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The infinite polyyne chain, +C:—C+„, or polyyne, is interpreted as a Peierls distorted one-

dimensional metal with strong intrinsic electron-phonon coupling at the half-filled band level. Be-
cause there are two degenerate m-electron bands in polyyne the effective internal degeneracy (N) of
the electrons is 4, rather than 2 as in the model of polyacetylene. This leads to a rich variety of
kink-soliton and polaron states and, in the limit of a continuum description, to the interesting result

that polyyne is an approximate physical realization of an %=4 Gross-Neveu model relativistic field

theory. The low-lying electronic excitations of the polymer are kink-solitons with charges 0, ke, and

22e. The lowest-lying ionization states are a polaron, a bipolaron, and a tripolaron, with charges

+e, +2e, and +3e, respectively. Photoexcitation of the polymer leads to a neutral polaron consisting
of an electron and a hole bound by lattice distortion ("polarexciton"). Both the soliton and the pola-
rons involve the appearance of localized intragap levels that are not present in the ground state.
Moreover, a localized excited state exists for the polaron, while photoexcitation of the bipolaron and
the tripolaron result in soliton-antisoliton pair production. Photoinduced absorption measurements

on long finite polyynes in solution should be able to confirm the photogeneration of the polarexciton.
Formation of the polaron states can be expected if doping with strong electron withdrawing species
is possible. An odd-membered polyyne is predicted to contain a soliton in its ground-state configu-
ration, the doubly ionized closed-shell chain being particularly stable. Soliton- or polaron-bearing

acetylenic chains might be of relevance in astrophysics. The ground-state acoustic and optical
branches of the phonon spectrum of the discrete chain are also calculated and an expression derived

for the reduction of the speed of sound due to the electron-phonon coupling.

I. INTRODUCTION AND SYNOPSIS

Linear chains of carbon atoms with alternating single
and triple bonds, i.e.,+ C—:C+„,are known as polyynes.
Finite polyynes, with a variety of end groups, have been
synthesized in the laboratory' and a value of n as high
as 16 has been reported. The observations of small neu-
tral carbon aggregates in the vapor with n &8, and of
similarly small ionized carbon aggregates from secondary
ionic emission, have been interpreted in terms of linear
chain structures. Finite polyynes have also been
discovered to exist in the molecular clouds of the Milky
Way and therefore are of astrophysical significance. 7 s

Very long-chain, i.e., effectively infinite, polyynes are
thought to be the constituents of carbyne, ' ' a proposed
crystalline quasi-one-dimensional allotrope of carbon. It
has been suggested that carbyne is the thermodynamically
stable phase of carbon over a wide range of pressures in
the approximate temperature range 2600—3800 K.'
Moreover, the possibility that carbyne is a constituent of
interstellar dust and responsible for a number of its hith-
erto unassigned absorption and radio emission features
has also been suggested. ' Long linear chains of carbon
have also been proposed to be the constituents of liquid
carbon. '

The infinite linear chain of carbon atoms has been of
theoretical interest for many years and is the subject of
the present paper. Early calculations by Longuet-Higgens
and Birkitt, " employing Hiickel theory, and by Hoff-
man, ' using extended Hiickel theory, found the alternat-
ing polyyne configuration to be preferred energetically to
the uniform-bond-length cumulene structure+ C=C+„.
A similar conclusion has been found by Stankevich and
Tomlin' on the basis of a CNDO/2 (complete neglect of
differential overlap) molecular-orbital calculation. On the
other hand, Pitzer and Clementi, Shustorovich, ' Shus-
torovich and Popov, ' and, in particular, Ovchinnikov
et al. ,

' apparently have found, or have argued, that bond
alternation in the infinite chain would, at best, be very
small as a consequence of strong electron-electron interac-
tions. The latter, so it is argued, essentially render the
chain a Mott-Hubbard insulator' with a uniform cumu-
lene structure. However, these arguments are not support-
ed by a series of recent calculations' initiated by Ma-
zumdar and Dixit, on finite linear tight-binding Hub-
bard and "extended Hubbard" model chains. These carry
one electron per atom and include adiabatic electron-
phonon coupling. Interestingly, it is found that provided
the (Hubbard) on-site Coulomb repulsion is not excessive-
ly larger than the one-electron tight-binding bandwidth,
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electron-electron interactions enhance, rather than inhibit,
bond alternation. Moreover, ab initio Hartree-Fock calcu-
lations performed specifically for the infinite linear car-
bon chain by Kertesz et al. ,

' and by Karpfen, confirm
the favorability of the polyyne configuration. Both au-
thors have calculated the electronic band structure while
Karpfen has, in addition, presented numerical results for
the electronic density of states, force constants, and pho-
non dispersion curves.

In what follows and throughout this paper we shall
refer to the infinite linear chain of carbon atoms as
polyyne. In this paper we consider polyyne as a Peierls in-
sulator ' ' at the half-filled band level and investigate in
some detail its microscopic properties as such a system.
While this theoretical description of polyyne neglects ex-
plicit effects of electron-electron interactions, it does
rigorously treat the response of the linear carbon lattice to
the presence of the m electrons: the eigenstates of the
Peierls insulator are eigenstates of the coupled electron-
lattice system. The latter effect is large for a quasi-
one-dimensional fermion system and cannot be neglected
even if electron-electron interactions are taken into ac-
count. The microscopic properties which we shall investi-
gate will be the ground-state electronic structure, the pho-
non spectrum, and the low-lying electronic excitations and
ionization states.

%e note that, interpreted as a Peierls insulator, polyyne
differs in one important respect from the half-filled band
Peierls insulator commonly encountered —and whose soli-
ton properties ' have made it such a fascinating system
to study, particularly in the context of polyacetylene.
This difference arises in the effective degeneracy of the m.

electrons. In polyyne, the latter half-fill two degenerate
bands which are derived from the two degenerate atomic
carbon p orbitals (p„,p~) that are available in the sp cr-

bonding configuration of the linear carbon chain. By
symmetry, these couple to the instantaneous positions of
the carbon nuclei in an identical manner It follow. s,
therefore, that the linear lattice in polyyne couples to an.-

electron system whose effective degeneracy N is 4 (in ar-
riving at N =4, account has been taken of the twofold de-
generacy of the electron spin). By contrast, N =2 for the
usual one-band Peierls insulator. We find that this effec-
tive doubling of N for the polyyne system has several in-
teresting consequences.

