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A theory of the attenuation of longitudinal sound in electron-hole liquids in semiconductors,

based on coupled electron and hole kinetic equations, is developed. The theory takes into account
the existence of several bands of Fermi liquids, with differing charge and interaction with the lattice,
the fact that the Fermi wave numbers are so small that the wave number of the sound can exceed

them, and the effects of intraband collisions, which can be rapid enough to produce a significant
reduction in the attenuation, even in the high-frequency regime. The theory is applied to sound

propagating in the (111) direction in a Ge electron-hole liquid, «nd the (100) direction in a Si

liquid. The former case, compared with the recent experiments by Dietsche, Kirch, and %olfe
[Phys. Rev. B 26, 780 (1982)], suggests that iutraband collisions play an important ro1e in the

sound-attenuation process.

I. INTRODUCTION

Recent advances in phonon spectroscopy have made it
possible to use ultrasound as a useful probe of the proper-
ties of electron-hole liquids in semiconductors. The aim
of this paper is to present the basic framework of the
theory of sound propagation in these systems.

The problem of sound propagation in electron-hole
liquids in semiconductors differs from that in normal
metals ' in several important ways. The electron-hole
liquids are characterized by being a multiple-component
degenerate system, with two different charge states, and
several filled valleys in the band structure for each charge
component. The electrons and the holes in different val-

leys react to the sound in different ways and their motions
are correlated due to their mutual interactions. In normal
metals the ionic charge is compensated by the conduction
electrons. Here, howeverthe , ions are effectively neutral,
and instead the electron and hole charges compensate each
other. The second feature distinguishing this problem
from that in ordinary metals is that the Fermi wave num-
bers of the components are relatively small, on the order
of 106—10 cm '. As a consequence, one can experimen-
tally study propagation of sound of wavelengths shorter
than the Fermi wavelength ky

'
using modern techniques

of phonon spectroscopy.
In the present problem electron-lattice scattering pro-

cesses can generally be neglected, unlike in a normal met-
al, where they play an essential role in ultrasonic attenua-
tion. On the other hand, intraband electron-electron and
hole-hole collision times may be short enough to be com-
parable to the sound frequency, even at wavelengths on
the order of k~ . While these relaxation times ' are not
well enough known presently to enable one to make a de-
tailed comparison between the predicted and observed at-
tenuation, attenuation experiments do allow one to esti-
mate the order of magnitude of these collision times.

The general approach we use is that of coupled electron

and hole kinetic equations, with the interaction with
sound described by deformation potentials. We concen-
trate here on longitudinal sound propagation; the exten-
sion to transverse sound is straightforward, although more
involved technically. In Sec. II we illustrate the method
and physical features by dealing with a model with the
simplest band structure. Applications to more realistic
systems are given in Sec. III, where we mainly discuss the
attenuation of longitudinal sound in the electron-hole
liquid of Ge propagating along the (111) direction, and
in Si along the (100) direction. A comparison with the
recent experiments on Ge by Dietsche, Kirch, and Wolfe, '

which show smaller attenuation than the value one ex-
pe:ts from a simple perturbation-theory calculation, sug-
gests that the effect of intraband collisions is very impor-
tant.

II. ULTRASONIC ATTENUATION
IN A SIMPLE ELECTRON-HOLE LIQUID

In order to present the physical picture clearly, we first
discuss an idealized system with the simplest band struc-
ture: a direct-gap semiconductor with isotropic, nonde-
generate bands. We introduce our model in subsection A,
describe the motion of electrons and holes by kinetic equa-
tions in subsection 8, and compute their reaction to the
lattice and the related self-energy of a phonon propagating
in the electron-hole liquid in subsection C. The physical
interpretation of the results is discussed in subsection D.

A. Interaction between electrons, holes, and ions

We first consider the forms of the various interactions
between electrons, holes, and ions. We describe the
electron-ion interaction by a deformation potential. The
explicit form of the energy functional we assume is the
following:
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ez [n, (r) —ni, (r)][n, (r') —ni, (r')]
E=E;,„[~„(r|,u„„(r)]+—,

' fd'r Jd3r'

+fd r fdA[n&(r)et &(u&„(r))+np(r)e& z(u„„(r}}], (2.1)

where E;,„[ii„(r),u„„(r)]is the ion elastic plus kinetic en-

ergy in terms of the ion displacement field u„(r) and the
strain u&„(r); ei &

'(u„„) is the single-electron (or -hole)

energy with momentum p in the presence of a strain u„„,
without the long-range Coulomb potential, and n~'"' is
the distribution function of these states. The sign of the
hole energy e, i z follows the usual convention of being
measured downward. Here dA =2d p/(2m%), where the
factor of 2 comes from the spin degree of freedom. The
number density of the electrons (or holes} is given by

ii~ ~g~(r) =fdA ii& (r) . (2.2)

The single-particle energies of the electrons s~(r) and of
the holes e~(r}, including the electron and hole interac-
tions, are obtained as

s',(r)=, =si,~(r)+eP(r),
5&i p

e~(r) = „=e&,~(r) —eP(r),I
P 5 h P

(2.3)

where e is the electron charge and the potential P(r) is

e n, (r') —ni, (r')
P(r)= d r'

/r —r') (2.4}

The forces acting on the electrons, F„and on the holes,
Fs, as derived from these energies, are

Bey Bet p BR~i

BPil BR~i BP~

Q~
+eFp,

Br&

Behp Bs",
p Bu„,

Br„Bu„i Br„

(2.5)

e h
BE) p BE) p

BQp~ BQp~
-I &l,v. (2.6)

The sign of the hole deformation potential is such that the
variation of the band gap with stress is proportional to

%e have neglected the momentum dependence
in the last lines, because the deformation potentials are
much larger than the Fermi energies themselves.

