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Realistic ab initio total-energy calculations are performed to investigate the electronic and
geometric structure of crystalline As,Se;. Results include the following: total energies for various
distortions, the equilibrium geometric structure, intralayer and interlayer cohesive energies, charge
densities, the density of states, the band structure, rigid-layer phonon frequencies, and effective
masses. Specific attention is focused on studying the nature of bonding within and between layers,
as well as elucidating the nature of the electron and hole wave functions in the vicinity of the funda-
mental gap. In particular it is found that the interactions between the layers are crucial in determin-
ing the properties of the wave functions at the band edges. Moreover, the electron and hole masses
are predicted to exhibit a large and unusual anisotropy.

I. INTRODUCTION

For many years now, considerable attention has been
directed towards understanding the electronic, optical and
magnetic properties of the arsenic chalcogenides and other
V-VI compounds.’? Unfortunately, comparatively little
firm theoretical knowledge exists concerning the nature of
their ground states and excited states. In their crystalline
form these materials are quite complex with large unit
cells typically containing 20 atoms. This complexity has
made realistic, parameter-free theoretical calculations very
difficult. For example, theoretical information on As,Se;
has been limited, to our knowledge, to simple empiri-
cal’~% and semiempirical® calculations of electronic states.
Clearly it is of great importance to have a good under-
standing of the electronic and total-energy structure of
such crystals before we can hope to reach any meaningful
conclusions regarding the local bonding configurations in
the glasses, the nature of intrinsic defects in the materials
and the sources of the negative effective correlation ener-
gy.

In this paper we present the results of the first realistic
ab initio pseudopotential calculation of the electronic and
geometric structure of crystalline As,Se;. The only inputs
into the calculation are the atomic numbers of the constit-
uent atoms. Many interesting results emerge, including
the accuracy with which the structural parameters can be
“predicted,” the different energy scales associated with
various types of structural distortions, the nature of the
electronic charge density of the system, the nature of the
intralayer (within a layer) and interlayer (between layers)
bonding, the characteristics of the electronic charge distri-
bution in the vicinity of the band edges, the locations of
the smallest direct and indirect gaps in the Brillouin zone,
and the unusual properties of the electron and hole effec-
tive masses.

The format of this paper is as follows. We begin in Sec.
II with a brief description of the crystal structure. In Sec.
III we describe the details of our calculational procedure,
its foundation, reliability and accuracy. In Sec. IV we
present all the results. These include the total energies for
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various structural distortions, total charge densities in
several regions of the crystal, and a band structure and
density-of-states calculation. We also examine the nature
of the charge distribution in various bands and gap-edge
states, identify the extrema of the band edges, and calcu-
late the corresponding electron and hole masses. This is
followed by a calculation of the cohesive energy and bond-
ing energies associated with the intralayer and interlayer
interactions, and a construction of a simple tight-binding
Hamiltonian based on the calculated realistic band struc-
ture. Finally in Sec. V we give a summary and some con-
cluding remarks.

II. STRUCTURE

As,Se; exists in a monoclinic (very nearly orthorhom-
bic) crystal structure with atoms arranged in layers.”°
There are 2 layers and 20 atoms in a unit cell. A cross
section through the layers is shown schematically in Fig.
1. The As atoms exist in two distinct types of environ-
ments [As(1) and As(2) in our notation] with each As
atom bonded to three Se atoms. The Se atoms exist in
three types of environments [Se(1), Se(2), and Se(3)] with
each Se bonded to two As atoms. As and Se atoms of
type 1 and 2 form chains that spiral around axes perpen-
dicular to the plane of the figure. The chains are inter-
connected by Se atoms of type 3.

The symmetry operations of the crystal are a mirror
plane perpendicular to the b axis with an associated
translation, inversion, their products, and the identity.
The layers in the unit cell are related to each other by a
rotation of 7 about the b axis.

We note that each layer, when projected onto the a-b
plane, forms a sawtooth pattern. The stacking of layers
evidently involves the fitting of one pattern onto another.
Interestingly, this fitting could also be accomplished
without having to rotate alternate layers around the b
axis. The reason, however, that this alternation is pre-
ferred, is more subtle. Although it is not clear to us what
the precise mechanism is we speculate the following. A
reasonable assumption is that the most important interac-
tions are due to the outermost [As(1)-Se(1)] and [As(2)-
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FIG. 1. Three-dimensional schematic illustration of the
structure of As,Se; showing portions of three layers. The layers
lie perpendicular to the plane of the figure. The unit cell con-
tains 20 atoms divided between 2 layers. Within a layer As and
Se atoms of types 1 and 2 form spiraling chains running perpen-
dicular to the figure. Neighboring chains are linked together by
Se atoms of type 3. Dashed lines represent cross sections
through planes lying perpendicular to the figure. These planes
are useful for examining the charge densities.

Se(2)] pairs of adjacent layers. Modeling these as rigid
rods we find, simply, that neighboring layers are more
easily close packed if they are rotated by .

The initial coordinates of the atoms in the unit cell
(which were found to be adequate for a self-consistent
treatment throughout) were taken from Vaipolin.” The
unit cell was chosen to have an orthorhombic shape with
the experimental lattice constants a=12.05 A, b=9.89 A,
and ¢=4.28 A. The deviation from the monoclinic unit
cell is extremely small and amounts to a 0.5° tilt in the b
axis off the normal to the a-c plane. As remarked be-
fore,’ this simplifying change does not introduce any extra
symmetries and, due to its minuteness, is insignificant in
effect.