First, it leads to an unusually rich spectrum of kink-
soliton and polaron states. Both types of states involve
the appearance of localized intragap levels that are not
present in the ground state. The kink excitations, which
are the lowest-lying electronic excitations of the chain,
arise with charges 0, +e, and +2e and appropriate states
of spin and internal degeneracy. On the other hand, the
polaron states, which are the chain s lowest-lying ioniza-
tion states, arise with charges +e, +2e and +3e. Thus,
the first three electrons (or holes) added to polyyne are
trapped in intrinsic loeahzed states. In addition to these
six polaron states, a seventh polaronlike state with zero
charge is found. This state is actually an excitation and
consists of an electron and a hole bound by lattice distor-
tion. It may be photogenerated in polyyne and since its
formation is a consequence of lattice distortion only we

name it a "polarexciton". (In actual polyyne, and,
presumably, also in finite polyyne chains, the presence of
the Coulomb interaction will lead to an even more tightly
bound exciton. ) A preliminary account of these results
has been given in a recent Letter.

Second, the degeneracy of four leads to the result that
polyyne is—in the limit of a continuum description of the
discrete chain —an approximate physical realization of a
model relativistic field theory: namely, the static, semi-
classical, N =4 Gross-Neveu model. The continuum
description of polyyne is quantitatively accurate for weak
intrinsic electron-phonon interaction. In the Gross-Neveu
model, the chiral symmetry of a field of massless relativis-
tic fermions with internal degeneracy (or "flavor") N in
1+ 1 dimensions is dynamically broken by coupling to a
sealer field. Exact analytical solutions of this model are
known (for arbitrary N) and enable us to calculate, in
detail, the previously described kink and polaron eigen-
states of polyyne. Since solutions of both the N =2 and
% =1 field theories have already found application in
linear chain models of polyacetylene and the highly
correlated 1:2 tetracyanoquinodim ethane (TCNQ)
charge-transfer salts, respectively, the present applica-
tion of the N =4 case to polyyne is particularly interest-
ing.

Third, the doubling of the number of m electrons rela-
tive to the sp cr-bonded case of polyacetylene leads to a
large value of the dimensionless electron-phonon coupling
constant, A, ~h (8y l—n—Kto) —l. Here, to denotes the n-
electron nearest-neighbor tight-binding hopping integral
characteristic of the uniform chain, —y its derivative
with respect to the interatomic separation, and E a har-
monic spring constant determining the elastic deforma-
tion energy of the sp cr bond. This implies strong intrinsic
electron-phonon interaction in polyyne, and is indicative
of a large Peierls gap (2b,o) and strongly localized kink
and polaron states. Thus, although qualitatively correct,
the analytic results which we obtain in the limit of a con-
tinuum description, are likely of semiquantitative accura-
cy only. In a sequel to the present paper we shall numeri-
cally investigate the exact properties of the discrete chain
and, in particular, study the adiabatic (and highly non-
linear) dynamics following photoexcitation.

The existence in nature of the quasi-one-dimensional al-
lotrope of carbon is uncertain. However, our results
are relevant to long finite polyynes. Indeed, an odd-
membered polyyne would be expected to contain a kink
soliton in its ground-state configuration —the closed-shell
doubly ionized chain being particularly stable. Experi-
mentally, photoinduced absorption measurements on fi-
mte polyynes in solution (or, possibly, in solid form)
should, in principle, be able to identify the intragap states
of the photogenerated polaronic exciton. Possible doping
with strong electron-withdrawing atomic or molecular
species would be expected to lead to the formation of ei-
ther of the polaron states. Also, kink- or polaron-bearing
polyynes might be of relevance in astrophysics.

The layout of our paper is as follows. In Sec. II we
present the underlying model of the polyyne chain, name-
ly a nearest-neighbor tight-binding description of its n.
electrons and their coupling to the carbon nuclear dis-
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placements. The insulating Peierls ground state is de-
rived. In Sec. III the acoustic and optical branches of the
phonon spectrum are calculated. The latter is necessarily
dolle taklilg lllto accouilt tile adlabatlc polarization of the
m electrons to second order in y. The physics of the pho-
non spectrum is discussed and an expression derived for
the velocity of sound. In Secs. IV and V the continuum
limit of the discrete polyyne chain is taken and the result-
ing system of equations found to be equivalent to those of
the N =4 Gross-Neveu field theory. The soliton-kink and
"bag" (i.e., polaron} solutions of the latter are transcribed
to compute the analogous eigenstates of the polyyne sys-
tem in detail. Finally, in Sec. VI a discussion of the im-
plications and limitations of our results for polyyne is
given.

II. MODEL AND GROUND STATE

We describe the m electrons in polyyne and their cou-
pling to the instantaneous positions of the carbon nuclei
within the framework of a nearest-neighbor tight-binding
model. Specifically, the model is defmed by the following
Hamil tonlan:

H Ht —g (tj+, Jcj~i ~ icj ~ i+H. c. ) .
j,o, A,

(2.1)

The polyyne chain„which is taken to lie along the z axis,
consists of $0 ($0~ oo ) sp'-hybridized carbon atoms la-
beled by j (j =1,2, . . . , No). Each carbon atom, of mass
M, has two degenerate atomic p orbitals (p„,p~) and are
labeled by A, (A. =1,2). In (2.1), cj ~ i and cz ~ i are fer-
mion operators which create or destroy, respectively, an
electron with spin cr in the A,th orbital of the jth carbon
atom. The electronic energy is measured relative to the
total atomic p-orbital energy and there is one electron per
p orbital. To allow for the dependence of the hopping in-
tegral tj &j on the atomic locations, we adopt the linear
form

tj+i J=to —}(u/+) —uj) ~ (2.2)