Similarly, we obtain the stress tensor for the ions,

where E& ———BPIBr& is the local electric field, and we
have taken into account the fact that the Fermi seas are
isotropic so that the deformation potentials can be written
as

0„„(r)= 5E
5u„,

+ fdA np +np
5u„„ u „u

=o„"„(r)+[n, (r):-, n—i, (r):-1,]5„„, (2.7)

where the momentum dependence has been neglected in
the last line. The force acting on a unit volume of the lat-
tice is given by

B~„"„Bn, Bn„" +:-.—:"a
Py P~ P~

B=-, Bu„B=-, Bu„,
+~e ~h'

Bu„& Br„Bu„i Br„
(2.&)

The first term is the force without the electron-hole
liquid, which determines the dispersion of a free sound
wave in the solid. The sound and the third terms bring
about attenuation of the sound, in which we are interest-
ed, as well as modify the sound velocity. The final two
terms act only to modify the sound velocity, but produce
a negligible effect since they contain factors, n, ~q~, which
are much smaller than the density of ions (elastic con-
stants are on the order of:" times the ion number density).

B. Kinetic equations for electrons and holes

We now calculate the response of the electrons and
holes to the motion of the ions, by solving the linearized
quantum kinetic equation for each component,

[~—(ei+a n —ei -e n)]5&i «)
+(nz+~, &2

—n~ ~&2)5e~(k, co)=iI[n~, n~ ], (29}

where 5n~ is the shift of the distribution function from
equilibrium, n &, and 5e~ is the shift of the single particle
energy from e&, the energy in the absence of strain
and electric fields. The two kinetic equations for elec-
trons and holes are of identical form, (2.9); generally, we
omit the indices e or h indicating electrons or holes when
the forms of the equations are similar.

The collision integral terms of (2.9) for electrons and
holes, in general, couple the kinetic equations to each oth-
er and, if there are impurities, to the motion of the lattice.
Interband collision times are much longer than intraband
collision times since in realistic cases the phase space for
the former is more limited; in addition, electron-impurity
collisions can be neglected in the very pure samples usual-

ly used. We therefore assume that only the intraband col-
lision time is relevant, and neglect all other collisions.
The ionic motion then drives the electrons and holes sim-

ply through the dependence of et
'"' on the strain field
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I [np ]= ——[5np(k, co) —5n p (k,cp)], (2.10)

where 5n p, the shift of the local equilibrium distribution,
is given by

uz„. To make the problem tractable we adopt the
relaxation-time approximation; then the collision integrals
assume the simple form

5n = fdA5np —— 5p= 5p,
BP 2cF

so that from (2.12) we have

5s f p —Br/2 p+%r/2
n' -n'

cp v—k+. i/r
i „Bn' 5p, +u.p
r Bc co —v i+i lr

(2.13)

(2.14)

5n "(k,cp)= — (5p, +u p) .
Bs

(2.1 1) where the momentum dependence of 5ep has been neglect-
ed. Then using (2.14), 5p, can be written as

The shift of the chemical potential 5p refiects the change
of the size of the Fermi sea, while the second term u p,
where u is the drift velocity of the electrons (or holes),
represents the shift of the center of the distribution.

Using (2.9)—(2.11}we obtain

0 0

5np(k, co) = np ~,/2 np+~/—2 5sp(k c0)

co vk+—i /r fi

i Bn' 5p. +up
Bs cp —v'k+i/1

Equation (2.12) contains three quantities, 5sp, 5p, and u,
which are related to the distribution function and ionic
velocity in the following way. The shift of chemical po-
tential 5)u is related to the change of the number density
by

Ip(a} 2eFIi(a}
5p=L, (k,cp;r)5s+ 5@+ a. ,

1 —Eco f' 1 —EQ) 'T
(2.15)

where the dimensionless functions L, Ip, and Ii are writ-
ten out explicitly in the Appendix, and the dimensionless
variables are defined by

k =k/kF, co=ficoleF, ,

(2.16)
r=sFr/l& a =ulUF, a =kUFrl(1 icpr—) .

Thus

(1 i& r)L (k, co—;r)5s+2EFIi(a)lc
(2.17)p

1 i co r —Ip(a)—
The electron or hole drift velocity u (or k} is related to
the corresponding current by j=nu. To determine u we
write an expression for the current in a similar way,

0 0

+ ~p —Sc/2 ~p+Cc/2 E + Pl p, +u p
c0 vk+i /r — r Bs co vk+i /r—

3nUF I, (a) 3I2(a)
J(k,c0;r)5s+ 5i2 + j k k,

2F 1 —Eco T 1 —EN%
(2.18)

where J and I2 are written explicitly in the Appendix.
Substituting (2.17}into (2.18) we obtain

3nUF L (k,co;r)Ii(a)
J(k,cp;r) + 5s

1 i cp r Ip(a—)—
k.

1 — tI2(a)+I i (a)/[1 ic0 r Ip(a—)])—3 2

1 —E'G7

(2.19)

This expression has the same form for electrons and for
holes, but with different parameters and scales, sF, UF,
and r. The shifts of the single-particle energies 5s are dif-
ferent for ele:trons and holes, and are given by (2.3); 5s
couples the motion of the electrons, holes, and ions
through the deformation potential and the Coulomb in-
teraction.