III. METHOD OF CALCULATION

The calculations were performed within the framework
of density functional theory using the local-density ap-
proximation, and the pseudopotential approximation.'®
Further approximations involved truncations in the num-
ber of basis states used, and selected summation over
states in the Brillouin zone. For completeness we begin
with a review of each of these concepts.

Very briefly, density functional theory allows one to
map the many-body problem of an interacting electron
gas in an external potential onto that of a system of
noninteracting particles moving in some effective single-
particle potential. This mapping is exact in principle.
Unfortunately, we do not know precisely what this effec-
tive potential is. Nevertheless, sufficiently good approxi-
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TABLE 1. Convergence of the cohesive energy with respect
to the number of special k points used.

Number of k points
1 8 27

E . (eV) 2.5 3.1 3.1

mations to it exist, that this approach works extremely
well.!® For our calculation we have chosen the Wigner in-
terpolation scheme,!! although other schemes give very
similar results.

The strong electron-nucleus interaction can be handled
within the framework of pseudopotential theory. In this
approximation one replaces the true electron-nucleus po-
tential by a much weaker effective potential—a pseudopo-
tential. This has many of the scattering properties of the
original potential but allows one to model only the valence
electrons of the system. Since it is the valence electrons
that are responsible for nearly all the physical and chemi-
cal properties of the solid this scheme is very versatile.'®
We have used the procedure proposed by Hamann,
Schliiter, and Chiang'? in order to generate our pseudopo-
tentials. Typically one expects the pseudocharge density
and all-electron charge density to be the same outside the
core region of each atom, which is roughly 0.5 A in ra-
dius.

Calculations of the electronic charge density, in princi-
ple, involve a summation over each k point in the Bril-
louin zone. This can be significantly simplified by using
the special-k-point scheme.!* Here one can obtain a good
average with only a few, carefully selected points. A
check of convergence with increasing sets of special k
points is given in Table I. We note that the cohesive ener-
gy converges rapidly to within 0.1 eV. The individual
Fourier components of the potential changed by 10% go-
ing from 1 to 8 k points and by less than 1% going from
8 to 27 k points. The sums over the Brillouin zone were
generally done using the special k point (0.25,0.25,0.25)
(Ref. 14) and its seven permutations.

Since the ionic pseudopotentials and screening poten-
tials are weak they can be conveniently expanded in terms
of plane waves. We use two sets of plane waves: The first
set is included in diagonalization (including plane waves
with kinetic energies less than E,) and the second set is
included in second-order perturbation theory'* (kinetic en-
ergies less than E,). Tests of several calculational results
are given in Table II. These include convergence of the
cohesive energy, convergence of total-energy differences
for intralayer and interlayer distortions, convergence of
the difference in energy of the highest valence band at
(0.25,0.25,0.25) and (—0.25,0.25,0.25), and finally conver-
gence of a direct transition energy at (0.25,0.25,0.25). We
note that our results are converged to about 0.2 eV per
atom in the cohesive energy, and 0.01 eV in the total-
energy differences. The energies of the filled bands and
gaps are converged to better than 0.05 eV. In our calcula-
tions we chose to use the cutoffs to be E;=5—6 Ry and
E,=10—12 Ry.

In order to speed up the convergence of the self-
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TABLE II. Convergence of several calculational results with respect to the size of plane-wave basis
used. E.q is the cohesive energy; A, is the total energy for an intralayer distortion (uniformly decreas-
ing the nearest-neighbor bond length by 10%); A, is the total-energy difference for an interlayer distor-
tion (decreasing the layer spacing by 15%); ¢, is the direct transition energy at (—i—,%,% ); €, is an eigen-

value difference for different k points [the energy of the top of the valence band at (%,%,%) and

(— %, -l—, % )]. The cutoffs are indicated in terms of the kinetic energy and the corresponding number of

plane waves. E; labels the basis set used in diagonalization, and E, refers to the basis set included in
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second-order perturbation theory (Ref. 15). E, and E; are expressed in Ry.

E1=4’ E2=8 E, =5, E2=10 El=6’ E,=12
460,1300 650,1850 850,2400
En (V) 2.5 3.1 33
Ay (V) 0.00 0.56 0.56
A; (V) 0.056 0.075 0.071
£ (eV) 1.56 1.57 1.53
g (V) 0.24 0.21 0.21

consistent procedure a dielectric matrix method!'® was
used for the lowest 113 Fourier components of the poten-
tial. In a typical run six iterations were required to obtain
consistency in the total energy to within 1 meV. It was
not possible to go beyond this accuracy due to the pres-
ence of computational noise.

Systematic errors are more difficult to estimate but one
finds, typically, that lattice constants can be “predicted”
to within a few percent, phonon frequencies to within
10%, and even cohesive energies to within 20%.!° In fact
the accuracy in the cohesive energy is very good consider-
ing that it involves a difference in energy between sub-
stantially different systems, i.e., isolated atoms and the
bulk solid.

Using a converged potential the band structure was cal-
culated along lines in the irreducible portion of the Bril-
louin zone. The eigenvalues at 80 points along the chosen
lines were calculated and a smooth interpolation was
made to connect these. These data, complemented with a
calculation of the eigenvalues at 108 evenly spaced k
points in the irreducible Brillouin zone, was the basis for
determining the extrema of the band edges.

IV. RESULTS

A. Total charge densities

The total electronic charge density can provide interest-
ing information concerning the nature of bonding both
within and between the layers of the material. To display
the charge density one needs to find suitable planes to cut
through the crystal. Due to the complexity of the unit
cell, however, there are many different possible planes to
choose. We have examined several of these and find three
planes that are most informative.