Here, uj denotes the displacement of the jth atom from
its position in a uniformly spaced carbon chain of lattice
constant a, while to is the hopping integral characteristic
of the uniformly spaced chain and —y is the derivative of
t&+~ ~

with respect to the interatomic separation. We
shall see later that the adoption of the linear development
(2.2) will place an upper bound on the strength of the in-
trinsic electron-lattice interaction that may be used in the
present model. HL describes the lattice energy,

HL ———,'Mgu 1+—,'Kg(uj. +,—uj —ao+a), (2.3)
J J

in which J%: is a harmonic spring constant determining the
potential energy of the sp rr bond for small changes in its
length relative to its equilibrium length ao. The latter
bond length is defined in the absence of overlap of the
atomic p„and p„orbitals and is, therefore, different from
the uniform bond length a which we now identify as the
lattice constant of the cuntulene chain. The latter is ob-
tained by minimizing the total energy of the cumulene

chain. We shall assume that a has been found in this way
and since the potential energy term in (2.3) differs from

2E+— (u, +,—u, )',
J

(2.4)

merely by a constant and a term that will average to zero
in all our subsequent investigations, we shall retain (2.4)
only in (2.3).

The Hamiltonian (2.1), which describes a one-
dimensional metal, has been extensively discussed in the
literature and, more recently, in connection with po-
lyacetylene. ' As is well known, the uniform metallic
phase of the chain is unstable with respect to a periodic
distortion of the lattice that renders the chain an insula-
tor. At the half-filled band level, this insulating Peierls
phase is achieved by a spontaneous dimerization of the
chain. The dimerization opens up an energy gap precisely
at the Fermi level of the metallic phase. In the limit of
weak intrinsic electron-lattice coupling (A,, ~h&&1) the
lowering of the electronic energy varies as u ln(A/

~

u
~

)

while the increase in the lattice energy is proportional to
u, where u denotes the amplitude of dimerization and A
is a positive constant. Thus, a value of u that lowers the
total energy of the chain can always be found. The driv-
ing force of the transition is the intrinsic instability of the
one-dimensional electron gas to quasistatic density fluc-
tuations of wave vector 2kF, where kz denotes the Fermi
wave vector. Importantly, these discussions treat the nu-
clear displacements [uJ I as a classical field.

In the present case the Hamiltonian (2.1}describes two
degenerate half-filled n bands which couple to the instan-
taneous positions of the carbon nuclei in an identical
manner. It follows, therefore, that if allowance is made
for the twofold degeneracy of the electronic spin, the
ground state of H is a half-filled Peierls insulator in
which the electrons possess an effective internal degenera-
cy N equal to 4, rather than 2 as ordinarily encountered.
%'ith the lattice displacements regarded as classical quan-
tities, the ground-state displacement field is

uj =+( —1)iuo, (2.5)

where uo, a positive constant, is the amplitude of the di-
merization and the choice of signs in (2.5) correspond to
the two possible and entirely equiualent senses of the di-
merization field. The latter property of the ground state
will play a crucial role in determining the elementary exci-
tations of the chain. The resulting ground-state energy
spectrum of the electronic ~ states is

ek ~
——+[e', +a'sin'(ka))'"=+a, , (2.6)

where, in the limit Xo~ ce, k denotes the allowed wave
vectors, ( —m/2a) (k ~ (m./2a), ek ~

——ek ———2to cos(ka) is
the electronic spectrum of the uniform metallic phase,
and 2b, =gyuo is the magnitude of the insulating Peierls
gap. The index g' combines the electronic spin o and the
band index A, and may be assigned the values /=1, 2, 3,
and 4 corresponding to the four possible configurations,
(t, l), (t, l), (l,2), and (T,2), of the subscript (cr, A, ).
%'ithin this scheme, the one-electron energy level with
wave vector k may formally contain up to four electrons.
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E =(No/2)(K/4y )b, QE—k,
k, g

with respect to b, . This yields

(2.7)

The energy gap 26 separates a completely filled lower
band from a completely empty upper band. These bands
may be referred to as valence and conduction bands,
respectively. However, as we shall see in Sec. III, the ex-
citations from and the ionization states of these bands will
be quite different from those of a conventional semicon-
ductor. The magnitude of b is obtained by minimizing
the total ground-state energy,

inadequacy of the linear development (2.2) for large nu-

clear displacements and effectively places an upper liinit,
k„on the value which may be used for At+ pI, Setting
P =0 in (2.10) yields A,, = (4m/3)=1. 27. Also, no partic-
ular significance should be given to our choice of the pa-
rameters to, K, and y for polyyne other than that they aid
comparison with analogous properties calculated in the
model of polyacetylene. Other reasonable choices of these
parameter sets may be arrived at on the bases of a variety
of arguments.

III. THE PHONON SPECTRUM

1=(4y'/KNO) g sin (ka)Ek ',
k, g'

(2.8)

as the equation determining the equilibrium value, b,o, of
h. The physical content of this equation is as follows. In
the dimerized ground state the electronic density is not
uniform (as it is in the metallic phase) but sinusoidual
with wave vector 2kF ——(ir/a). Equation (2.8) states that
the periodic force exerted on the lattice by this electron
charge-density wave (CDW) is balanced by the elastic re-
storing forces of the alternating sp o bonds. Equations of
the type (2.8) and (2.9) below were first derived by
Frohlich.

For (50/2to) small, Eq. (2.8) may be solved analytically
to give

i
D(q) —IQ (q)

i
=0, (3.1)

in which the 2&2 dynamical matrix is

D,J ——M '[5(J[2K —Sy Xi(q)]

Another pertinent equilibrium property that reflects the
unusual nature of the ground state of the Peierls insulator
is the phonon spectrum. It has been investigated by a
number of authors and in calculating the phonon self-
energy it is essential to take into account the polarization
of the ir electrons to second order in y. This gives rise
to coupling between lattice displacements of widely
separated carbon atoms, i.e., to long-range interactions.