Since for a small oscillation of the lattice
5u&&

———k-v;/co, where v; is the velocity of the ions, the

I

change of the first terms of (2.3) for 5si p can be expressed
in terms of the deformation potentials and ionic velocity
as

5E i — && k ' v&' /co & 5e i — » k ' vi /cp (2.20)

and obtain

4m.e k
, —.[i,«,~)—j»«,~) l

Kk
(2.22)

The electrostatic potential P(r) is given by (2.4) or,
equivalently, by the Poisson equation

V y(r) = — [n, (r) n„(r)] —.4me

K

Expressing the number densities of the electrons and the
holes in terms of their currents, we may write

P(k, cp) = [n, (k, cp) —n»(k, co)]
4me

Kk

Ave

Kk

k 4me
(j» —j, )+:-»v;

Kk
(2.23)
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The expressions for the current, (2.19) with (2.23), describe the motion of the electrons and the holes for a given motion
of the ions v;. These equations become

4me . 4me

xk
3e+ jl = —-"e~I ~

xk
4me . 1

k2 3m+
4me

xk
ja=-"a&I ~ (2.24)

where the polarizations I', and P~ are given by
T

3n
P, ~»~(k, co) =

2Fp

I.(k,co;7)Ii (a )
J(k,co;r)+

co 1 i co—T Io—(a)

3 [I2(a)+I i (a) l[1 ico7—Io(—a)] I
2

1 —/st

(2.25}

with the corresponding electron or hole variables.

C. Motion of the lattice."Phonon self-energy

The motion of the ions is described by the acceleration
equation

VI.

MIn; =F (2.26)

where M~ and n; are the mass and the number density of
the ions, and the force F; is given by (2.8). To determine
the electron-hole —liquid contribution to the phonon self-
energy we compute the extra force 5F; on the ions from
the electron-hole liquid induced by the ionic motion. This
extra force is determined by the second and third terms of
(2.8), whose Fourier transform is

5F;=ik(:-, 5n, =„5n—„)

(2.27)

5F;=—k

4me
, (:-.—:-»)'P.P»

~k

4me
1 — (P, +P»)

~k

e~e + h~h

The final two terms of (2.9), as we have mentioned, give
rise only to a small shift of the sound velocity, which we
neglect here. Substituting the solution of (2.24) for j, and

j», and expressing v; in terms of the ionic displacement
field, we obtain

k
(2.31)

Mn; Mn;
are the effective electron-phonon and hole-phonon matrix
elements, and the polarizations P are given by (2.25).

The rate of energy attenuation, y, of a sound wave is
given in terms of II by

y( k) = ——ImH(k, a) ),1
(2.32)

+(r.p. +r»p» }'

4me

~k

4 e
1 — (P, +P»)2

(2.33)

which brings out its relation to the random-phase-
approximation (RPA} sum of polarization diagrams. Al-
though this formula is similar to the RPA, the polariza-
tions of the electrons and the holes, P, and P», are modi-
fied here by intraband scattering.

Let us analyze (2.30) in several limits to understand its
structure. %hen the Coulomb interaction is negligible,
(2.30) or (2.33) is simply

evaluated at co=co(k), the phonon dispersion relation.

D. Density of states, screening, and collisions

The formulas (2.30) and (2.25) are our principal results
for the simplified band-structure model. The self-energy
of the phonon, H(k, co), can be rewritten in the form

II( k, ra) = I',P, + I"»P»

= —H(k, co)M~n;u, (2.28)
H(k, ~)=r,'p, +r'„p„. (2.34)

co =c2k +H(k, c0), (2.29)

where c is the sound velocity, k the phonon wave vector,
and co is its frequency; from (2.28), explicitly,

I,P, +I »P» —
q

(I,—I ») P,P»

II(k, co) =
4me

1 — (P, +P» }
xk

(2.30)

where

where H(k, co) is the phonon self-energy. The phonon
dispersion relation is determined by the equation

I', I'I,
H(k, ro) =(I,—I ») I', +I'I,

(2.35)

Let us first consider the case without electron collisions:
7~ oo. The polarizations are simply (see Appendix)

3' 2kP (k,co;r~ oo ) = J(k,co; oo )
2Ep Q)

L( , k; co)oo,
3'

2Gp
(2.36)

On the other hand, in the hmit of strong Coulomb in-
teractions H becomes
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which is simply the familiar Lindhard function. If there
is no Coulomb interaction between electrons and holes,
e /a~0, the self-energy becomes (2.34). The contribu-
tion of the electrons and the holes are independent and ad-
ditive. Its imaginary part is, as is well known, proportion-
al to the square of the interaction matrix element, I",
times the density of states energetically available,
(3 n /2e~) ImL.

In Fig. 1(a) we display the phonon attenuation y(k) due
to a single band, where we also illustrate the general ef-
fects of intraband collisions. In two-component systems
y(k) is composed of two peaks. However, in our simple
case these peaks are not separable since kF ——kF, as shown
in Fig. 1(b). y(k) increases linearly [see (A9)] as

T

(2.37)
F

e h h

and the separate components fall off at k =2k'(1 —c/uF)
and k =2k+(1 —c/uz).

The Coulomb interaction among electrons and holes
changes this feature. In the long-wavelength limit

(k&~kTF, where kTF is the Thomas-Fermi screening
wave number), the dynamical screening [described by the
denominator in (2.30)] is always perfect and one is in the
strong Coulomb interaction limit (e /a~ao). In this
limit, where II is given by (2.35), the electrons and the

L(k ~0,co;7)= iaI) (a—),
J(k o,a;r) = iaI, (a—),

(2.39)

and (2.25) becomes

holes move together and the reactions of each to the lat-
tice are cooperative. The minus sign arises from the ini-
tial definition of the hole energy, which measures it oppo-
site to the electron energy. The imaginary part of the
self-energy is also proportional to k, and when the sound
velocity is much smaller than the Fermi velocities, as is
usually the case, y(k) can be written as

MI'n) fP + Q,F UF UF

This can be either greater or smaller than the damping in
the absence of Coulomb interactions, (2.37), depending on
the values of the parameters.