Planes I and II are sketched in Fig. 1. They both run
perpendicular to the plane of the figure. Plane I passes
through Se(1) atoms of adjacent layers with some project-
ed electronic density from As(1) and Se(3) atoms. Plane II
includes all the three types of Se atoms, each of them in a
different layer, with further As(1), As(2), Se(1), and Se(2)
atoms slightly above and below the plane. The third
plane, plane III (not shown in the figure) passes through

three atoms of a single layer—Se(3), As(1), and As(2).

In Fig. 2 we show the total charge density through the
different planes. In plane I, Fig. 2(a), we find the follow-
ing salient features. The charge distribution is very co-
valent and one can identify bond charge between the As
and Se atoms. We note in addition a considerable charge
overlap between adjacent layers. Such large overlap is not
observed, for example, between chains (the corresponding
molecular structures) in trigonal Se.'”"'® Moreover, the
overlap in As,Se; is not an effect of the lone-pair states
projecting out into the interlayer region as one might
naively expect. Rather we have found that it is a conse-
quence of overlap between the back lobes of the p-like
bonding states in neighboring layers. This appears to be
purely a geometric property of the stacking of layers. Fi-
nally, we also note that there is non-negligible charge
overlap between third nearest-neighbor Se(l1) and As(1)
atoms in the same layer and within a chain.

Figure 2(b) shows the total charge density in plane II.
Here the overlap between layers is much smaller than in
plane I. We note that the charge overlap between third
nearest-neighbor Se(1) and As(1) atoms within the chains
can again be observed in the bottom layer of the figure.

In Fig. 2(c) we show the total charge density in plane
III. Here we notice that there is a very small asymmetry
that distinguishes between the As(1) and As(2) atoms.
The As(1)-As(2) asymmetry most likely arises from secon-
dary interactions between the layers. In fact, as we shall
discuss in Sec. IV B, the energy associated with this asym-
metry is calculated to be only about 2 meV. In this plane
the bonding charge between the Se and As atoms is clearly
visible. The larger bond charge between Se(3) and As(2) is
associated with a shorter bond length. We also note that
the interaction of the Se(3) atom with any other atoms ap-
pears to be quite small.

It is very interesting to investigate the effects of the
layer-layer interactions on the intralayer bonding. This
can be accomplished quite easily by simply moving the
layers far apart. In Fig. 3 we present the total charge den-
sities for As,Se; with the layer separation increased to 10
A. At this distance, the layers essentially do not interact.
The results are quite striking. The charge distributions
look virtually identical to those of Fig. 2. This indicates
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that the layer-layer interactions play a very minor role in
determining the intralayer bonding. These interactions
are important, however, in affecting the character and en-
ergies of the single-particle levels as will be discussed in
Secs. IVD and IVE.

(a) TOTAL CHARGE DENSITY (I)

)

’

=

B. Total energies

To determine the structure of the material theoretically,
we have calculated the total energy of the system as a
function of various configurational coordinates of the

(b) TOTAL CHARGE DENSITY (II)

(c) TOTAL CHARGE DENSITY (III)

FIG. 2. Charge-density contour plots. (a) Total valence electron density in plane I of Fig. 1. Selenium atoms of type 1 lie directly
in the plane. The As and Se atoms at the top and bottom of the figure lie, respectively, slightly below and slightly above this plane as
indicated. (b) Total valence electron density in plane II of Fig. 1. The Se atoms of types 1, 2, and 3 near the center of the figure lie al-
most directly in this plane. The As and Se atoms of type 2 at the top of the figure lie, respectively, slightly above and below this
plane. (c) Total valence electron density in plane III. Nearest neighbors As(1), Se(3), and As(2) lie in this plane.
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atoms. Although, in principle, this would imply a com-
plex search for a minimum in many dimensions, it is
simpler and more instructive to focus on configurational
coordinates that can separately distort only bond lengths
within a layer, only bond angles, and only the interlayer
distance and stacking position. We also investigated the

(@) TOTAL CHARGE DENSITY (I')

(C) TOTAL CHARGE DENSITY

effects of imposing an additional mirror symmetry within
each layer. The total energies associated with the various
distortions, in addition, provide information about the
scale of energies for the intralayer and interlayer bonding
interactions.

In Fig. 4(a) we show the total energy calculated as a

(b) TOTAL CHARGE DENSITY (II')

(111')

e
)27

\

B,

FIG. 3. Charge-density contour plots using the same conventions as in Fig. 2. The primes are used to indicate that these planes are
associated with a crystal whose interlayer separation has been increased to 10 A.
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function of intralayer distortion. This distortion consists
of a uniform change in the scale of bond lengths, keeping
bond angles and the interlayer distance and stacking posi-
tion fixed. The minimum of the calculated total energy
occurs at bond lengths which are only a fraction of a per-
cent higher than the experimental value. In Figs. 4(b) and
4(c) we examine the effects of distorting the bond angles
within and between chains, keeping bond lengths and in-
terlayer positions fixed. The results reveal that the
theoretical minimum in energy occurs at bond angles
whose largest deviation from experiment is only —3.5%.
In Figs. 4(d) and 4(e) we consider the effect of sliding the
layers rigidly along the a and c directions, respectively,
keeping the interlayer distance fixed. Finally, in Fig. 4(f)
we vary the distance between layers keeping everything
else fixed. Again the agreement is excellent with theoreti-
cal values of interlayer stacking position and distance less
than 5% from experimental measurements. These results
are surprisingly good in light of the difficulties of model-
ing the weak intermolecular binding of a molecular crys-
tal. Evidently, the local-density approximation is slightly
overestimating the strength of this binding.