Specifically, the phonon frequency with wave vector

q, fl(q), is determined by the solution of"

bo ——(Sto/2. 718)exp( —1/A, , pi, ), (2.9)
+(1—5,J )[2Kcos(qa) —Sy Xz(q)] ) . (3 2)

in which A,, ~i, ——(Sy /irKto ) is the dimensionless
electron-phonon coupling constant. We note that A., ~i, is
twice that of the case for which N =2. If we take as
representatiue values for polyyne the values to ——3 eV,
K=68 eVA, and y=8 eVA '„which have been em-

ployed in the model of polyacetylene, we obtain
A,, ~i,-0.8 so that 260-5.0 eV. Clearly, the condition of
weak intrinsic electron-lattice coupling, i.e., b,o/2to «1,
is not well satisfied, implying strong electron-lattice cou-
pling in polyyne. However, an exact solution of (2.8) is
obtained as

I;(q) =(2ND)

x QS;(k k+q)F(k k+q)/(Ek+Ek+q)
k, g'

with,

Si(k', k) = sin (ka)+ sin (k'a),

(3.3)

(3.4)

I denotes the unit matrix and 5;J the Kronicker 5 func-
tion. The functions X;(q) describe the adiabatic density
response of the m electrons and are

m/2
A,, pi, ——f dx

sin x
(1—P sin x}'~ (2.10} Sq(k'„k) =2 sin(k'a) sin(ka), (3.5)

=P [K(P)—E(P)] for P &1, (2.11) F(k,k') = 1+[ekek csin(ka) sin—(k'a)]/(EkEk } .

in which P =[1—(bo/2to) ] and K(P) and E(13) are the
complete elliptic integrals of the first and second kind,
respectively. With A., „i,

——0.8 and to ——3 eV, (2.11) yields

260——5.88 eV. Thus, the weak-coupling limit, although
quantitatively inadequate, is not a prohibitively bad ap-
proxirnation for the ground state.

It should be noted that there are no physically meaning-
ful solutions of (2.10), i.e., the gap equation (2.8), for
P &0, that is b,o&2to. The latter would require that the
hopping integral for the longer of the two ground-state
carbon spacings, to —(50/2), has become negative, which
is impossible. The pathology is a consequence of the

(3.6}

The wave vector lies in the range —(m. /2a) &q & (a/2a).
It immediately follows from (3.1) and (3.2) that the
acoustic- and optical-phonon branches, 0 (q) and 0+(q),
respectively, are given by

M&+(q) =2K j [1+«s(qa)] —Sy'[Xi(q)+X2(q)] I .

(3.7)

These two branches are plotted in Fig. 1 where the values
of the parameters introduced in the preceding section have
been employed. The corresponding phonon branches cal-
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This reflects the fundamental behavior of the one-
dimensional electron gas, namely, that its density response
is greatest at the wave vector that corresponds to 2k~ in
the metallic phase. This positive dispersion ordinarily
dominates the behavior of Q+(q) for qa «1. This is
clearly seen in Fig. 1 for the model polyacetylene calcula-
tions. For weak intrinsic electron-lattice coupling (3.7)
may be expanded for qa «1 to give

Q+(q) =tppI &, ~h+ (qa/2)'[(A, , ~„/3)(2tp/bp)' —1]I .

(3.11)

The term of unity in (3.11) is the (usual) negative disper-
sion arising from the a-band force constant and
c0Q —(4E/M). Equation (3.1 1) suggests that the latter
dispersion will be dominant if A,, ~h is sufficiently large
that (A,, ~h/3)(2tp/bp) ~ 1. This indeed has occurred for
the calculated polyyne optical branch shown in Fig. 1.

Finally, we note that the sound velocity,

S =[dQ (q)/dq]. .. (3.12)

FIG. 1. Phonon spectra of the discrete chain. Solid curve,
polyyne (A,, ~h-O. 8), dashed curve, polyacetylene model
(A, ph-o. 4).

culated in the (N =2) model of polyacetylene are also in-
cluded in Fig. 1 for comparison. The latter are obtained
by employment of the CH mass in Eq. (3.2) for M and a
degeneracy of 2 in Eq. (3.2) rather than 4. There are
several features worthy of comment.

First, an interesting cancellation occurs in Eq. (2.13) for
the long-wavelength (qa-+0) optical-phonon frequency,
Q+(0). The latter is

MQ+(0) =4IC —(16y /Xp)

X g sin (ka)Ek '[1—5 sin (ka)Ek ] . (3.8)
k, g'

The second term in (3.8) which, in view of (2.8), is essen-
tially the periodic force acting on the lattice at equilibri-
um due to the n.-electron CD%', is exactly canceled by the
first term in (3.8), which is the lattice restoring force at
equilibrium. Thus,

can be significantly reduced by the electron-lattice cou-
pling. Equations (3.7) and (3.12) lead to the result

(3.13)

in which Sp ——a(E/M)'~ is the sound speed in the ab-
sence of electron-lattice coupling, A, =A,, ~h and

m/2
F(A) = dx

(1+a tan x)
(3.14)

depends on A, through its dependence on a=(2tp/Ap).
F(A, ) may be evaluated in terms of elliptic integrals and
for A, =0.8, yields S=0.62Sp. Thus the reduction in
sound velocity due to the electron-lattice coupling is con-
siderable. Since, according to the preceding section, A, is
restricted to values satisfying A, & A,, =(4n /3), and we find
A,,F(A,, ) &1, then an instability of the Peierls insulator,
corresponding to AE(A, ) y 1 in Eq. (3.13), does not arise in
the present model.

The calculated frequencies of the spectrum for polyyne
shown in Fig. 1 are smaller but generally consistent with
those of Karpfen.