The present situation differs from that in normal met-
als, since here the ions are neutral; Coulomb fields are
produced only by the electrons and holes. Thus our ex-
pression (2.33} does not reduce in any limit to the usual
expression for ultrasonic attenuation in metals. Howev-
er, in the limit k g~kz, c ~gvF, ~v g~ 1, we recover the
hydrodynamic attenuation. In this case, as is shown in
the Appendix,

y(k)

2. k n~ Y

P7l I —1

3 If(a)
Y = . I2(a)+

I —/ N'7 1 icos Ip(a—)—
For cow &g 1 and kuFr && 1, (2.25) becomes

P(k, co)=- 3n 1

2&F 1 3(co/kuF )—

(2.40)

(2.41)

l QPV

5 [1 3(co/kuF) ]— (2.42)

2kF

2kF{l -c/vF} 2kF {I+ c/vF)
Then, were the Coulomb interaction negligible, one would
have

y(k)=—6 n

5 M;n;

~2
e

[1—3(c/uF) ] eF

h Th+ h22 h[1—3(c/uF } ] eF
(2.43)

2k F

FIG. l. {a) Attenuation of sound y{k) due to single corn-

ponent Fermi liquid. y(k) for a finite collision time ~ is also il-

lustrated. (b) y(k) in a two-component Fermi liquid in the ab-

sence of Coulomb interactions and colbsions.

which can be rewritten in the form
J

3y(k)=
M; n; 1 —3(g/u')

h:-h «F
1 —3(c /uF')'

(2.44)

where g, and r}q are the viscosities of electron and hole
gases:
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2 e 2 h
Ie 5 Ie&Z&e 9h 5 9hF-S'&h . (2.45)

Usually c «UF, and for a free Fermi gas ",=—', EF and

:-r, = ——,'EF (results by no means true for electron-hole
liquids where EF «

~
=

~
)„ in that case (2.44) is just the

hydrodynamic attenuation of sound (with thermal con-
duction and second viscosity neglected),

y(k) =—+kz, (2.46)
3 p

where p is the total mass density. The phonons would be
dissipated by viscosity of the electron-hole liquid, with an
enhanced coupling. Actually, the Coulomb interaction be-
comes dominant in the long-wavelength limit (k «kTF),
and one should use (2.35), which gives (with ri, =gi, —g )

6 n ~e hy(k}=—
[1—3(c lUF') ]EF+ [1—3(c!UF ) ]EF

e 2 e h 2 h (EFr, +EF~s)k (2.47}

Generally, the effects of the electrons and holes are no
longer separable. However, for c «UF and with =; given
by the free-gas values, (2.47} reduces exactly to (2.46).
When the wavelength of sound is shorter than the mean
free path, kUF &&1, and kuF &&co, (2.41) becomes

P (k, a) ) = — 1+i3' . V 6)

2EF 2 kUF
(2.48}

which gives the same attenuation as (2.37}.
Although we have examined several limiting cases to

elucidate (2.30), in order to see its full behavior it is neces-
sary to resort to numerical calculations, which are done in
the next section for more realistic models.

III. MUI.TIVAI.I.EY SYSTEMS

In real electron-hole liquids in semiconductors such as
Ge and Si the band structure is not simple; there are
several valleys which are very anisotropic, and the bands
can be degenerate. In recent experiments, Dietsche,
Kirch, and Wolfe' measured the absorption of mono-
chromatic phonons by an electron-hole liquid over the fre-
quency range co/2m =150—500 GHz and found that they
could not fit the overall magnitude of their results within
existing theory using independently determined deforma-
tion potentials, suggesting a possibly important role of
screening. We focus here on applying the theory
developed in the preceding section for longitudinal acous-
tic sound in Ge propagating along the (111)direction in
order to understand these effects. The good symmetry of
the (111)direction keeps the current in this direction and
allows us to use a simple extension of the theory. We also
carry out a similar calculation for sound propagation in
the (100) direction of Si.

We develop first the theory for electron-hole liquids in
Ge and calculate the phonon self-energy in subsection A.
The results of numerical calculations are presented in sub-
section 8, and are compared with experiment. Our calcu-
lations indicate the importance of electron-electron and
hole-hole collisions, rather than screening, in bringing
theory and experiment into agreement.

A. Calculation of phonon self-energy

I

that of the orthogonal directions, mi, and the Fermi
momentum of this direction, qF, is much larger than that
of the orthogonal direction, PF. (All relevant numbers are
summarized in Table L) The two hole Fermi seas are at
the center of the Brillouin zone and are degenerate, with a
very small mass. %e approximate the hole Fermi seas by
a single spherical one, which has the same number of
holes and the same Fermi energy.

For sound propagation along [111],we distinguish elec-
trons in the [111]valley from those in the other three val-
leys, since their interaction with the lattice and their
response to an electric field are different. The shift of the
single-electron energy of the 1th band due to deformation
of the lattice is usually written as'

5E'=(:-d+ —,
' =„}uii+=„(ri&u„„ri',——,

'
uii ), (3.1)

where ri„' is the unit vector along the center of the valley.
We choose the direction of sound propagation [111]as the
z axis; then the deformation potential of the [111]valley,
:-i, and that of the other three valleys, =3, are given by

BE1

d+ u~
Buzz

(3.2)
E

d+9 QlssW 3
Buzz

Therefore for longitudinal sound in the [111]direction we
have three different deformation potentials: "„"i for the
electrons, and:-z for the holes.