Comparing the energy scales in Figs. 4(d) and 4(e) we
note that there is a large energy difference between the
two shear distortions. Looking back at the crystal struc-
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FIG. 4. Calculated total energy with respect to distortions of
lattice parameters from experimentally measured values. (a)
Uniform distortion in the bond lengths within layers keeping all
other structural parameters fixed. (b) Intrachain bond-bending
distortion. (c) Interchain bond-bending distortion. A unit of 0.2
A is equivalent to an arc of 4.8°. (d) Rigid-layer shear along the
a direction. (e) Rigid-layer shear along the c direction. (f) Vari-
ation in the lattice constant b keeping intralayer structural pa-
rameters fixed. Note difference in energy scales.
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TABLE III. Computed force constants and phonon frequen-
cies in the frozen phonon approximation. k, is the bond-
stretching force constant; kga, is the bond-angle-bending force
constant with the bond-angle centered on As atoms; kgs. is the
bond-angle-bending force constant with the bond-angle centered
on Se atoms; k, corresponds to shear along the a direction; kj is
the layer-compressional force constant; and, finally, k. corre-
sponds to shear along the ¢ direction.

Phonon frequency

Force constant (cm™)
k, 1.91x10° (dyn/cm bond)
kogas (5.240.2) X 10* (dyn/cm angle)
kose (0.85+0.1)x 10* (dyn/cm angle)
k, 1.3 10 (dyn/cm atom) v=234
ks 6.1 10 (dyn/cm atom) v=74
k. 0.16 X 10* (dyn/cm atom) v~12

ture (Fig. 1) we can understand why. Sliding the layers
along the a direction makes atoms of adjacent layers col-
lide, because the “sawtooth” pattern of one layer does not
fit onto the other. On the other hand, sliding the layers in
the ¢ direction produces no such interference. The soft-
ness of this shear is related to the van-der-Waals-like
bonding between the layers, which is not sensitive to the
precise position of the atoms in each layer.

The total energies in Fig. 4 can also provide us with in-
formation concerning simple model force constants of the
material. Moreover, if a particular distortion is close to
an eigenmode we can obtain a direct measure of the pho-
non frequency associated with this mode. In fact, this
should be the case for the interlayer distortions considered
here. In Table III we present calculated intralayer and in-
terlayer “bond” stretching and “bond” bending force con-
stants. The phonon frequencies associated with the inter-
layer distortions are also included. The bond-stretching
constant, k,, agrees well with the value predicted using
Gordy’s rule’ of 1.76x10° dyn/cm. The bond-bending
constants are smaller than the bond-stretching constant by
an order of magnitude. We find, furthermore, a large
difference between the bond-bending constants of bonds
centered at As and Se atoms, kg, being six times larger
then kgs.. This would seem to be consistent with the
higher coordination number of the arsenic atoms implying
a greater angular stiffness. These results are in rough
agreement with simple force constant values derived
empirically.?

The three rigid-layer optical phonon frequencies form a
hierarchy with the compressional mode lying highest in
frequency followed by the shear mode in the a direction
(which destroys the fit of one ‘“sawtooth pattern” upon
another) and the second shear mode along the ¢ direction
(which retains the fit of one sawtooth pattern upon anoth-
er). We find the phonon frequencies associated with the
two rigid-layer shear modes to be ~ 12 and 34 cm ™! (see
Table III). These shear modes have been identified by ex-
periment as the two lowest Raman frequencies of the ma-
terial®! at 21.5 and 32.5 cm~!. The comparison is very
favorable for the higher mode frequency, while our accu-
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racy is not adequate for the lower frequency with its asso-
ciated small distortional energy. The third rigid-layer
mode, the compressional mode, has been found to mix
with intralayer bond-bending modes, and therefore not to
be an exact eigenmode?! (this can also be inferred from
the similarly sized forced constants k;, and kgg. of Table
III). The experimentally observed mode lies in the range
50—60 cm ™! which is not far from our 74 cm ™.

Finally, let us consider the intralayer symmetry break-
ing energy in As,Se;. This can be estimated by imposing
a reflection symmetry about the Se(3) atoms so that Se(1)
and As(1) atoms have, respectively, identical intralayer en-
vironments to Se(2) and As(2) atoms. The resulting total-
energy difference between the Vaipolin structure and the
structure with the imposed intralayer reflection symmetry
is roughly 2 meV per atom. It is interesting to note that
two of the experimental determinations of the As,Se;
structure”® differ mainly in the degree of bongd-length
variations. These variations are as much as 0.1 A in the
Vaipolin’ structure but only 0.03 A in the structure pro-
posed by Kanisheva et al.° Thus the imposed intralayer
reflection symmetry, just considered, roughly corresponds
to transforming the Vaipolin’ structure into the structure
of Kanisheva et al.’ The corresponding energy difference
is extremely small and essentially outside the resolving
power of our calculation.

C. Density of states

Before discussing details of the single-particle levels, let
us first investigate the properties of the total density of
states. This is shown in Fig. 5. The dashed line corre-
sponds to an experimental photoemission measurement.??
The solid lines are theoretical, one of which is broadened
by 1 eV to simulate the resolution of experiment. Exam-
ination of the nonbroadened theoretical curve reveals four
separate regions of nonzero density. As we shall see
below, the two lowest regions correspond to the valence s

density of states (arb. units)

]
-15.0

T T T
—-10.0 -5.0 0.0 5.0

energy (eV)

FIG. 5. Comparison of theoretical density of states (solid
lines) with experimental photoemission measurements (Ref. 22)
(dashed line). The smooth theoretical curve involves broadening
by about 1 eV corresponding to the resolution of experiment.
The top of the valence band is placed at 0 eV.
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levels. Of these, the lower one contains the 12 s levels of
Se (since Se is more electronegative than As) and the
higher one consists of the 8 s levels of As. The third re-
gion contains the valence p levels including 24 bonding
and 12 lone-pair bands. The density of states in this re-
gion is consistent with earlier suggestions® that bonding
and lone-pair states are not separated by a gap. The
fourth region, separated from the third by the fundamen-
tal gap, corresponds to the empty 24 p-like antibonding
levels. (Note that above these states there is another gap
indicating a separation between the p antibonding levels
and the 4d-5s states.)