Q+(0) =(16y bp/MNp) g sin (ka)EI, ' .
k, g'

(3.9)

The restoring force for long-wavelength optical displace-
ments is, therefore, purely electronic in origin. In the
weak-coupling limit, (2.16) may be evaluated to give

IV. THE CONTINUUM THEORY

Q+(0) 32y /irtpM . (3.10)

This formula provides a means of empirically estimating
the important parameter y if Q+ is known experimentally
and to approximately known theoretically. With our
choice of parameter values (3.10) yields Q+(0)=2200
cm ' while an exact evaluation of (3.9) yields 1950 cm

Second, the initial dispersion (qa «1) arising from the
electronic contribution to Q+(q) is always positive.

By analogy with the model of polyacetylene we antici-
pate that the low-lying excitations and ionization states of
the present model of polyyne will be kink solitons
and polarons, respectively. Such states will involve spatial
inhomogeneities in the dimerization amplitude uo and im-
portant qualitative changes in the local m-electron spec-
trum. We require, therefore, a description of the inhomo-
geneous Peierls insulator. In the limit where the inhomo-
geneities vary slowly over microscopic distances (-a),
i.e., in the limit of a continuum description of the discrete
chain, an elegant system of equations describing the inho-
mogeneous Peierls insulator may be derived and solved.
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a ' cj i =u~(j)exp(ikF ja)—iu~(j)exp( ikFja—)

and the lattice displacement field as

(4.1)

As we shall see, the characteristic length scale of the inho-

mogeneities is (0——u~bo ——(2to/50)a (i'= 1). Thus the re-

quirement that $0/a be large is that the intrinsic electron-
lattice interaction be weak (A,, uh ~~1). As we have seen,
however, the latter condition is not well satisfied for po-
lyyne. Indeed, with 50 2.5 eV and to ——3 eV, we have
$0-2.4a. Nevertheless, while the continuum description
will provide only semiquantitative results, we do expect it
to yield accurately the polymer's spectrum of sohton and
polaron states.

In order to take the continuum limit of the discrete
chain Hamiltonian (2.1) we express the electron site am-
plitudes in the form

&+~——( —iuFV„o i+ho. i)%t, (4.5)

coo 6+5=(4y a/E) g %~ ikey, (4.6)

where, for the moment, we have dropped the arguments
of %g and b, and where the prime attached to the summa-
tion symbol in (4.6) indicates summation over occupied
states. Equation (4.5) is of the form of a relativistic Dirac
equation (in 1+ 1 dimensions) in which uz is analogous
to the velocity of light and 6 /uF analogous to the fer-
mion mass. Equation (4.6), however, shows that the latter
has its origin in an independent field which couples to the
local off-diagonal fermion density.

We shall be chiefly interested in quasistatic solutions of
(4.5) and (4.6) of the form 4g(x, t)=exp( iE„~—t)%'„~(x)
with b =0 and h=b(x). In these cases, (4.5) and (4.6)
reduce to the following system of equations:

4yu =( —1) h(j), (4.2)

where u~(j), u~(j), and h(j) are slowly varying functions
of j. In general, they may also depend on time. b,(j) is
the amplitude of the local dimerization at the site j ex-
pressed in units of energy. For the homogeneous system
5(j)=60, a constant, which is equal to one-half of the
ground-state Peierls gap. kp (n/——2a) Sub.stituting (4.1)
and (4.2) into (2.1), expanding the electron amplitudes up
to first order in the lattice spacing a and neglecting rapid-
ly varying terms of the form ( —1)J, we obtain, on intro-
ducing the spatial continuum location x =ja, the continu-
um Hamiltonian

~n, g

n, g'

—lVF Vx

b, (x)

b(x) u„g

lUF Vx Un

h(x) = (4y a/IC—) g '(u„'p„~+c.c. ) .
n, (

L/2f dx (
i u„g f

'+
[ u„,g i

') =1,

The wave functions are normalized according to

(4.7a)

(4.?1)

(4.7c)

(4.8)

8 =(K/4y ) f [~0 6 (x)+5 (x)]
2Q

where the integration extends over the length I. of the
polymer ( I. =Nua ~ 00 ). The total energy of the polymer

+ g f dx %g(x)[ iurcr3V, +—b(x)o i]%g(x) .

(4.3)

L/2
F. =(E/4y') f (dx/2a)&'(x)+ g &., g

n, g

(4.9)

In (4.3) we have introduced the two-component wave
fllllctloils

In attempts to find solutions of Eqs. (4.7), it is useful to
introduce the linear combinations

Qg
and 4~——(u~ u~),

Ug

+
fn, g =~n, g+«n, g ~

(4.4)
in which case (4.7a) and (4.7b) reduce to

and the frequency coo 2(E/M)' . Also, o;——denote the
Pauli matrices (uF V„—b (x) uF V„d(x)+e„&)f„& 0—, ——(4.10)

1 0 0
-0—

0 1 -~ 1 0
f„+~ ( i /e„g) [uFV„———b(x )]f„~ 0, — ——(4.11)

~ r

0 —i 1 0
i 0 ' —3 0 —1

and uF ——2toa denotes the Fermi velocity. V„denotes dif-
ferentiation with respect to x while the overdot in (4.3)
denotes differentiation with respect to time. The equa-
tions of motion of the coupled electron and lattice fields
follow immediately from (4.3) and are

so that it is necessary to solve only one wave equation for
nonvanishing eigenvalues e„~.