There are now five kinetic equations for each Fermi
sea, three of them similar. The one for the holes is the
same as that in Sec. II, and the calculation of their
response is also the saine as we have done in Sec. II.
However, the calculation for the electrons is different be-
cause of the ellipsoidal Fermi sea. The ground-state elec-
tron Fermi sea Qo is given (with the z axis along the sym-
metry axis of the ellipsoid) by

2 (P.+P, )+
2 P. &EF .2 2 l z e

2~
II

(3.3)

If we scale the momentum by the Fermi momentum of
each direction and the energy by the Fermi energy, the
scaled Fermi sea 00 is

The electron valleys in Ge are spheroids with their sym-
metry axes along the [111] direction and the three
equivalent directions: [1TT], [11T], and [111]. The
electron mass of this direction, m~~, is much larger than

pz+py+pz & l i

P=(Px~PF~Py~PF~Pz~PF) .

(3.4)
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Ion mass

Ion number density

Sound velocity

Dielectric constant

Pair number density

Electron Fermi energy

Electron effective mass

TABLE I. List of parameters used for Ge.

1.21&10 2
g

4.42X1(P cm

5.6 ~10' cmsec

16

2.3 ~10" cm-'
4.05&(10 " erg (2.53 meV}

7.47 y 10 g (0.082m,)~„,„)
1.42&10 g (1.56m, ) „,„)

Electron Fermi wave number

Electron Fermi velocity

Hole Fermi energy

Hole effective mass

Hole Fermi wave number

Hole Fermi velocity

Electron deformation

potential'

kFI) (2m IAAF)'"/

kp

U~ =(2@~/m~ )'

U =(2GF/m
~~

)

UF

mh ——{Akr) /2cF

kg=(3&n)'n
h

Up

~]=~gf +~g
~3 ~d+ 9 ~u

7.41 g 10 cm

3.23X10' cm-'

7.83 X 10 cm

1.04& 10 cm sec

2.39X 10 cm sec

9.86' 106 cm sec

6.2 &10 " erg (3.9 meV)

3.2 &10 g (0.35m, ~ „,„)

1.9 &106 cm

6.2 &106 cmsec

1.12X10 " erg
t
=d= —12.3 eV

—1.62X10 " erg I:-„=19.3 eV

Hole deformation

potentialb

Thomas-Fermi wave number

(for holes) kTF ——(6me n /KaF)'~

—4.8 &(10 ' erg ( —3 eV)

3.2 )&10' cm-'

'Reference 11.
bReference 12.

(p„Sue~) + (—py fwy )—
2@ii 2' g

or in the scaled space

+ (p, —kc, ) & sF+5ju, (3.5)
27?l

I (

(p~ —~~) +(p» —x~) +(p, —~, ) (1+5@,
where

a =(a„lk~, ~y /kF, walk~~~~)

(3.6)

The local equilibrium Fermi sea with wave number shift
tr(r, t) and chemical potential shift 5p(r, t) is given by

is the shift of the scaled Fermi sphere and 5@=5@/ez.
For small shifts the change of number density and the
current are given by

n+5n =fdAn"=n(1+ —', 5p), (3.7)

fdA„„( ~ „- ll~ )=nu . (3.8)

The last equality of (3.8) defines the drift velocity u.
When lt is parallel to the symmetry axis (z axis), as is

the case for the [111]valley, the current is also in this
direction. Using the dimensionless functions given in the
Appendix, we can calculate the change of the number
density and the current in a similar way as we have done
in Sec. II. The magnitude of the current j& is [cf. (2.18)]

3n)
J1=

EF

2

I2(a ( )+ 2EFKi U

1 —l cori —lo(a i )
(3.9)

k Ace
k}

k

where we denote all quantities corresponding this valley by the suffix 1:

EFT~ 2k )T'i K) J i
Qf y KJ

l /6) JT]
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This current for the other three electron valleys is not parallel to ir (see Fig. 2). However„by symmetry the transverse
components of the three valleys cancel out and the net current is parallel to lt; therefore the force acting on the electrons
in these valleys is also in the [111]direction. We expect that the shift of momentum of these Fermi seas, 4r& (all quanti-
ties of these valleys are denoted by suffix 3), is parallel to It, since it is due to the force Fq which is parallel to k. There-
fore using (A3), (A17), and (Alg) we obtain an equation similar to (2.17). With the help of this equation, together with
(A6), (A19), and (A20), we find that the current of each of these valleys is

3' ]j=
2EF

L (kg, top,'7i)Ii(ai)
J(kg, co3,7g)+

1 —ioyA —I,(a, )

1 —1N37 3

If(ag)
Iz(ai )+

1 i coP i —Io(a—i )

, ki, ttkg,
2EFK3 UF, 0, UF

kp k~
(3.11)

where we have chosen the x axis as in Fig. 2, so that Iti ——(k„/k, 0, k, /ky) and

' 1/2

+
m

tt

(3.12)
fico sFre~3=, ( =nil) r3= ( ="1) ai =

The direction of ki is given by

( k3 k3y k3 )/k3 — 0
Qm,

' '
Qmtt

2k 373 rc3
Iri ——tkg t

=
I l CO 'P3 kF

' 1/2
cos2u sin a+

mg
(3.13)

where a is the angle between lt and the z axis, and cosa= ——,'. From (3.11) and (3.13) the direction of the current is
given by

(Jx~Jy ~Jz)/J = sin G coax

Ply mll

1/2
cos Q sin Q :—(sinP, 0, cosP) .

m,
(3.14)

The magnitude of the net current due to the three valleys,

J3, 1s

~ k
J3 =33'

k '

which is related to I(3 by
T

Pl j
Icy=

tt
cos p+ slit p

n )UF Pl
ll

I J3 2 i 2cos p+ sin p
n, Utt 3cos(P—a) mtt

—1/2

7l 3UF
ll

cos u+ sin u
Ply

(3.15)

(3.16)

where n3 (=3n& ) is the number density of the three val-
leys combined. Then,

1/2

Ull cos o.+ sin'A
I.I]J+

& —~~3&3—Io
1 —[3/(1 —icoi73) ][I2+I( /( I i coP, Io )]— -—

(3.17)
The changes of the single-particle energies, corresponding
to (2.23), are

FIG. 2. Spheroidal electron Fermi seas in Ge. Currents due
to the Fermi seas other than for the [111] direction are not
parallel to lt (along [111]).
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k 4me' .
(J1+J3 J—I ) —=1U1

ak
J

k 4'
(J1+J3 —Jh )—=3U.

