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Conductivity and Hall mobilities have been calculated for nondegenerately doped p-type silicon.
In addition to the two-phonon scattering mechanisms already incorporated by the author earlier
[Phys. Rev. B 28, 5973 (1983)], the ionized- and neutral-impurity scattering are also included. Care
has been taken to include many contributions arising from the anisotropic-nonparabolic nature of
the bands in modeling the transport. Results of the calculation are compared with data on boron-,
aluminum-, gallium-, and indium-doped silicon. The comparison indicates that the Brooks-Herring
model, modified to incorporate nonparabolic and most of the anisotropic effects, agrees well with
experiments. On the other hand, it is shown that current models of neutral-impurity scattering are
not sufficiently accurate as yet. A theory due to Ralph can, with one adjustable parameter, be made
to give good agreement with experiments. The calculated ratio of the Hall mobility to the conduc-
tivity mobility, the so-called r factor, has been used to obtain the hole concentrations from the Hall-
coefficient data. Least-squares fitting of the charge-balance equation to the hole-concentration data
as a function of temperature produces superior X? and acceptor activation energies compared to
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those resulting from the use of the r=1 approximation.

I. INTRODUCTION

Transport modeling in semiconductors is complicated
by the simultaneous presence of several scattering mecha-
nisms which limit carriers’ mobility in the same tempera-
ture range."? Quantitative success of transport models
depends critically on the proper treatment of the scatter-
ing mechanisms, band structure, and on careful solution
of the Boltzmann equation. In general, semiconductors
have very complicated valence-band structures and offer a
particularly difficult challenge in this regard.> In a series
of papers the conductivity and Hall mobilities of p-type
silicon have been calculated as limited by the acoustic-
and optical-phonon scattering.*~® This has been achieved
without the relaxation-time approximation, while retain-
ing the nonparabolic-anisotropic nature of the valence
bands, and in essentially a first-principles spirit. Given
that only the intrinsic scattering mechanisms have been
included so far, the results hold for relatively pure sam-
ples only.

The present paper incorporates another two scattering
mechanisms: the ionized- and neutral-impurity scatter-
ing. Barring the presence of dislocations, charge clusters,
or other less common scattering centers, the four scatter-
ing mechanisms determine the mobility of p-type silicon.
(The hole-hole scattering will be operative at higher
dopant concentrations than considered here.) The aim of
this paper will be to introduce as few approximations into
the treatment as possible. Coupled with the rigorous cal-
culation of the phonon-limited mobility perhaps the limits
of validity of ionized- and neutral-impurity scattering
models can be assessed. At each step it will, therefore, be
important to indicate some of the approximations in-
volved. It will be the task of the following sections to
show that good understanding has already been achieved.

Results of the present calculation will find their im-
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mediate practical application in the interpretation of the
Hall data. As is well known, the Hall coefficient must be
multiplied by the r factor, the ratio of the Hall-to-
conductivity mobility, to give the carrier concentration
properly. The common practice of assuming r =1 results
in wrong dopant concentrations and activation energies as
calculated from fits of Hall data to the charge-balance
equation.®1°

A comprehensive review of the state-of-the-art in the
ionized-impurity scattering is given in the review article
by Chattopadhyay and Queisser.!! The neutral-impurity
scattering is one of the least understood mechanisms. The
impurities of interest here are the neutral acceptors which
by analogy with hydrogen can bind an extra carrier. >~
The present day understanding of this scattering mecha-
nism in semiconductors draws from works by Erginsoy,'?
Anselm,!® Sclar,’® and McGill and Baron.?! Erginsoy,
and later McGill and Baron, employ phase shifts calculat-
ed for the corresponding electron-neutral hydrogen prob-
lem.?>2 In practice a scaling factor is necessary to make
Erginsoy’s theory agree with experiment.?*—?’

There have been several comprehensive calculations of
mobilities in p-type silicon.?**—3% The way in which
these authors approach the problem of phonon-limited
mobilities is described in Ref. 8. For the treatment of the
ionized-impurity scattering all the authors use the
Brooks-Herring (BH) approach. Lin et al.*® and Brag-
gins®* introduce various effective masses into the BH
equation. Lin et al.’® and Li?® use a mixture of conduc-
tivity and density-of-states (DOS) effective masses, while
Braggins uses curvature effective masses. The present pa-
per will provide a more systematic approach to the prob-
lem of including the nonparabolic-anisotropic effects
without using the relaxation-time approximation.

Lin et al.’® and Li*® employ neutral-impurity relaxa-
tion times derived by Sclar?® using separate times for the
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light- and heavy-hole bands by inserting DOS masses for
these bands into Sclar’s expression. This procedure
neglects the fact that the bands are coupled even if the in-
terband scattering is negligible. A better procedure is
given by Ralph3} and will be used in this paper. Brag-
gins?* does essentially what Lin ez al. and Li have done
but with the Erginsoy formulation. From Braggins’s
work it is apparent that Erginsoy’s theory gives the
correct order of magnitude result but an adjustable pa-
rameter is necessary for a good fit to experiment. Given
that the phonon-limited mobilities have already been cal-
culated with good precision,® the quantitative predictions
about the ionized- and neutral-limited mobilities can be
made with more certainty.