For the ground state b(x) =b,o the solutions of (4.7) or
(4.9) are plane waves of the form exp( ikx) and y—ield

e„g——+El, =+(60+uqk )'

Here, in view of the development (4.1), the wave vector k
is measured relative to (m/2a).
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b,(x)=+hp tanh(x /gp), (5.1)

in which the kink half-width is gp
——(uF/kp)a 2.4a for

polyyne. They interpolate between the two possible senses
of dimerization described by Eq. (2.4) and thus have the
character of domain walls. The corresponding electron
spectrum consists of a localized state with energy ep ~

——0,
lying precisely at the middle of the Peierls gap, and a con-
tinuum of plane-wave conduction-band and valence-band
states with energies e„~——+Ek(k&0), respectively. Al-
though the energies of the continuum state are similar to
those of the ground state they are, however, phase shifted
as they pass through the region of the kink. The phase
shifting collectively removes exactly one-half of a state
(per spin per atomic p orbital) from the filled valence
band and the same fraction from the empty conduction
band. Thus, a total of exactly one state (k =0) is effec-
tively removed from the ground-state spectrum and the
charge on the soliton contributed by the deficit in the
valence band is —( 2 )&4)e = —Ze, where e denotes the
charge on an electron. Since the mid-gap state can ac-
commodate up to four electrons, it follows that there are
five possible charge states for the soliton, namely, +Ze,
+e, and 0. The formation of these charge states is depict-
ed in Table I. The variety of spin states and internal de-
generacies with which they arise is also indicated in Table
I. The valence-band charge deficit of two electrons may
be said to "screen" the charge due to the occupancy of the
localized midgap state.

Clearly, topological constraints imply that the soliton
kinks can be created from the ground state only in the
form of kink-antikink (KK) pairs. From Eq. (4.8) we
find the minimum energy of such a pair (corresponding to
infinite separation) to be

2E, =2(46p/~) . (5.2)

The creation of the pair involves the excitation of four
electrons from the ground-state valence band. Thus, the
formal energy cost per excited electron hole is (Zb,p/m),
which is smaller than the insulating gap 260. That the
KK pairs are the system's lowest-lying electronic excita-
tions will be seen following our description of the polaron
states.

V. SOLITONS AND POLARONS

The system of Eqs. (4.7) and the problem of their solu-
tion are identical to those of the static, semiclassical
X =4 Gross-Neveu Model relativistic field theory. In the
semiclassical limit of this field theory, initially massless
Dirac fermions, possessing chiral symmetry and internal

degeneracy X in 1 + 1 dimensions, acquire mass via cou-
pling to a scalar field which dynamically breaks the initial
chiral symmetry. Exact analytical solutions of the equa-
tions of the field theory model are known for arbitrary N
and hence may be transcribed to the present case for
which X =4. There are two types of solutions. These are
kink-soliton solutions and polaron (or bag) solutions. Ex-
plicit expressions for the wave functions g„~(x) corre-
sponding to these solutions may be found in the papers of
Brazovskiis' and of Campbell and Bishop. "

The soliton-kink solutions involve an inhomogeneous
dimerization of the form

TABLE I. Characteristics of soliton states of polyyne.

Gap-state
occQpancy

Spin
states

S=0
1S=—
2

S =1,0
1S=—
2

Internal
degeneracy

'Each solid circle denote an electron. The gap states are
screened by a valence-band charge deficit of two electrons.

—tanh[Ke(x —ye)]) . (5.3)

They described indentations in the ground-state dimeriza-
tion amplitude and, interestingly, may be viewed as kink-
antikink bound states. The depth of an indentation is

5b.=b p
—ZKeuF tanh(Ksys)

and its half-width is of order 2ye. The constants entering
these quantities are given by

Ke=gp 'sin8, (5.4)

ye ——(Cp/sin8) tanh '[ tan(8/2)] . (5.5)

The angle 8 is defined in the range 0& 8& (n/2) and for
arbitrary X is determined by

8=[(n +h)/N](m/2), (5.6)

where N =4 for the present study. The physical signifi-
cance of n and h is as follows. The polaron distortion
(5.3) leads to an eigenspectrum consisting of two localized
intragap states with energies e+ ~

——+b,pcos8 and a spec-
trum of conduction and valence-band states with energies
e„g——+ok(k&0) that are phase shifted in the region of
the polaron indentation. The occupation of the upper gap
state e+ is denoted by n (0&n &4) while the number of
holes in the lower gap state e, is denoted by
(0&h &4). The phase-shifted valence-band states give
rise to a local charge deficit of precisely four electrons and
the net charge on the polaron is Q =(n —h)e. The forma-
tion energy of the polaron state is found to be

Ez(8) =2E, sin8 . (5.7)

The charges, gap-state configurations, spin states, and
internal degeneracies of the polaron solutions admitted by
(5.6) are exhibited in Table II. The principal polaron
states are as follows

(a) A polaron with charges +e and spin —,'. The intragap

It is interesting to note that the internal degeneracy as-
sociated with the (thermal) excitation of a KK pair—equal
to the number of ways of distributing four fermions over
eight degenerate (mid-gap) states —is 70. At finite tem-
perature this high degeneracy enhances the population of
thermally excited solitons compared to the case % =2
where the corresponding degeneracy factor is only 6.

The polaron solutions of (4.7) involve a local inhomo-
geneity in the dimerization amplitude of the form

bs(x) =bp —KsuF I tanh[Ks(x +ye)]
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levels are at e+ ——+0.9260 while the half-width is

2y = 1.07/0. The formation energy is

E&
——0.38 &2E, =0.9745o, indicating a binding energy

(BE) relative to the bottom (top) of the conduction
(valence) band of —0.02660. The polaron indentation is
M=0. 166,o and is, therefore, shallow. As indicated in
Table II, a stable excited state, involving the promotion of
an electron from the lower to the upper intragap level, ex-
ists for the polaron. This excitation is accompanied by a
large increase in width to 2y =1.76(0 and a lowering of
the intragap levels to e+ ——+0.3860. The indentation be-
comes M = 1.246,o and is, therefore, deep.

(b) A birpolaron with charge states +2e and the spin and
parity states of two electrons distributed over two physi-
cally distinct levels that are degenerate in energy. The
half-width is 2y =1.23(0 and the intragap levels lie at
e+ ——0.716O. The formation energy is E~ =0.71X2E,
=1.81bo, leading to a BE of Ez —260———0. 1960. The
depth of the bipolaron indentation is 5b =0.5960.

