=0 are now localized. The overall
behavior is intermediate between that of an uncorrelated rec-
tangular distribution for the c„'s and that of a cosine.
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FIG. 4. This figure shows the position of a Stark-%annier
resonance earp/V as a function of W/V for e,„=8'cos(2n).
The resonance moves linearly to the right as a function of the
CD%' amplitude. The behavior of ep for smaller values of W/V
than those shown are not clearly interpretable.

V/san (10~ }

FIG. 2. (a) This figure shows 1n[y{0)—y(e)] plotted as a
function of V/eea for W/V=1, 2 with s„=Wsgn[cos{2n)]. A
length of up to 100a was used to perform the calculations and
y(e) was obtained by assuming exponential localization. A
linear fit giving earp/V=1. 49' 10 is obtained. (b) This also
shows 1n[y(0) —y(e)] vs V/eea but for W/V=2. 0 with
s„=Wsgn[cos(2n)]. Lengths of up to 100a were used to find
y(~) which was obtained assuming exponential localization.
The fit is linear giving earp/V=2. 07&10 . The tendency is
for ep to increase with degree of localization.

1

C' 08

N 0.6

centual change in y(0) due to e.
(c) A series of Stark-Wannier resonances occur for

larger fields (see Fig. 3). The position of the first such
resonance is named eo.

(d) Both eo and eo increase with the degree of localiza-
tion. The increase of eo is linear in W for the case of
e„=W cos(gna). (See Fig. 4.)

(e) The Stark-Wannier resonances tend to disappear
when disorder is added: e„=icos(gna)+ IV' where W'
has a rectangular distribution.

(f) Strongly electric fields cause y to rise again due to
the band tilting effect (region II).

(g) Another interesting result is that the approximate
L(E) method works surprisingly well. It is of course
known to be exact with eo„= Wcos(gna) and no electric
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PIG. 3. This is a typical run showing y(e) as a function of
(ear/V). Here the continued fraction was evaluated until the
difference between successive convergents was less than 10
The calculation was carried out with 8'/V= 3.0 and
e.„=8' cos(2n). Stark-%'annier resonances are present.

FIG. 5. This figure shows y' found by applying the I.(E)
method for W/V=4 as a function of ear/V calculated from
lengths up to 25a. Delocalizing behavior and resonances are
seen.
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field. Indeed if we consider

E —IVcos(2n) —earn

n=i V

with E =0 and a=0, H (J) is an increasing function of J
for IV~ 2V but decreases with J for 8'~2V. In Fig. 5

we have found y' from fitting H(J) =y'J for E =0 and
8'/V=4 for values of J up to 25. The behavior of y' as
a function of e again shows the delocalizing effect for
small e and Stark-Wannier resonances. The delocalizing
field is also seen in that the value of the critical amplitude
( IV, /V) increases from its value of 2, as the electric field
is increased.

IV. INTERPRETATION AND DISCUSSION

For large values of 8'it can be thought that each dip in
the CD% potential contains independent energy levels.
The band-tilting effect due to the electric field lines up
some of these levels leading to the resonances. Evidently
the separation of these levels is larger when IV is larger,
leading to a higher value of so. For strongly localized
states one can approximate 6 by G=e " where L is the
sample length.

Substituting y(e ) =y(0) + [y(e ) —y(0) ] and considering
weak fields only

6 —y(0)L~ —L [y(e)—y(0)]

e "' ' (1 L[y(e) ——y(0)]I

=e "' '
( I+LAe '

) .

This leads naturally to the separation of 6 into a 6, and—eo/c
be
Despite the apparent success of the model in giving a

Zenner-like contribution due to tunneling between mini-
bands (spectrum spht up by the CDW) in which the tun-
neling distance goes as 1/e, the assumption that the I.an-
dauer formula can be used for e&0 is not proven. Fur-
ther theoretical work is needed in the field to establish
this. Another problem is to find precise ways of defining

y when v+0. If calculated as it usually is, y is still found
to be somewhat dependent on position; the wave function
would go as P-e "'"'" to which one must add the com-
plication of the changing character of the localization as a
fllllctloil of e.

On the basis of our results we would say that y is still
fairly well defined, at least for weak fields and strong lo-

calization, and that in this limit the Landauer calculation
of 6 seems reasonable. One could say that weak fields do
not alter the exponential character of the delocalization
and therefore linear response (on the basis of which the
Landauer formalism stands) is still valid about a new situ-
ation in which there is a small applied field.

One notes that the threshold field itself er is expected
to arise from impurities so it is essentially zero (er ——0) in
the pure case. It should also be noted that the fit
y(e)=y(0) —Ae ' is only good for strongly localized
states but not for nearly extended states. In this latter
case there is complicated behavior which is not easily
analyzed since the modulated part of y(x) becomes im-
portant.

It suffices to note that when the electric field is dom-
inant (region II), this scheme breaks down. Actually this
is a difficult regime for nearly free electrons also. Despite
the fact that in this later case the effect of finite potentials
will always be felt, even for very large sample lengths, the
electron always acts as if it were nearly free if it moves a
large enough distance. Then what is missing in this later
model are phonons to help slow these down while in our
model phonons would be needed to help electrons to move
along.

The results which were obtained are quite different
from those of Refs. 7 and 8, but the model we use is also
very different. References 7 and 8 use a model more ap-
propriate to nearly free electrons and their states are more
extended (power-law localized in the presence of impuri-
ties). The present model is a tight-binding formalism
where exponential localization is obtained in the strong-
potential limit ( W ~ 2V for the cosine) or when impurities
are added. Our single band is completely split up into
minibands by the CD% while the other models have an
essentially semi-infinite band structure.

With exponentially localized states the local order has a
much stronger effect on the results so that it is not
surprising that the resonances disappear with disorder
(while they persist in the other models). Alternatively, if
the energy levels of the successive wells are regarded as
approximately independent, addition of disorder means
that they are resonant only two at a time, instead of all be-
ing resonant (constant energy shifts from one level to the
adjacent one) due to the e-field tilting effect.
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