In Sec. II the theory of ionized-impurity scattering will
be presented together with a more detailed discussion of
the state-of-the-art in this field. Section III discusses the
neutral-impurity scattering in analogous manner. Section
IV will be devoted to the presentation of results for the
mobilities and to the use of the calculated r factor in the
fit of the Hall carrier concentration data to the charge-
balance equation. The quality of the fit will be used as
one of the goodness criteria for the calculated r factors.
Discussion will be given in Sec. V.

II. IONIZED-IMPURITY SCATTERING FORMALISM

The hole—ionized-impurity scattering rates for p-type
silicon have been calculated using the first Born approxi-
mation. The formalism is summarized below and its limi-
tations are pointed out. It should be remembered that the
formalism adopted here was chosen because it retains
most of the solid-state effects relevant to the scattering
process. The phase-shift analysis is essentially an atomic-
like description of the process, as practiced nowadays,
which neglects such solid-state effects as valence-band
coupling, band nonparabolicities, and anisotropies (see, for
example, Refs. 34—36 and the review in Ref. 11).

A. Comparison of theories

The  Brooks-Herring®3®  description  of  the

carrier—ionized-impurity scattering has been adopted for
the treatment of the transition rates. A detailed deriva-
tion of the scattering rates was provided by Falicov and
Cuevas®® whose treatment will be extended here to
nonparabolic-anisotropic bands. Note that no mention is
being made of the scattering potential in these develop-
ments. The derived transition rates can be obtained in the
first Born approximation from a screened Coulomb poten-
tial of the Yukawa type. Yet the Falicov-Cuevas® treat-
ment gives configuration-averaged transition rates from
statistical analysis of an ionized center distribution.
Therefore, there may be several potentials leading to the
same scattering rates; the Yukawa potential is a con-
venient representation of just one such potential.

There is a large body of literature dealing with the Yu-
kawa potential and its refinements.!! The phase-shift
analysis of the scattering rates is standardly employed
with these potentials. Several authors®>3640:41 gelf.
consistently adjust these potentials in order to satisfy the
Friedel sum rule.*? In general, it would be better to
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dispense with potentials altogether since only the average
scattering property of the medium is relevant. On the
other hand, when screening by free carriers is the dom-
inant screening mechanism each scattering center may
scatter independently of the others. Multiple-ion en-
counters are thus avoided and a single scattering potential
for an ion is a meaningful concept. In these cases the
phase-shift analysis, the Yukawa potential, and the
Friedel sum rules are valid concepts for treatment of the
scattering problem. For p-type dopants in silicon with a
reasonable amount of compensation the regime of dom-
inant free-carrier screening occurs at temperatures greater
than 30—50 K depending on the binding energy of the ac-
ceptors. That is precisely the temperature region where
the phase-shift analysis and the Born-approximation yield
similar results. It has been pointed out by Stern,*! and
also by Krieger and Strauss,*’ that when the Born approx-
imation is valid it also satisfies the Friedel sum rule.

In the low-temperature region where the Born-
approximation becomes invalid the phase-shift analysis
fails as well. Here it is the multiple-ion encounters that
invalidate the single-ion analysis used in phase-shift calcu-
lations.®*~% As shown by Meyer and Bartoli** the
multi-ion scattering has a negligible effect on mobilities
when the screening length is much longer than the elec-
tron wavelength. On the other hand, the Born approxi-
mation coupled with the statistical analysis of Falicov and
Cuevas does have the effect of averaging over the ensem-
ble of scatterers. It may be added that it is not easy to en-
vision a procedure to account for randomness of impurity
distribution within the partial wave scheme.**

Refinements to the Yukawa potential involve the use of
spatially variable dielectric constants in order to account
for a possibly different dielectric response around the im-
purity than in the rest of the bulk.*’ =% Various calcula-
tions agree that the modifications of the dielectric con-
stant from its long-wavelength limit in the bulk extend no
farther than one interatomic distance.’*¢>%% The
models for the valence dielectric screening are isotropic
and homogeneous rather than anisotropic and nonlo-
cal.®1%2 Nevertheless, the effect of the variable valence
electron dielectric screening on the mobilities has been
shown by Resta and Resca®® and by Scarfone and
Richardson®’ to be negligible for carrier densities below
10" ¢cm™3. In general, the valence dielectric screening
leads to negligible corrections to the BH results for nonde-
generately doped silicon. %37

It is known that the Falicov-Cuevas scattering rates
should fail at some low temperature where the free-
electron screening is diminished. There have been several
proposals to alleviate this shortcoming of the theory. By
and large these proposals are untested. The temperature
region in question is also the region where much bigger
problems arise in the theory.