(c) A tripolaron with charge states +3e and spin —,
' . The

tripolaron half-width is 2y = 1.76(o and its intragap levels
are e+ ——+0.386,o. The formation energy is

E~ =0.92)&2E, =2.3450. Its BE, E» —3b,o, is, therefore,
—0.666,o and is the most bound of the principal polaron
types. The tripolaron indentation is 1.2450.

These six polaron charge states constitute the lowest-
lying ionization states of the polyyne system. It is evident
from Eqs. (5.6) and (5.7) that a fourth electron or hole
added to the polyyne ground state will lead to a spontane-
ous formation of two (eventually widely separated doubly
charged kink solitons. %e also note that photoexcitation
of the bipolaron or tripolaron will lead to their spontane-
ous decay into charged soliton pairs. The decay is spin
conserving. For the bipolaron, the soliton products are
singly charged. For the tripolaron, they consist of a sing-
ly charged spin- —,

' soliton and a doubly charged spin-zero
soliton. This behavior exemplifies the interpretation of
the polaron states as KE bound pairs.

Table II indicates that there is a seventh polaronlike
solution with zero charge. The intragap occupation is
n =1, h =1. It actually corresponds to an excitation

M =(E/4y coou) f dx[V'„h(x)] (5.8)

connecting the translational mass M with the static solu-
tion b, (x). Inserting the latter into (5.8) leads to

from the ground state in which an electron and a hole are
effectively bound by lattice distortion. We name this exci-
tation a polarexciton since in the present model its forma-
tion is due solely to lattice distortion. The width and in-
tragap levels are the same as the bipolaron, i e.,
2y=1.23gu and e+ ——0.716,o. Its excitation energy is
E~=2E, sin(n/4)=v 2E, and is, therefore, the lowest-
lying indiuidual electronic excitation of the polymer.
However, we note that two polarexcitons are unstable
with res ect to decay into a soliton pair since
2E~ =2 2E, &2E,. Indeed, the difference between the
two latter energies, 2(E~ E, ) =—1.056,o, indicates a strong
attractive interaction between polarexcitons. Thus, the
lowest-lying thermal excitations of the polymer will be
solitons. We expect, however, that the photoexcitations of
the polymer at low temperature will be polarexcitons. An
electron-hole pair photogenerated in the polymer will ini-
tially relax into a polarexciton. The latter will remain the
dominant photogenerated species provided that the
electron-hole recombination rate for the polarexciton
proceeds much faster than the rate for the thermal decay
of the polarexcitons into solitons. Also, we note that the
photoexcited polarexciton involves the excitation of an
electron-hole pair in only one of the two degenerate n

bands.
The existence of the neutral polarexciton and the spe-

cial stability of the polaron with respect to photoexcita-
tion are unique properties of the N =4 internal degenera-
cy.

Finally, we calculate the translational (inertial) masses
of the kink and the polarons. This is done by boosting the
kink and polaron solutions, (5.1) and (5.2), according to
x~x ut for suffi—ciently small velocities u. For u small
by comparison to -4g~u, the motion is adiabatic and the
kinetic energy of translation may be calculated from the
first term of (4.3) to yield the formula

TABLE II. Characteristics of polaron states of polyyne.

3e

Gap-state
occupancy'

Spin
states

15=—
2

Internal
degeneracy

Stable
excited state

15=—
2

5 =1,0
Is=—
2

5 =1,0

'Each solid circle denotes an electron. The gap states are screened by a valence-band charge deficit of
four electrons.
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TABLE III. Translational masses of the polarons.

Polaron type

polaron
bipolaron
tripolaron

polarexciton

0.109
0.615
1.092
0.615

~~(8)=2Mk sin OI 1+3each (Fs)[Facoth(F&) —1 j j

(5.9)

for the polaron masses, where Mk ——(4uoM/3ago) is the
kink mass and Fs 2Esy——s. Table III lists the polaron
masses (in units of 2Mk) as calculated from (5.9). It is
seen that the mass of the (singly charged) polaron is small
by comparison to 2Mk, whereas the mass of the tripola-
ron is approximately the same as 2Mk. With our choice
of parameters for polyyne we find the kink mass to be
M~=58m, where m denotes the mass of an electron.
These masses are large compared to the case of polyace-
tylene. However, it should be noted that since Mk ccuo
and uo is a sensitive function of A,, ~h, the latter value
quoted for Mq should not be taken seriously.

VI. LIMITATIONS AND IMPLICATIONS

Two obvious limitations of our treatment of polyyne
are, (1) the absence of electron-electron interactions in our
model of the m-electron system, and (2) the neglect of
quantum fiuctuation effects (QFE) in the lattice displace-
ment field Iuj J. Another limitation is the use of only a
harmonic description of the o-bond potential energy.
This is easily treated by the employment of a more general
function for the potential energy.

Inclusion of (1) will lead to the lifting of some of the
degeneracies of the kink-soliton and polaron states. This
is most clearly seen by adding a Hubbard intraorbital
Coulomb repulsion U to the Hamiltonian (2.1). To lowest
order, this affects electrons occupying the same suborbi-
tals only and splits the degeneracy of the intragap kink
and polaron states, including those with the same charge
but different suborbital distributions. A more general ca-
taloging of the lifting of the various degeneracies is pro-
vided by a straightforward configuration interaction
scheme. The lifting of the degeneracies, if eventually ob-
served experimentally, could provide important insight
into the relative magnitudes of electron-electron and
electron-lattice interactions. The inclusion of electron-
electron interactions in the present treatment of polyyne,
e.g., within the framework of a Pariser-Parr-Popel
model, ' ' would be an interesting and valuable sequel to
the present study, which has sought to underli~e the im-
portance of the electron-lattice interaction.

The effect on our results of QFE in the lattice displace-
ment field can be ascertained with the use of arguments
previously applied to the X =2 case of the model of po-
lyacetylene. First, if the carbon mass M~ao, the QFE
vanish, and the mean-field-theory results we have derived
become exact. Second, for M~O, H (in the continuuin
limit) becomes identical to the N =4 Gross-Neveu model
at the full quantum level. The spectrum of this quan-
turn field theory is known exactly ' and is, in fact, the

same as the mean-field-theory result for N =3. Hence we
know that even for M =0, QFE will not destroy either the
dimerization or the rich variety of soliton and polaron
states.