Kk
(3.18)

k 4~e
(J J —J3—)+:-hU;

K'k

Substituting these equations into (3.9), (3.17), and the cor-
responding equation for the holes, and bearing in mind
the following relations,

k

CO

P7l
jI—U" cos o.+ sin o;

QP Ply

we obtain the simple system of equations

1 . 4me
J1 — (J1+J3 Jh ) 1"'

~k'
1 . 4me

, (J1+J3-Jh)= -=-3U, ,xk'
4me . . . 1

3 (J1+J3 Jh)+— Jh ==hvr
ak~

where

(3.19)

(3.20)

2k
I J(kj,c3J',7J )+L (kj.,coJ ,7J)I1(a'~)1[1 ice&7~——Io(ai)] I

3n) a)J
PJ(k, ro) =

1 — . I12(aj')+I1(aj )/[1 i CO)
—7J Io(aj ) l —}3 2

—lQ) 7'.
J J

(3.21)

and j=(1,3, h).
Following the same procedure as in Sec. II, we obtain the self-energy of the phonon,

4~e 2

~1P1+~3P3+ ~hPh [(~1 ~3) PlP32

xk

+(I 3
—I h)'P3Ph+(I'h —I'1)'PhP1] 4me

(P1+P3+Ph)
xk

(3.22)

where

k

QM;n;
k k

~'MI. n; jr'M; n;

(3.23)

Phonon Wave Number, k(lo cm')
2 5 4 5 6

I I I I i 1

LAP

I

OflS

1

Note that (3.22) can be rewritten as

II(k,co)=I'1P1+I 3P3+1 hPh

(~1Pl +~3P3+ ~hPh )
2 4me

~k

4me
1 — (P1+P3+Ph )

xk

(3.24)

B. Results of numerical calculation
and comparison ~ith experiment

'0 200 400 600
Phonon Frequency, u (GHz)

In this section we present the results of numerical cal-
culations of the sound attenuation y, from Eq. (3.22).
The parameters used are given in Table I, and we assume
zero teIDperature. Figure 3 shows the result for ~= ~,
i.e., no electron (hole) relaxation, h=oc, no screening,
x'=1, and x=16. %e see three peaks, due—in order of
decreasing frequency —to [111]electrons, the holes, and
the electrons in the other valleys. In the case of 1t= Oc the
attenuation is just the sum of the three separate contribu-

FIG. 3. Attenuation of longitudinal sound as function of fre-
quency v=co/2m, along the (ill) direction, in a Ge electron-
hole liquid, y(k), in the absence of electron (hole) relaxation
(~=00), for different strengths of the Coulomb interaction:
x=~, v=16, and a=1. At long wavelengths, k ~&kTF, the
screening is always perfect. The experimental data (Ref. 1) are
also shown. The absolute normabzation of the experimental
points is uncertain to within + 100%, —50%.
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tions, and is what one could derive from simple perturba-
tion theory. The initial slope is determined by

~+~I 2

4~g &j 4FFUF 4FpUF FFUF

where n is the number density of electron-hole pairs.
The curves for ~= oo and a =16 and @=1 show the ef-

fect of screening. For small k ( «kT„) screening (terms
oc k ) always dominates, and to lowest order in c/up the
initial slope is determined by

y(k) =—'m
M;n;

1 3

e hFp+FF
9 1 3 1

16 U 16 UF
e (( 3+— +

Fp 4 U~ Up UF

2 3, 3 31 31
EF+

P
+ 3

— FF+ „„4„4„It
2

-"h —=i 1, 1 3 1 3 1+ e Pg ~I
F+ h +

4 )~ 4 3
F.F +Ep U~ U~ UF UF

(3.26)

Phonon Wave Number, k(lo cm )
2 3 4 5 6 7

I I t ) I

OflS

li)
=0

0
200 400 600

Phonon Frequency, v (GHz)
SOO

FIG. 4. Attenuation of longitudinal sound along the (111)
direction in a Ge electron-hole liquid, y(k), with electron (hole)
relaxation. The data points are the same as in Fig. 3.

This slope is about 1.2 times larger than (3.25). In this
case screening increases the damping in the long-
wavelength region. At short wavelengths, although the
effect of screening is not very simple, it decreases the
damping. For a large dielectric constant, screening does
not change the damping very much. (These conclusions,
based on the parameters in Table I, depend, of course, on
the values of these parameters. )

In Fig. 4 the effects of the electron (hole) relaxation
time are shown. For illustration we take v', =~p (=—7'),
and a.=16. Finite relaxation times round the shape, and,
for r & 10 ' sec, decrease the damping considerably. At
long wavelengths [k «kTF, kF, (uFr) '] the damping is
proportional to k ~ and given (for e &&u~) by [cf. (2.46)]

II

y(k)= —,(:-i 3) +3(:"3 I, )
10 M;n; 4 F.~F

+(= —= )'
Fp+Fp

(3.27)