There is a body of literature concerned with the limits
to the validity of the Born approximation.!!**=3¢ The
Born approximation is known to be good for high-carrier
energies which is the case at higher temperatures.’* In
general, one wants the perturbation to the wave function
by the scattering potential to be small. Meyer and Barto-
1i use an equation which shows the deviation of the wave
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function from the plane-wave form®

elklr——rl

"(r)= — g ik (gt 2.1
¥'(r) Zﬂ_ﬁzfdr PEPIN (r), 2.1)

which with a change of variables becomes
m* ik(R+2Z)

ey ikz [ €
Yin=——"ge f z

where R=r—r'. It is usual at this point to let r=0 and
take the validity of the Born approximation to mean

V(r+R)R, (2.2)

| (r=0] <« 1. (2.3)

This is a very pessimistic outlook®® since it examines

the wave function at the point r=0 where the potential is
actually infinite. Anyway, evaluating Eq. (2.3) for a
screened Coulomb potential one gets the condition that

L)aO >>A- ’ (2-4)

where L is the screening length, a, is the hydrogenic ra-
dius, and A is the wavelength of the incident charge car-
rier.

Equation (2.4) indicates that the Born approximation is
bound to fail in the long-wavelength limit. In fact, exam-
ining the Born and the phase-shift studies of Meyer and
Bartoli*® shows that for moderate doping levels, less than
107 cm™3 or so, and at temperatures above carrier
freeze-out both ways of calculating mobilities agree very
closely. The Meyer and Bartoli calculations do not in-
clude compensation and activation of carriers from the
parent impurities and scattering mechanisms other than
the ionized-impurity scattering. Perhaps rather fortui-
tously their own calculation for n-type GaAs (Ref. 36)
and n-type Si (Ref. 65) shows better agreement with ex-
periment for the Born approximation than for the phase-
shift analysis.

There is a list of other potentially important effects that
can arise in carrier—ionized-impurity scattering. When
the field of the ionized center is perturbed by the oncom-
ing charge carrier, i.e., the polarization effects, the treat-
ment of Takimoto®” and Mclrvine® becomes relevant.
Takimoto showed though that these complications arise
only in the high carrier-concentration regime, greater than
107 cm~3. The samples used in the present work for
comparison with theory have carrier concentrations
p <107 cm™3. It is also known that the field of an ion-
ized acceptor deviates from the simple screened Yukawa
potential in the vicinity of the ion core. This contribution
to the carrier scattering goes by the name of central-cell
scattering. Ralph et al.* have calculated mobilities for
n-type dopants in silicon and germanium including the
central-cell scattering. Their model involves a short-range
potential added to a screened Coulomb potential. The
short-range potential is determined from the donor bind-
ing energy. Even here the central-cell contribution to the
scattering is not important at room temperature for
charge densities less than 10!7 cm~3. For higher densities
mobilities are reduced from the purely Coulomb screened
mobilities yet a sizable discrepancy with experiments
remains. The authors suspect electron-electron and
charge-cluster scattering has an effect on the results.

In summary of various approaches to the problem it ap-
pears that the standard Brooks-Herring theory should be
tried first since it offers the best realization of a theory
which employs both band nonparabolicities and anisotro-
pies. These effects were shown to be crucially important
in the treatment of phonon-limited mobilities. The
phase-shift analysis obviously has its place as a valid
scheme whose region of validity significantly overlaps the
region of validity for the Born approximation. In the case
of hole transport the proper phase-shift calculation ought
to reflect the coupled valence-band nature of the resulting
Hamiltonian as in the work of Ralph.*?

B. Transition rates—present theory

The transition rate for hole scattering from band n with
wave vector k to band m with wave vector k' is given in
the first Born approximation as

2
P(nkmk') =" | (Yo | ¥ | Ymic) | B Enk—Emic)

(2.5)

where (r |, ) is the Bloch wave function for the hole, ¥
is the scattering potential, E,; are the band energies, and
the delta function ensures energy conservation for
ionized-impurity scattering. Expanding the Bloch waves
for k in the vicinity of the Brillouin-zone center in terms
of Kohn-Luttinger™® wave functions results in

‘I}nk(r)z zanm(k)xmk(f) N (2.6)

where the Kohn-Luttinger wave function is given by
Xk =ting ()™, 2.7

uny (1) is the periodic part of the Bloch wave at ko. The

wave vector kg is the expansion point for the series (2.6)
and for p-type silicon is the Brillouin-zone center, point

Using the expansion (2.6) in the equation for the transi-
tion rates, Eq. (2.5), gives for the matrix element

(Il/,,kl | 4 "/’mk') = Za,,'p(k)amq(k)(k’pk ' V ‘qu'> . (2.8)
p’q

For sufficiently “gentle” potentials’™®
pi | V [ Xgi) =8, V(k—K') , 2.9)

where V' (k—Kk’) is the Fourier transform of V(r).