Effectively infinite polyyne chains have been supposed
to be the constituents of carbyne, a proposed quasi-one-
dimensional allotrope of carbon. ' ' The intriguing sug-
gestion that carbyne is present in the interstellar medium
has been made by Webster' who argues that carbyne
would account for many unassigned features in the
mediums extinction and radio emission. However, re-
ports of neither a definitive demonstration of carbyne's
existence in nature, nor of its successful synthesis in the
laboratory, can be found in the current literature.

Nevertheless, our results should be relevant to finite po-
lyynes and related acetylenic chains that are sufficiently
long to be able to contain a kink soliton or one of the
principal polarons mell mitkin its length. Such chains
have been synthesized in the laboratory by Eastmond,
Johnson, and Walton and long linear cyanoacetylene
chains have been described by Thaddeus as having been
discovered to exist in the interstellar medium. Indeed,
Thaddeus stresses that ring structures —e.g., pyrrol —and
branched chains appear to be missing in the interstellar
medium. ' It is possible, therefore, that molecules with
linear carbon backbones are responsible for at least some
of the interstellar absorption and radio-emission features
which Webster has attempted to assign to carbyne. The
intragap levels associated with the soliton and polaron
states found in the present paper may further aid the iden-
tification of such linear chains.

The long polyyne chains synthesized by Eastrnond
et al. have chemical formula E ( C—:C ) „R, with n as
large as 12 for R =H and n as large as 16 for
R =(C2H5)&Si (triethylsilyl). In terms of the local bond
picture of organic chemistry the positive principle polaron
states may be thought of as the removal of one electron,
two electrons, and three electrons from a carbon triple
bond. Similarly, the three principal polaron states with
negative charge may be viewed as the addition of one,
two, and three electrons to a carbon single bond. On the
other hand, the neutral polaronic exeiton may be con-
sidered to be the excitation 1n which an electron 1s re-
moved from a triple bond and added to one of the two
neighboring single bonds. The thermal excitation of a
neutral kink-antikink pair is depicted in Fig. 2 for a
polyyne chain consisting of an even number of carbon
atoms. Fig. 2(a) shows the ground-state configuration,
Fig. 2(b) the initial excitation of four electrons from a tri-
ple bond (i.e., the filled valence band) and Fig. 2(c) the
separated KE pair.

H —C=—C—C=—C—C—=C —C=—C —C=C—C=C —C=C —H

(b)
~ 0 Ot

H—C=-C-C=-C —C=C-C-C —C=C-C=C-C=C-H

(c)
~ 0 ~ ~

H —C=C—C=—C—C—C=—C—C—=C—C—C=—C —C=—C —H

FIG. 2. Soliton-antisoliton pair excitation in an even polyyne:
(a) ground state, (b) excitation of four valence electrons, (c)
separated soliton and antisoliton.
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Interestingly, we note that it is possible for a soliton
kink to occur in the ground st-ate configuration of a finite
polyyne if it has an odd number of carbon atoms. For
these chains, the end groups R enforce conflicting senses
of bond alternation. A kink soliton centered at the rniddle
carbon atom, however, allows a smooth interpolation
from one sense of alternation to the other. Some aspects
of this situation deserve comment. The odd number of
carbon atoms may be written as Eo ——2n +1 in which n

may be an even or odd integer. In Sec. V it was seen that
the kink soliton arises either with a positive or negative
sign. If n is odd the interpolating soliton assumes the
positive sign and the carbon atoms neighboring the middle
carbon atom are drawn toward the latter. Conversely, if n

is even the soliton assumes the negative sign and the
neighboring carbon atoms are drawn away from the cen-
tral carbon atom. This situation is depicted in Fig. 3 for
an 11 (n, odd) and a 9 (n, even) carbon atom polyyne.
The soliton with positive sign may be viewed as the se-

quence of two double bonds in Fig. 3(a) while the soliton
with negative sign may be viewed as the sequence of the
single bonds in Fig. 3(c). Both kinks are charge neutral
(biradicals). If the two (radical) electrons are removed
from the soliton intragap levels, the charge on the soliton
becomes 2e and the odd-membered polyyne is
transformed to a doubly charged ciosed sItell i-on with
markedly increased stability. These are shown in Figs.
3(b) and Fig. 3(d).

Long finite polyynes can be produced in solution and
probably also in the form of solid deposits. Comparative
photoinduced absorption experiments should be able to
detect the intragap levels of the polarexciton following its
photoexcitation. Introduction to either solute or solid of
strong electron-withdrawing molecular species could be
expected to produce either of the principal polarons.
Their presence on the (finit) polyyne chains would give

(aj H-C=C-C=-C-C=C=C-C=-C-C=C-H

(b) H —C:-C-C=C-C=C=C-C=-C-C=C —H

H —C=C —C=-C —C—C=—C—G=-C —H

FIG. 3. Odd polyynes with positively [(a) and (b)] aud nega-

tively [le) and (d)] sensed solitons. (b) and (d) depict the particu-
larly stable doubly charged closed-shell ions.

rise to electron spin resonance (ESR), intragap optical ab-
sorption, and strong infrared vibrational activity. The
latter would be associated not only with the translation of
the polaron but also with an internal oscillation. Final-
ly, we note that photoexcitation of the system of finite
polyynes may lead to a novel mechanism of photoconduc-
tivity. If a sufficiently large txluilibrium density of po-
larexcitons is generated by a source of constant illumina-
tion an electron occupying the upper level of a polarexci-
ton may hop to a similar level of a polarexciton on a dif-
ferent chain. A similar hop between different polarexci-
tons may also be made by the hole occupying the lower in-
tragap level. Thus, in this process both the transport site
and the electronic carriers are generated by the light
source. Clearly, however, the rate of photodecay of the
polarexciton would have to be less than the electron or
hole-hopping rate.
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