The comparison with the experimental data is excellent.
The peaks of the photoemission spectrum?? line up with
the theoretical density-of-states peaks, and the relative
peak heights are also well reproduced. The latter is a

FIG. 6. Charge-density contours in plane III. Top panel,
states in the region between — 15 and — 12 eV of Fig. 5. Bottom
panel, states in the region between —11 and —7 eV.



4066

consequence of the photoemission matrix elements being
roughly equal for 4s and 4p valence electron scattering.
The charge densities of the three filled regions are
presented sequentially in Figs. 6 and 7. Region one, corre-
sponding to the upper panel in Fig. 6, shows a predomi-
nance of Se s-like character. Region two (lower panel) is
much more antibonding s, with most of the charge local-
ized around the As atoms. In Fig. 7 we show the charge
density associated with region three. The upper panel cor-

FIG. 7. Top panel, charge density in plane III for the region
between —5 and —2 eV of Fig. 5. Bottom panel, charge density
in plane II for the region between —2 eV and the top of the
valence band.
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FIG. 8. Brillouin zone for the orthorhombic unit cell. The ir-
reducible part is indicated by dashed lines. Several symmetry
points are identified. For simplicity primes are used to distin-
guish inequivalent directions from T in the BZ.

responds to states in the energy range of about —5 to —2
eV. The plot is in plane III and illustrates the p-like
bonding nature of these states. Finally, the lower panel
corresponds to states in the energy range of —2 eV to the
top of the valence band. The plot is in plane II and clear-
ly reveals a p-like lone-pair character on the Se(1), Se(2),
and Se(3) atoms.

D. Band structure

The Brillouin zone (BZ) for the orthorhombic cell is
shown in Fig. 8. The band structure was calculated at 80
k points in eight directions of the irreducible part of this
Brillouin zone. The results are depicted in Fig. 9. The
large number of bands and the low symmetry of the crys-
tal make the band structure quite complicated. Due to
this complexity we will not discuss each band separately,
but take a more perspective view.
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FIG. 9. Calculated band structure along specific directions in
the Brillouin zone. Note the striking similarity between the
R—-TI'—Uand R'—I'-U’ directions.
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A detailed discussion of the symmetries and symmetry
points of the Brillouin zone has been given by Althaus
et al.> The bands are doubly degenerate on the Y-T line
due to time-reversal symmetry. Further degeneracies
occur at the X, Y, and Z points where the bands are
described by two-dimensional symmetry-group irreducible
representations.’

The Se lone-pair states and the p-bonding states seem to
overlap everywhere in k space, except possibly in the re-
gion of —1.5 eV on the symmetry line between Y and T.
Nevertheless, this overlap is small and the top 12 valence
bands consist of almost pure lone-pair states as we have
already seen in Fig. 7 (bottom panel).

The widths of the p-like bonding bands and the lone-
pair bands remain nearly constant from one k point to the
next throughout the entire BZ. This is a consequence of
the high degree of localization of these bands. While the
4 nonbonding Se s levels also remain relatively un-
broadened, the 16 bonding As and Se s levels enjoy a con-
siderable dispersion, being very wide at I and becoming
narrow as we approach the BZ edges. The dispersions of
the bands along the layer stacking direction as opposed to
within a layer, tend to be fairly flat. This is clear, for ex-
ample, by comparing the direction 'Y with '—-Z and
I'-X in Fig. 9. Upon close examination, however, we
note that the p-like bonding states seem to have very simi-
lar dispersion both between and within the layers. No
doubt this is related to the interlayer overlap of these
wave functions as we discussed earlier.

Let us now examine to what extent the intralayer sym-
metry breaking effects differences in the band structure.
The symmetry operator that is broken is a reflection in
the b-c plane, passing through Se(3) atoms. If this sym-
metry existed, As(l1) and Se(1) atoms would be identical
within the intralayer environment to As(2) and Se(2)
atoms, respectively. If, in addition, the layers were
stacked so that the Se(3) atoms all lay in a plane the bands
along R—I'-U would be identical to those along
R'—-T"'-U’. We note from Fig. 9, that this, indeed, is very
nearly the case. The largest differences appear to be on
the order of a few tenths of an eV and occur primarily in
the vicinity of the fundamental gap.

It is interesting to investigate the effects of the layer-
layer interactions on the total widths of the energy bands.
To accomplish this we moved the layers far apart (a di-
sance of 10 A) and examined the single-particle levels at
I'. (Unfortunately, the large size of the unit cell made any
attempt ‘at a full band structure intractable.) In the pres-
ence of layer-layer interactions the widths of the bands
(see Fig. 9) are as follows: 3 eV for the Se s states, 3 eV
for the As s states, and 5 eV for the p-bonding and lone-
pair states. The corresponding widths of separated layers
are smaller by 0.4, 0.2, and 0.7 eV, respectively. Further-
more, the “gap” at I' between lone-pair and p-bonding
states increased from 0.2 to 0.4 eV. These results imply
that the layer-layer interactions are responsible for a small
overall broadening of each band region by ~0.5 eV.