The transition rate for scattering from band manifold
N with wave vector k to band manifold M with wave vec-
tor k' will now be given by

T2 2

n(N) m(M)

PN, kMK)=2T

i

2
za,;,(k)a,,,,(k')1 l
p

X | V(k—K') | *8(Eny—Epy) » (2.10)

where the sum within the large parentheses proceeds over
members of the Kramers degenerate band manifolds N
and M.
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The approach of Brooks and Herring®” as given by

Falicov and Cuevas® is to calculate the Fourier transform
V(k—k’) from the Poisson equation. The method lets the
carriers and ionized impurities redistribute themselves in a
manner which produces mutual screening. Ensemble
average of the resulting scattering rate is performed by as-
suming complete randomness of both the ionized majority
and minority ion distributions and by assuming the two
distributions to be uncorrelated. The configuration-
averaged result is

47e? 2Np+p

€

1
Q

(| Vk—K)|2)N= 7

1
k—k'| 2+
k=K |7+

(2.1

where  is the volume of the crystal, e is the electronic
charge, € is the static dielectric constant (11.7 for silicon),
Np is the density of donors, p is the hole concentration in
the valence band, and (2Np-+p) is the total ionized-
impurity concentration. The Debye length is given by

1/L}3 =4me?/eky Tp; , (2.12)

where kg is the Boltzmann constant, T is the absolute
temperature, and the screening charge density p; is?

Ni
ps=p+ I N/——
i

N, (2.13)

where the sum is over all acceptors of density N;, with

N;~ acceptors ionized, and N acceptors neutral. Equa-

tions (2.11) and (2.12) assume that all the donors are ion-
ized so that Ni =N, and the present treatment will ex-
clude the temperature region where there is a significant
amount of intrinsic electrons, T > 350 K for lightly doped
p-type silicon.

Owing to the linearization of the Poisson equation in
deriving Eq. (2.11) the treatment should break down at
some low temperature for samples with compensating
donors.>® As discussed above the Born approximation
breaks down at low temperatures anyway. Several
schemes for calculating the screening'' at low tempera-
tures have been proposed but are not widely used. In
practice, the expression for p;, Eq. (2.13), appears to work
rather well and its limitations are best assessed by com-
parison of experiment and theory. The reader may con-
sult the review article by Chattopadhyay and Queisser'!
for further discussion of many other effects which may
complicate the hole—ionized-impurity scattering. Their
inclusion in the present work is not warranted before the
major effects explored here are evaluated.

The unusual form of Eq. (2.13) for p; should make it
clear that we are not dealing with an ordinary scattering
potential but with some average scattering property of the
medium. Only when p,~p are the ions sufficiently
screened to be regarded as isolated scattering centers.

C. Overlap factor
The overlap factor in Eq. (2.10) is given by

Onukk)=57 3 3 | 3 anmka,,(k)|?.
n(Nym(M) p

(2.14)

In a previous work by the author the transition rates for
acoustic- and optical-phonon scattering process were ex-
panded in a complete set of cubic harmonics.® This ap-
proach is not practical here since the Fourier transform
squared, Eq. (2.11), is very sharply peaked in the forward
direction k=k'. Instead, I retain Eq. (2.11) as is and fit
the angular variations for the overlap factor Oy,,, Eq.
(2.14).

One notes several symmetry properties on examining
Egs. (2.10) and (2.14). First, the microscopic reversibility
holds

Prp(k, k') =Pppy(k', k), (2.15)
since the collision is elastic. Similarly,
Onm (kK )=0py(K' k), (2.16)
on general grounds. Additionally though,
Onm(—k, —k')=0pp(k, —k')=Opp(—k,k’)
=O0yu(k,k’), (2.17)

which does not hold for the total rate Py, (k,k’) [but
Pyp(—k, —k')=Ppp(k,k')]. These properties are the
consequences of the inversion and time-reversal sym-
metries.

Since the overlap factor is even in both k and k’, only
even representations can occur in its expansion in cubic
harmonics. From the point-group symmetry one also has

Onm(Rk,RK')=O0pp(k k') , (2.18)

which requires that the cubic-harmonic expansion have
the form

Onu(kkK)=3 3 Oy (&)
i LL

li - A .

> KHRKHE)

n=1

X (2.19)

in standard notation, where & is the energy-dependent
coefficient and the sum proceeds over the five even irredu-
cible representations of the cubic point group O,
(R €0). Unfortunately, this degree of rigor is very ex-
pensive to implement on a computer since it requires
four-dimensional integrals to be performed in setting up
solutions to the Boltzmann equation, Sec. II D.

Instead of the expansion (2.19) I have used a complete
set of functions in relative angle between the incident k
and scattered k’ directions, i.e., the Legendre polynomials,
so that

Onu(k,k)=3 oMM(& )P, (k-k') . (2.20)
L
One notes the following identity:
RN 4 i i
P, (k-k')= L 11 > KM KKHMK) , (2.21)

(7]
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which arises from unitarity of transformation between
spherical and cubic harmonics. With (2.21) inserted in
(2.20) one can see by comparison with Eq. (2.19) that the
latter expansion is more general than Eq. (2.20).
Nevertheless, the & coefficients in (2.20) will be obtained
via a least-squares fit to the calculated Oy,,’s and should
be accurate in the least-squares sense. From Eq. (2.17)
only even L values occur in (2.20).