In the same figure we show the experimental results of
Dietsche, Kirch, and Wolfe. ' In their paper they com-
pared their results with the value expected for [111]elec-
trons with screened deformation potentials calculated by
Markiewicz. 'i In fact, the results in the strong Coulomb
interaction limit, (2.38) and (3.26), can be expressed in the
form of (2.37) and (3.26) with adequate screened deforma-
tion potentials. However, as they noticed, one cannot use
these screened deformation potentials for large k. The ob-
served damping was about one-tenth of the calculated
value, ' and one-third of the value expected for [111]elec-
trons without electron-electron Coulomb interactions (the
curve for a = oo in Fig. 3). Our calculation (the curves for
~=16 and ir= 1 in Fig. 3) shows that the effect of screen-
ing is not very large. Therefore the significant decrease of
the damping is probably due to the relaxation of the elec-
trons and holes (see Fig. 4). Although there is great ex-
perimental difficulty in determining the absolute magni-
tude of the damping (it is uncertain to a factor 2), com-
parison of our calculation to the data suggests that the re-
laxation time w is about 10 ' sec. Except at short wave-
lengths, the general trend of the k dependence is similar
in both the experimental and calculated curves. Possible
reasons for the discrepancies between theory and experi-
ment are the ambiguity of the values of the deformation
potentials and the limitation of the single-relaxation-time
approximation of the collision integrals.

We also present the result of a similar calculation for
longitudinal-acoustic sound in Si propagating along the
(100) direction. In Si, the electron Fermi seas, six in
number, are spheroids with symmetry axes in the [100]
and equivalent directions. The calculation is simpler than
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TABLE II. List of parameters used for Si. IV. DISCUSSION

m
I~

UF

U)

FF

PPlh

kF"

UF

a

h

kTF
h

4.66&(10 g
5.00 X 10 cm

8.5 &(10 cmsec
12

3.3 ~1018 cm-'
1.25 & 10 ' erg

1 73&10 "
g ~0. 19~electron~

8.93g 10 g I,
'0.98me)ec„on)

1.98 &( 10 cm

4.SO& 10 cm

1.20)& 10' cm sec

5.29~10' cm sec-'
2.30&10 ' erg

g ~0' 5 ~electron ~

4.61y106 cm

9.52& 10 cm sec

4.8 &10 ' erg
—9.6 X10 ' erg
—4.8 X10 ' erg

7.2 y10' cm-'

i:"d———6.0 eV

I:-„=9.0 eV

'The deformation potential {Ref. 11) for electrons in [100) and
[T00] ~alley~: =,==„+=„.
The deformation potential {Ref. 12) for electrons in the other

valleys:

Phonon Wave Number, k(10 crn )
0 1 2 3 4 5 6 ? 8 9 10 11

I I I I I I I I I I

)'( T'= co

FIG. 5. Attenuation, in a Si electron-hole squid, of longitudi-
nal acoustic sound propagating along the [100]direction.

in Ge since in this case k is along a principal axis of each
spheroid. The parameters used are given in Table II, and
the result in Fig. 5 (see Ref. 12}. In this case the frequen-
cy scale is larger since the electron-hole liquid in Si is
denser. Peaks due to electrons in the [100] direction and
holes are not separated. There is at present no experimen-
tal information available for the attenuation in Si.

Our principal result, Eq. (3.22) with (3.21), or in the
idealized case g.30), for the phonon self-energy, contains
a unified description of phonon attenuation at all wave
numbers [as well as the frequency shift, when the final
two terms of Eq. (2.8) are included] due to the coupling of
the phonon to the electron-hole liquid. The result is valid
at finite as well as zero temperature, and includes
density-of-states effects, Coulomb interactions and thir
screening, and intraband scattering processes as described

by a relaxation time. Detailed numerical calculations for
Ge and Si show that the effect of Coulomb interactions is
relatively small in both cases, and that a short relaxation
time v & 10 ' sec decreases the attenuation considerably,
thus removing the serious discrepancy between the experi-
ment' on Ge and the simple perturbation result (the a = oo

curve in Fig. 3) neglecting Coulomb interactions and re-
laxation processes.

Comparison of theory and experiment in Ge suggests
that ~ is of order 10 ' sec. In view of the experimental
uncertainty in the absolute normalization of the data, and
the use of the single-relaxation-time approximation, it is
not possible to determine this r more precisely at present.
The ultrasonic experiments are, in fact, in the regime
where k is comparable to k~. Typically, k is comparable
to or larger than the kz (in the direction of k) of the val-

leys that contribute dominantly to the damping. For ex-
ample, at k =5X10 cm ', where valley 1 provides the
peak (Fig. 4, for r= Oc), one has kz ——3.23X10 cm
Since the effe:tive r should depend strongly on k/kF, as
well as on iiir0/eF (which for the electrons equals unity at
F0=3.84X10' sec '}, we expect the effective ~ to vary
across the range of phonon wave vectors shown in Fig. 4.
Calculation of the effective r(k, r0) through a more careful
treatment of the collision integral in the kinetic equations,
beyond the approximation (2.11), remains an interesting
problem.