Experimentally, it has not yet been determined precisely
where in the BZ the fundamental gap obtains. It is be-
lieved that the bottom of the conduction band is at T'>.
Nothing, however, is known about the position of the top
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TABLE 1V. Band-edge extrema and direct gaps within a
tolerance of 0.1 eV, as discussed in the text.

Energy (eV)

Valence maximum:

(0.29,0,0.31) 0
Conduction-band minima:
(0.23,0.32,—0.12) 1.26
(0,0,0) 1.29
(1/12,5/12,5/24) 1.33
(5/12,3/12,3/24) 1.35
(1/12,1/12,5/24) 1.36
Direct gap:
(1/12,1/12,5/24) 1.47
(0,0,0) 1.50
(1/12,3/12,—5/24) 1.56

of the valence band. Using the results of the band struc-
ture in Fig. 9, as well as a systematic search over 108 k
points within the irreducible BZ, we were able to identify
several candidates. These are extrema that lie within 0.1
eV of each other, which corresponds to the extent to
which systematic errors may enter. The results are sum-
marized in Table IV. There are five lowest minima of the
conduction band that lie within the range of 0.1 eV, but
only one maximum of the valence band. The top of the
valence band lies very nearly along the I'—U direction. In
fact, this is directly related to what appears to be a max-
imum roughly midway between I' and U in Fig. 9. From
Table IV the fundamental gap is clearly indirect and most
likely associated with either (0.23,0.31,—0.12) or I'. The
five indirect gaps, however, lie very close in energy rang-
ing from 1.26 to 1.36 eV. We find three candidates for
the smallest direct gap. These are also presented in Table
IV. We note that one of the direct gaps is at I' which is
consistent with recent experimental observations.”> The
other two direct gaps, which are at nonsymmetry points,
lie very close in energy. Finally, we note that our results
predict at least five indirect transitions before the onset of
direct transitions. This is also consistent with the experi-
mental result of “at least three.”?*

Effective masses were calculated at the top of the

TABLE V. Hole and electron effective masses with corre-
sponding principal axes. The principal axes are given in terms
of crystal-axis unit vectors &,b,¢.

m*/m, Principal axes
Hole 0.28 (0.86,0,—0.51)
+(0.29,0,0.31) 1.0 (0.51,0,0.86)

1.1 0,1,0)
Electron 2.8+0.6 (0.45,—0.44,0.78)
(0.23,0.31,—0.12) 1.2 (—0.67,0.41,0.62)

0.33 (0.59,0.80,0.11)
(0,0,0) 0.27 (0.38,0,0.92)

1.6 (0.92,0,—0.38)

5.7 (0,1,0)
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valence band and at the two lowest minima of the conduc-
tion band. The results are presented in Table V. From
symmetry, the electron (') and hole masses are restricted
to have one of their principal axes normal to the layers.
The hole at the top of the valence band can exist at two
possible k points in the BZ. These are related by inver-
sion symmetry and the hole masses have the same princi-
pal axes. We note that the hole has a mass that is nearly
isotropic in a plane perpendicular to the layers with
m* ~m,. This is much smaller than expected. Intuitive-
ly both the holes and the electrons should have heavy
masses perpendicular to the layers. Moreover the hole
mass should be greater. However, there is only one heavy
mass perpendicular to the layers, and it belongs to the
electron. Notable also, is the large anisotropy in the elec-
tron masses, particularly at I'. The very light electron (I")
and hole mass components lie in a plane parallel to the
layers and run along directions that are nearly orthogonal
to each other. On the other hand, the light electron mass
component at (0.23,0.31,—0.12) has a sizable projection
perpendicular to the layers. Unfortunately, at this time
we have no simple physical picture as to why these partic-
ular eigendirections are chosen.

E. Nature of states at band edges

Let us now investigate the properties of the states lying
in the vicinity of the band edges of the fundamental gap.

FIG. 10. Charge density of uppermost filled valence band in
plane II. Note the absence of charge on Se(2).
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We are specifically interested in the atomic character, or-
bital character, and localized nature of these states and
their sensitivity to interlayer interactions. To do this we
shall examine the charge densities associated with the up-
permost filled valence band and the lowest empty conduc-
tion band. We begin our analysis with the valence band.

To examine the charge density near the top of the
valence band it is convenient to use plane II. We recall
that in Fig. 7 (bottom panel), plane II clearly reveals the
Se(1), Se(2), and Se(3) p-like lone-pair character of the
states lying between —2.0 and 0 eV. The corresponding
charge density for the uppermost filled valence band is
shown in Fig. 10. We find a very interesting result. Un-
like Fig. 7 (bottom panel), most of the charge is on Se(1),
there is some charge on Se(3) and hardly any on Se(2)!
How can we understand this? As it turns out, it can be
explained as a direct consequence of the interaction be-
tween Se atoms in different layers. A close examination
of the arrangement of the Se atoms in Fig. 1 reveals that
Se(1) and Se(3) atoms on neighboring layers interact much
more strongly with each other than with Se(2) atoms.
This strong interaction creates the lone-pair states which
lie furthest away from the center of the lone-pair band.
At the top of the valence band, it leads to antibonding
lone-pair states with charge primarily localized on Se(1)
and Se(3) atoms.