A large number of Oy,,’s were calculated. The &,k
mesh consisted of 378 direction pairs unrelated by the
symmetry condition, Eq. (2.18). Op,,’s were obtained on
a linear energy mesh of 52 energies from 0.0045 to 0.234
eV and a logarithmic energy mesh of 16 points given by

E =exp[ —13.305+(j —1)0.6]

(measured in eV) with 1<j<16. The least-squares fit
procedure is similar to that developed in Ref. 5. I solve
the following linear simultaneous equation for #YM(&):

C.=3 B, .0tM#), 2.22)
<
where
CL=3 Onu(k,X,&)P, (k k), (2.23)
ﬁ’
By =3 P (kk)P(kK), (2.24)
ﬁ,

so that # =B~ !C. The band energies and a,,(k) in Eq.
(2.2) are obtained from solutions of the 6X6 Kane’s k-p
Hamiltonian.

Using the same band parameters as in previous work,? I
obtain the expansion coefficients & as a function of ener-
gy displayed in Fig. 1. The fit was done with L =0, 2, 4,
6, and 8 where the higher angular coefficients, although
small, are not negligible. It is apparent that the
nonparabolic-anisotropic structure of the valence bands
results in strongly energy-dependent overlap expansion
coefficients, especially below the spin-orbit energy of 44
meV.

It is interesting to compare the results in Fig. 1 with
those obtained for the isotropic-parabolic valence-band
model. Here the valence-band Hamiltonian is given by
(infinite spin-orbit coupling limit)”!

_L‘_’i B Y b g2
H= 2m 9 2m FET
where P? and J‘? are irreducible second-rank tensors for
pseudospin J = 3, with eigenenergies,

(2.25)

PRLALLEI (2.26)
2m
for J,=+ % states (heavy-hole band H), and
=k (1+p) (2.27)
2m

for J,=+ (light-hole band L). The split-off band S
corresponds to J =+ and J,=*+. The wave functions
for the three top valence bands, in absence of the scatter-
ing potential, are for the heavy-hole band

1.0
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FIG. 1. The zeroth- and second-order Legendre polynomial
expansion coefficients of the band overlaps as a function of en-
ergy. S, L, and H stand for the spin-orbit, light-, and heavy-
hole bands, respectively.

elkr| 243y (2.28a)
for the light-hole band

elkr| 241y (2.28b)
and for the spin-orbit band

elkr| Ly % ). (2.28¢)

Far from the scattering potential k, J, and J, continue
to be good quantum numbers and since J = % for the L,H
bands and J =+ for the S band, there is no interband
scattering with the S band. Figure 1 shows that there
indeed is a nonvanishing overlap between S and L,H
bands which is not reflected by the spherical-parabolic
model owing to the finite spin-orbit coupling.

Let us then consider scattering among the two top
valence bands with J =3. Let the hole be incident along
the k =k, direction, with J, quantum number along the z
direction being n. The scattered hole propagates along
direction k’. The scattered hole must belong to a definite
band so that the projection of J onto the k' direction is m.
In terms of eigenstates quantized along the k, axis,
| jm; ), the scattered state is*®

R(0,6p,¢¢) | 2m) , (2.29)

where R is the rotation operator and 6,.,¢, are angles de-
fining the direction of k’. The overlap between the initial
and final states is given by

(3n | R(0,6p,¢y)| +m) =D} k—K'), (2.30)
where the D are the rotation matrices. For calculations of
the scattering rates we square the overlap, sum it over ini-
tial and final states, and divide by two. Therefore,
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OrL=17 | Dani(k—k') | *=1—§ sin’6,
n=i%m=i%

Opn =+ | DXk —k')|2=1—+sin%0 ,
n=i%m=i-§-

Oin=+ | DYHk—K')|2=Fsin’0,  (2.31)

where cos@=k-k’. Note that in terms of Legendre poly-

nomials
Op; =Opy=1—5sin®0=3[Py+P,], (2.32)
Oy =0y =+ sin*0=5[Py—P,] . (2.33)

In Fig. 1 the #M~+ for HH, HL and LL scattering as
& —0 while 5~ are about + and #5%~ — 1 which
we expect from Eqs (2.32) and (2.33). For mﬁmte spin-
orbit coupling Ogs=1=P,. In Fig. 1, though, the first
two coefficients in the Legendre expansion are seen to
vary significantly with energy. The coefficients appear to
level off for energies higher than the spin-orbit energy.
Clearly, the difference between results of Egs. (2.32) and
(2.33) and Fig. 1 are due to significant hybridizations of
the three bands so that neither is a pure eigenstate of J or
J,.