There are other estimates for the relaxation time ~.
From microwave absorption' in Ge at a frequency
co=3.5X10' six: ', and n-6 X10' cm, it is found
that r=7X10 " (1+0.086T )

' sec, which at T=1.5
K is 6X10 " sec. In this experiment the frequency and
the carrier density are much smaller than in the ultrasonic
experiment. For electron-hole liquids in Ge at the same
density as the present analysis, several electromagnetic
experiments have been performed. Values comparable to
ours, r=(2.2—2.6)X10 ' sec, are deduced from the
width of far-infrared absorption' ' at
co=(1.3—1.4)X10' sec ', which is 1 order of magnitude
higher than the ultrasonic experiment. The magnetoplas-
ma resonance experiments' ' at the same frequency
range as the ultrasonic experiment give r=(2—7) X 10
sec depending on the resonance frequency. The relaxation
times obtained in the electromagnetic experiments agree
vrith Rice's estimate w '-0. 1%co /Ez, where E~ ——6.4
meV is the sum of the electron and hole Fermi energies.
The relaxation time me have obtained is much smaller
than this value. The apparent discrepancy can be ex-
plained as follows. The quantity measured in the elec-
tromagnetic experiments is r in the dielectric constant or
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in the conductivity and mainly due to the electron-hole in-
terband scattering, ' which we have neglected in our cal-
culation. If the Fermi sea were spherical, the intraband
electron scattering, which is the origin of our v, would not
contribute to the damping of current. Therefore it is
natural that the relaxation time measured in the elec-
tromagnetic resonance experiments is much longer than
that measured in the ultrasonic experiment. Moreover,
the spatial variation in the electromagnetic experiments is
over scales much longer than ky ', in contrast to the ul-
trasonic experiment. Without more detailed theory of the
relaxation time, we cannot make a quantitative compar-
ison between the relaxation times deduced from the dif-
ferent types of experiments.
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APPENDIX

In this appendix we define several dimensionless func-
tions derived from integrations over an ellipsoidal Fermi

I

Px Py Pz

PFx PFy PFz

k, ky k,k=
kFx kFy kFz

a)=%co/eF«r=eFr/k .

(A2)

The scaled dimensionless quantities are always indicated
by tildes. Then with the help of the relation
n py„py), py, /3m A, the integral is represented by a di-
mensionless function

sea. The energy spectrum of electron is assumed to be of
the form

2 2 2

( )
Px Py Pz

2mx ™y ™z
For application to the cases discussed in Secs. II and III,
one should set m„=m~=m, =m, and m„=m~=m& and
m, =mj~, respectively.

The first function we define is related to the Lindhard
function, but with finite relaxation time,

0 0~ p —%./2 n p+%/2dA
co —v k+i/1

where

v = (p„/m„, p„ /my, p, /m, ) .
We scale each component of momentum by the corre-
sponding Fermi momentum and energy by the Fermi en-

ergy

0 0

dA
1 ~ p —er./2 n p+%r./2

iri co vk+i—/r
3n 1

'

di di 1 3n ~(k )
2ep 2ir Ii( Ilz g 2p.k+, ~~ 2eF

(A3)

where the integration is done over the region, for 0&,
2 ' '2 ' '2k„ky kz

P —
2

+ Py
— + P—

and for Qi,
«' k„ky
Px+ + Py+

'2 ' '2
k,+ P +

(A4)

The second function we define is the integration of the velocity,
0 0

1 ~p e/2 n +mr. /2 = -3n 1
d — dV= dP — dP

co —v.k+i/~ 2sF 2m.

1
(UFxPx «UFyPy «UFzPz )

co 2p k+i/r—
k„ky k,J( «co;&) UFx «UFy —« "Fz
k k k

where J(k;co;7) is defined as

pk
co —2p k + i /'r

When the collision time r is infinite, the function L b om~ the Llndhard function, in dlmensionless fo~

(A5)

(A6)

—2p.k+ l 5
1.(k,co, ~)= f d'P f dP-

2m' , &I O2
(A7)



and the function J becomes

co —2p k.+i5 k 2~ - & 2 . 2k —2p.k+i5

L (k, co; co ) .
2k

For co=ok (c & uF) and k ~0, L (k, co; oe ) becomes
r

1 —c/UFL(k~0, 2ck/uF;eo)= — 1+ ln
2UF 1+0/UF

1

J(k~O, co;r)= f dx
X = —iaIi(a },

co —2kx +i /~
(Al 1)

When the wave number is very small, k «kF, the
functions L and J become the integrals which appear in
Pippard's theoryi of sound attenuation in metals. In this
case the difference of the integral operators becomes an
integral of a 5 function:

f& d p —f d p = fdip 5(p 1)p k—.

Therefore (A3} and (A6) reduce to

2k 7.

1 —/ Q7'7

and I„(a) is defined as

~N
I„(a}=—f dx

2 —~ 1+iax
The first three I„(a) are important:

Io(a) =—tan a,1

Q

I, (a) = (a —tan a) = —. [1—Iu(a) j,1 i 1

lQ ia

(A13)

(A14)

(A15)

kxL (k~0, co,'7.) = dx = iaIi(a)—,
co —2kx +t /1

(A10)

Iq(a) = (a —tan a) = [1—Iq(a)] . (A16)=1 1

Q Q

The integrals containing Bn /Be are expressed in terms
of these functions as follows:

0B 5p 3

Be co v k+i /—r . 2eF 2tr co —2p'k+ t /'r

3n t
i 5p — Io(a),

2EF 1 —167 v
(A17)

0 u'p 3tt 'tt fd3 5( 1)
2p'k . 3li 2k 1 I ( )

co —v k+1/7' 2eF 2tr co 2p k+j/r 2eF 1 —tcor
(A18)

where the second equality of (A18) holds only when Rl lk. Under the same conditio" (trl lk)

~
~

0 k

Be co vk+i/r — 2eF 2tr co 2p k+i—/~ k . k
T

3n ky k,
5p Ii(a) UFz UFy —& UFz—

1 —ico7 k k k

we also have

ky kz
UFy ~ UFs-

k k

(A19)

2p k

co —2p.k+ t H

. 3n 2k%. ky
i trt — I2(a) UF

1 —/MV k

(UFxPx& UFyPy & "FzPz)
0Bti u p 3rt th ds 5( 1 )

BE N —v.k+ E /v 2E 2w

(A20)
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