If this analysis is correct, one should not expect to ob-
serve this behavior if the layers were isolated from each
other. To simulate this isolation, we consider again our
model crystal containing layers separated by 10 A. The
charge density of the uppermost filled valence band is
shown in the left panel in Fig. 11. We now find a very
different result! This is p-like lone-pair charge on Se(1)
and Se(2) atoms but hardly any charge on Se(3). To make
sure that this is not an artifact of the slight change in
plane, we include, in the right panel of Fig. 11, the charge
density of the entire lone-pair region between —2.0 and 0
eV. The localized p-like character is clearly evident on
the Se(1), Se(2), and Se(3) atoms.

This result can be understood as follows. Once the
layers are so far apart, the only important interactions are
between Se atoms within a layer. From Fig. 1 we notice
that the Se(3) atoms are fairly well isolated from an in-
tralayer point of view. Thus the strongest interactions are
between the Se(1) and Se(2) atoms which are members of
the spiralling chains. This interaction then leads to states
at the top of the valence band being antibonding combina-
tions of lone-pair orbitals localized primarily on Se(1) and
Se(2) atoms.

To investigate the nature of the empty states in the con-
duction band it is convenient to examine charge densities
in plane III. This is the plane that contains Se(3) and, its
two nearest neighbors, As(1) and As(2). One would expect
the first 24 empty energy bands to correspond to p-like
antibonding states. The states that lie lowest in energy are
very symmetrical and tend to place charge in the region
between neighboring As—Se bonds. This is illustrated in
the top panel of Fig. 12. Here we display the charge den-
sity associated with the lowest empty conduction band.
The charge near the Se(3) atoms is associated with the
neighboring pairs Se(3)-As(1) and Se(3)-As(2). Similarly
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the charge near each As atom is associated with the three consistent with the simple view that antibonding states
bonds each As atom makes with its neighboring Se atoms, should be more cationlike. This is not always true, how-
two of which lie above and below the plane. We note that ever, and in GaAs, for example,zs'26 the lowest conduction
most of the charge is localized near the As atoms. This is band is anionlike. This is because the larger disparity be-
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FIG. 11. Charge density for a model crystal with layers separated by 10 Ain plane II'. Left panel, uppermost filled valence band.
Right panel, the entire lone-pair region.
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tween the Ga and As potentials which allows excited
anion states to lie comparatively low in energy. For As
and Se, the potentials are fairly similar and this does not
occur.

In the bottom panel of Fig. 12 we show the effects of
moving the layers far apart. Although we now find less
charge near Se(3), the overall charge density is very simi-
lar. These states, therefore, do not appear to be very sen-
sitive to the interlayer interactions.

Finally, using these results we can speculate as to the
effects of disorder on the fundamental gap in the glass.
Even if the atoms are perfectly and stoichiometrically
bonded, variations in the intralayer topology would cause
variations in the interlayer environment. From the dis-
cussion above we expect this to create a fair amount of
dispersion and localization of states near the top of the
valence band. The bottom of the conduction band would

FIG. 12. Charge densities in plane III associated with the
lowest conduction band. Top panel, the normal crystal. Bottom
panel, the crystal with interlayer separation increased to 10 A.

be affected less by this specific type of disorder. This
would imply that the conduction-band mobility should be
larger than the valence-band mobility. This, however, is
contrary to what is observed experimentally.?’” Only holes
are found to be mobile in very pure glassy samples. Of
course, in our discussion we have neglected the effects of
intrinsic defects which could play an important role in
trapping electrons. The precise mechanism for this, how-
ever, is not presently understood.

F. Cohesive and bonding energies

The cohesive energy of the solid (Ey,) can be calculat-
ed by comparing the total energy of the solid at equilibri-
um with the total energy of an equivalent number of iso-
lated atoms at infinity. In our case these would be isolat-
ed pseudoatoms including their spin-polarization energy.
We obtain a value of 3.3 eV per atom or roughly 2.7 eV
per bond. An experimental measurement of the cohesive
energy has not been performed. The cohesive energy,
however, can be estimated using the measured heat of
fusion (Ej.s) of the compound from elemental solids®®
and the measured enthalpy of formation ( E,y) of the ele-
mental solids.?’ Thus if we have

As;Se;(solid) =2 As(solid) + 3 Se(solid) — E}.f ,

As(solid) => As(gas) — E .f A »

Se(solid) => Se(gas) — E of se »

then
Eon= 2Eeof,As + 3Eeof, se +Erof -

Experimentally we have Efas=72.04 kcal/mole,
E ot se=54.1 kcal/mole, and Ep,=9.75 kcal/mole so
that E_, =316 kcal/mole=13.7 eV/As,Se; molecule
=2.7 eV/atom=2.3 eV/bond.

The difference between this value and our theoretical
prediction is about 20%. As we have mentioned earlier,
this is very good considering that it involves differences in
energy between substantially different systems, i.e., isolat-
ed atoms and the bulk solid.

From our calculations we can also obtain a reasonable
estimate of the contribution to the cohesive energy from
the binding between layers. This is not known experimen-
tally but can be deduced, theoretically, by dissecting the
solid into isolated layers at infinity. To do this we again
use our results from the model crystal containing layers
separated by 10 A. We obtain a value of about 0.3 eV per
atom for the binding energy between layers. This is about
10% of the total cohesive energy and is larger than typical
van der Waals energies which are about 0.01—-0.1 eV.
This is also consistent with the fact that the layers are
about 20% closer than their typical van der Waals dis-
tance.

These results can be analyzed using the following
heuristic argument. The van der Waals interaction can be
considered as a second-order correction to the total energy
of the form
| H |*/AE .

E vander Waals = —

Here H represents a matrix element that involves transi-
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TABLE VI. Tight-binding fit to band structure of Fig. 9 including nearest-neighbor interactions
within a single layer. The resulting band structure is shown in Fig. 14.