ﬁHH
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D. The Boltzmann equation

The Boltzmann equation is given by®

—%F-Vk-%B-[VkEN(k)XVk] frik)
=3 — (2 fdk’P‘°“(M KN, K[ fa (k) — £y (k)]
M

+ -, (2.34)

where the ellipsis here represents phonon scattering terms
and F and B are the electric and magnetic fields, respec-
tively. Using the expansions

frnK)=fYK)[1+F-®y(k)+(FxB)Xyk)+ -],

(2.35)
2
oy(&k)=Se | = | KAKR\(E,T), (2.36)
<\ kgT
~ 41 } 4re? 80
Xy(& k=3 KK E,T), (237
<\ | kyT | #

as in Ref. 8, results in a system of linear equations for
and £ The scattering matrix for the ionized-impurity
scattering is given by integrals over constant energy &
surfaces

Ty (&, KT (&,k)0m (KK, &) 3 K¥(RKH (&)

I

2
5 o _ |1 |8me? | 2Np+p
[SNA",MA'(g)]mn—‘ { 3 € kBT
x [ dk [ dk

v ki |+ 75

1 2

D

Cy(&, k)T p(8,k)05p(k K, f)ZK ®RKY(K)

—Onm 2
P

In Eq. (2.38) ky is the wave vector for band N and energy
& in direction k. Other terms are as defined in Ref. 8.
Note that the matrix S is symmetric in the combined MA
indices.

Equation (2.38) is a general matrix element which in
particular has terms for intraband N =M and interband
scattering. The angular momentum indices used in the
present work range through A', A" =1,3,5,5,7,7' which
indicates that the formalism goes beyond the relaxation
approximation where A',A""=1. The relaxation-time ap-
proximation is equivalent to retaining only the A=1 term
in the cubic-harmonic expansions of the distribution func-
tion, Egs. (2.35)—(2.37).

There is a limited number of simplifications one may

. . (2.38)
|kN—k}’!2+'Z'2“
D

[

accomplish with Eq. (2.38). It is possible to reduce the
double angular integrations to within one irreducible
wedge of the Brilluoin zone yet the four-dimensional in-
tegration still has to be performed. The Debye length L,
depends on temperature, concentrations, and identities of
dopants, so that there are a large number of these in-
tegrals to be performed. This would be inordinately time
consuming.

Instead, I simplify certain of the quantities appearing in
Eq. (2.38). T'y(&,k) and calipers ky(k, &) both have the
cubic symmetry and their cubic-harmonic expansion have
large spherical terms L =0 and smaller L =4,6,8, ...
contributions. I neglect those higher-order terms and
compute spherically averaged quantities by integrating
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over the solid angle:

1 A ~
kn(8)=7— [ dkky(k, %), (2.39)

1 ~ P
Ty(&)=,— [dkTyk ). (2.40)

In the spherical-parabolic band model one would have
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The spherically averaged quantities (2.39) and (2.40) are
used only in evaluating the scattering matrix Eq. (2.38)
and nowhere else. Those quantities still retain the band
nonparabolicity through the energy dependence. Further
analytic progress with Eq. (2.38) would have been impos-
sible without these simplifications.

In order to obtain an explicit expression for the scatter-
ing matrix, Eq. (2.38), I use expansion (2.20) for the over-

kn(&)=2mo /) m* & /my)?, (2.41)  laps and replace T'y,ky by their isotropic averages, Egs.
(2.39) and (2.40). The four-dimensional integral can be
Ty(&)=(m*/my)*? &1/ (2.42)  performed analytically to yield
J
2
2 22Ny +p | [ TN (E)Ty(#) d
) _ 8me D NM a
Snarmn (8 lion=8 2 | —7 p Ky T K2 (B (E) ;, Ir (&) i (P _(2)Qr (2],
FN(g)FP(g) NP dQL(Z)
-6 —————— > O (&) | —— )

NM% K EKAE) % L a2 e (2.43)

where L . = min{L,A’} and L , = max{L,A'}, and where

3 k3 &E)+kH(&)+Ly?
M T (B (8)

and Qy (z) is the Legendre polynomial of the second kind
defined everywhere except along the cut on the real axis
from — w0 to + 1.

One may want to note several familiar properties of the
scattering matrix, which is related to the relaxation time.
First, for intraband scattering, N =M, the following can
be factored out from Eq. (2.38):

3 KKK
N

A

k) —-K¥®)], (2.44)

which vanishes for f{:ﬁ’, i.e., for forward scattering. If
we keep A=1 only in Eq. (2.44) we obtain (1— cosf)
which is the correct weighting factor for the momentum
relaxation time in the relaxation-time approximation.
Second, using Eq. (2.38) with A’=A""=1 and the overlaps
for the two-band spherical-parabolic model, Egs. (2.32)
and (2.33), one will recover the interband and intraband
relaxation times of Bir, Normantas, and Pikus.”?> Third,
retaining the intraband terms only with A’=A"=1 and

OMM =8ym810 (2.45)

results in the Brooks-Herring relaxation times.
It is incorrect to take Eq. (2.43) and make the following
replacements:

ky(8)—ky(k, &) , (2.462)

Ty(&)—Tyk, &), (2.46b)

and then average S over the solid angle. The angular in-
tegrals have already been done in going from (2.38) to
(2.43) and the reintroduction of angular dependence is ar-
tificial rigor. This has been done by Takeda er al.? in
their Egs. (2.17) and (2.19), and by Nakagawa and Zuko-
tynski*? in their Eq. (14).