Eja=—19 eV
Vopr=—1.8 eV
Voaspse= —2.0 eV

Vipo=2.4 eV

E,sc=—10.8 eV

Vp,As,s, Se= 0ev

E, =26 eV
Vie=—15 eV

E,s.=0

tions from the unperturbed ground state of each layer to
all possible excited states of the layers. Included, there-
fore, are exchange transitions from one layer to a neigh-
boring layer. Usually these terms are ignored because the
typical overlap between molecules is extremely small.
One might be tempted to argue, however, that in As,Se;
this overlap may not be so negligible. After all, we have
already seen from Fig. 2(a) that there is at least some
charge between the layers in the ground state. Moreover,
this is also true for the excited states as shown in Fig. 13.
Here we have plotted the charge density, for the lowest 24
empty conduction bands, in plane I. We note again a
non-negligible amount of charge between the layers. Even
so, the contribution from intralayer polarization should be
much larger and completely dominate the exchange terms.
Another possibility is that AE is small. This is more at-
tractive since the average optical gap for As,Se; is only
about 3.5 eV. This is in contrast to the much larger ener-
gy gaps that one would expect for atoms and molecules.
Finally, since the van der Waals interaction in As,Se; is
between layers, the | H |? term should go like 1/R* in-
stead of 1/R®. This would have the tendency to make the
van der Waals equilibrium distance shorter.

G. Tight-binding fit

When one is interested in describing the electronic
structure of complex systems such as defects in solids, or
even glassy solids, realistic theoretical approaches are usu-
ally intractable. It is often necessary, therefore, to formu-
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FIG. 13. Charge density associated with the lowest 24 con-
duction bands in plane I.

late a much simpler theoretical model. A very useful
technique involves modeling the valence electrons in terms
of a simple empirical tight-binding Hamiltonian. The
matrix elements of this Hamiltonian are usually fit to the
crystal band structure of a realistic calculation. Since the
results of this work represent the first such band struc-
ture, it would seem appropriate to include a brief analysis
in terms of simple tight-binding theory. We will use a
model with the least number of adjustable parameters.
Our purpose is to see how much of the realistic band
structure will be preserved, and thus can be thought of in
very simple terms.

Our model is appropriate for a simple isolated layer.
The charge-density calculations indicate that the filled
valence band and lowest empty conduction states can be
adequately described with basis functions consisting of
only one s-like orbital and three p-like orbitals per atom.
The orbitals are taken to be mutually orthogonal and only
nearest-neighbor interaction matrix elements are assumed
nonzero. In addition, bond-length variations are taken
into account using a (dy/d)* dependence with dy=2.4 A.
The parameters resulting from our fit are given in Table
VL Vp aqss. Was found to have little influence on the
band dispersions and was set to zero for simplicity. The
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FIG. 14. Tight-binding band structure for an isolated As,Se;
layer. The redundant symmetry points R, T, and Y are includ-
ed for ease of comparison with Fig. 9. The tight-binding pa-
rameters are given in Table VI.
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corresponding band structure using these parameters is
shown in Fig. 14. We note that the dispersion of the Se
and As s-like bands are reproduced fairly well. Moreover,
several gross features of the realistic p bands can be iden-
tified. The conduction band, however, is less well
described. Clearly, the inclusion of second-neighbor in-
teractions would bring about much better agreement.
This would lead to interactions between the layers and in-
troduce dispersion along the Y direction. Moreover, it
would create dispersion of the flat nonbonding s levels
and cause splitting of bands throughout most of the BZ.

V. SUMMARY

Our results, derived from first principles using only the
atomic numbers of As and Se, are in excellent agreement
with experiment wherever comparisons have been possi-
ble. Firstly, the equilibrium bond length is correct to
within 1% of the experimental value, the equilibrium an-
gles are correct to within 3% and the equilibrium inter-
layer distance and the layer-layer positions are correct to
within 5%. Secondly, the averaged density of states
agrees very well with an experimental photoemission spec-
trum. Thirdly, the position of the direct gap in the BZ
and the number of indirect transitions before the onset of
direct transitions are consistent with experimental find-
ings.

Furthermore, quantitative predictions for experimental
results have been possible. The positions of the band-edge
extrema have been determined, and the lowest-lying in-
direct and direct gaps identified. It is predicted that the
effective-mass spectrum should show an unusually rich
behavior including a large anisotropy in magnitude of the
electron masses and a light hole perpendicular to the plane
of the layers. In addition, the hole band mobility should

be much more sensitive to fluctuations in interlayer
separation than the mobility of the electron.

We found conceptually simple models of the electronic
states to be valid. Thus the valence band and the lowest
conduction bands can be adequately described in terms of
s and p orbitals and their bonding, antibonding, and non-
bonding configurations. For example, Se lone-pair states
can be identified, they are indeed nonbonding p like, and
do not mix substantially with the p-like bonding states.
This occurs even though the two types of states are not
separated by an energy gap.

The material displays several different energy scales as-
sociated with structural distortions. Bond-length force
constants are much larger than bond-bending force con-
stants, and the bond angles centered around the As atoms
are stiffer than bond angles centered on the Se atoms.
The three interlayer optical-phonon modes form a hierar-
chy with the compressional mode lying the highest in fre-
quency and the shear mode along the ¢ direction the
lowest.

Finally, the cohesive energy an be split up into in-
tralayer and interlayer contributions, with a corresponding
ratio of about 10:1. The interlayer van der Waals interac-
tion is thus unusually strong, which may be interpreted as
arising from the layerlike structure and small optical gap
of the material.
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