For low-carrier energies, or in the limit of parabolic
bands, Ty ~ &, k) ~ &, so that

N;/&T, k*L3>>1
ET/N;, k*Lj<<1.

(2.47a)
(2.47b)

S~

Using Egs. (2.67) or (2.68) of Ref. 8 for the mobilities one
obtains

(2.48a)
(2.48b)

T3/2/N]

H~ NIT—5/2

for the cases of Eqgs. (2.47a) and (2.47b), respectively.

The matrix equations for 6 and £ in Egs. (2.36) and
(2.37) were set up as in Eqgs. (2.56) and (2.57) of Ref. 8 and
then mobilities u, and py were calculated from Egs.
(2.67) and (2.68) of that reference. The treatment of the
acoustic- and optical-phonon scattering is identical to that
in the earlier work. For future reference, I define partial
band mobilities and Hall factors for each band in the fol-
lowing manner:

Be= D PNUL/P (2.49)
N
Belin= 3 PNUNUE /P (2.50)
N
pP= 2PN > (2.51)
N
ry=py/ul, (2.52)

which defines p, u%, and ry for each band N. The total
r factor

r=pp/pe= X rvpn(ul /) /p (2.53)
N
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has contributions from all bands weighted by both py and
uY. Therefore, even if all ry were equal, 7 itself may not
equal any of the ry owing to the band multiplicity. More
familiar conductivity tensors are given by’

on=epp.= 3 0M, (2.54)
O3 =eplcity = 3, 011\'23 , (2.55)
N
with
ot =epyp (2.56)
oYy =epnulpls - 2.57)

III. NEUTRAL-IMPURITY SCATTERING

A. Erginsoy formulation

Neutral impurities have short-range potentials in com-
parison to the range of the Coulomb potential. One type
of neutral impurities, similar to carbon and oxygen in sil-
icon, have scattering cross sections on the order of their
geometrical size. This number being small allows us to
neglect this type of neutral-impurity scattering.?

There is another type of neutral impurity which can
scatter strongly. At low temperatures acceptors are not
ionized and there is a large number of neutral hydrogen-
like acceptor centers. It is known that neutral hydrogen
in empty space can bind a second electron with the bind-
ing energy of 0.75 eV, as compared with the binding ener-
gy of 13.6 eV for the first electron. It is this ability to
bind an extra carrier which points to the possibility of
strong scattering, especially for slow carriers at lower tem-
peratures. The s-wave phase shift for electron-hydrogen
scattering was worked out by Massey and Moiseiwitsch?
and applied to semiconductors by Erginsoy.!® The result
for the differential scattering cross section, for the as-
sumed elastic scattering, is

2000
Ark

where a is the Bohr radius and k =(2m*& /#*)'/? is the
wave vector. For hydrogenic acceptors

0(6,)= (3.1

e’
ag= , (3.2)
07 o2t
and the binding energy of the hole is
m*e
Ep=— . (3.3)
5 26’

It is clear that Erginsoy’s approach employs several ap-
proximations. Only /=0 phase shift is used and the
bands are taken to be isotropic and uncoupled. If one
wishes the dependence on energy of the scattered hole can
be taken into account in the effective mass m*. It is un-
clear which of the many effective masses one should use.
Li?® and Lin et al.*® employ density-of-states effective
masses. Braggins?* uses the density-of-states effective
mass of each band to obtain the scaled Bohr radius a, and
a curvature related mass in the rest of the mobility calcu-
lation.

FRANK SZMULOWICZ 34

There still remains the problem that the acceptors are
not hydrogenic. Baron et al.'? attempt to account for this
fact by noting the identity

e2

Egay=—, 34
BAo e (3.4)
which holds for Coulomb centers only, and then use

e2

T 2eEp ’

Qo (35)
with experimentally measured Ep in Egs. (3.1). In the
same context, I would like to observe that another identi-
ty, which holds for Coulomb centers,

2

Egab= (3.6)

*
gives a, quite a bit different (80% difference for In) from
the former estimate, Eq. (3.5). Nevertheless, Eq. (3.5) will
be used in the present work since an adjustable parameter
for the strength of Erginsoy’s neutral impurity scattering
will be needed anyway. Equation (3.5) alone does not
correct for the difference in neutral impurity scattering by
the various acceptors in silicon.

In order to implement Erginsoy’s theory within the
present formalism a few intermediate steps are noted.
The transition rate for hole scattering between bands n
and m with the change of wave vector from k to k' is

Pom (kX' )=27/% | Ty (k,K') | 28(E, (k) —E, (k"))  (3.7)

from Fermi’s golden rule. The square of the T matrix is
related to the differential scattering cross section. For the
isotropic scattering considered here

4h?
2m, )

2
| Tom (k,k') | 2= O (0)8,m » (3.8)

where only intraband scattering is considered and 6 is the
relative angle between k and k’. Using Eq. (3.1) results in

,. 40mtiag ,
P, (kk )ZWO"”‘“"I( )
XE,(k)—E,(K')8um » 3.9

where the band overlap O,,,(k,k’) has been added, and
[see Eq. (2.39)]

ko (&)=(k,(k,&)) (3.10)

is the spherically averaged constant & surface caliper.
The effective mass m,, arises from velocity considerations,
or band curvature, so that

HEHE)

— '11
2m, (&) 310

defines m,(&). Since the transition rate is nonzero for
intraband scattering only

_ 1
Pyy=+ 2 2 P =Pppbypr -
n(N)m(M)

(3.12)
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Manipulating with the collision term of the Boltzmann
equation
Q
— | dk' Pyy(k,k)[fn(k')—fn(k)],
2m)? f NN v Sn(k)]
using the standard substitutions for fy, Eqgs. (2.35), gives
the system of linear equations as before. The scattering
matrix is diagonal in the band and angular momentum in-
dices
SNA”,MA’( gr T)neut
320 AT N (& )agNy

- _ OYM(E ) Bprne , (3.14)
my(E ) kylkgT)  ° NMER"

(3.13)

where Ny is the density of neutral impurities. Note that
this formalism decouples all three bands so that only in-
traband scattering is considered. The bands are taken to
be isotropic yet nonparabolic. Also, the present treatment
extends beyond the relaxation-time approximation since
the angular momenta A=1,3,5,5',7,7" are used in this
part of the calculation as well. Using the conversion from
my to ky, Eq. (3.11), and a, to Ep, Eq. (3.5), results in

SNA”,MA’( ff, T)neut
6407°T v (& )2’ Ny &*
kyeEg(kgT)

OFM(E o Nydpn . (3.15)

B. Ralph’s formulation of the neutral-impurity scattering

An approach to neutral-impurity scattering based on
scattering by a spherically symmetric square-well poten-
tial was originated by Anselm'’ and Sclar.’ The em-
phasis of this formulation is the role of the weakly bound
hydrogenic-impurity ion for a single spherical-parabolic
band. A numerical comparison between Sclar’s,
Erginsoy’s, and the improved phase-shift calculation by
McGill and Baron shows that the three calculations are
very close except at very low temperatures, T <20 K, or
so.’!  For completeness sake, I have also tried the
parameterized expressions of Meyer and Bartoli® and
have not found much difference between their results and
those using Erginsoy’s formulation.

In the case of scattering from a localized scattering
center there is formulation which takes into account the
multiband picture. In a largely unnoticed piece of work
Ralph?®® has done a very comprehensive job in elucidating
the physics and mathematics of scattering between
coupled-band manifolds. The model exhibits the essential
coupling between bands in the scattering process. It also
avoids the arbitrariness with which effective masses of all
sorts have been introduced by previous authors.

Following Ralph’s formalism I get for the scattering
rates

N
PMN(k,k’)z%;L—(:— | Ty | 8(Ey (k) —Ej (k')

1—2sin%9, N=M

, (3.16)
+sin%, N#£M

for scattering among the light-and heavy-hole manifolds
in the spherical-parabolic band approximation. At tem-
peratures where the spin-orbit band is appreciably occu-
pied the number of neutral centers is very small so that
this band may be neglected. Also,

(47)2 483
(Ex+&] [k} +kp]?

| To | *= (3.17)

where Ey is the binding energy of the second hole, and
#wki  #kg

- sz ZmH

(3.18)

define the radii of the spherical constant energy surfaces
for the light-, k;, and heavy-hole, kg, bands. The
denominator in Eq. (3.17), [k;+k#]% exhibits the
essential coupled-band nature of the problem. Apparent-
ly, Eq. (3.17) indicates that the proper mass to use is
(m*P=mji +mj . (3.19
It also should be noted that the angular factors in Eq.
(3.16) give rise to an angular dependence in P,sy. These
factors arise from the overlap between the initial- and
final-hole wave functions. At this stage I propose to re-

place Eq. (3.16) by its solid state analog, that is,
kL —PkL( g) ’

A (3.20)
1—3sin0—0yy(k,k', &), N=M

2 5in20—O0ny(k,kK', &), N~£M .

Also, Ey is on the order of 3—4 meV which is much less
than hole energies of interest for 7 >20 K. Thus to a
good approximation Ey~0. With these substitutions the
transition rate becomes

N 2402
PMN(k,k')z——N-—gl 4(4m)°&

Q i [k (&P +ky(&))

X Onp (K, k', 8)8(Ey(k)—Ep (k') . (3.21)
This form contains the main consequences of nonparabol-
icity but neglects several important aspects of the band
anisotropy. Admittedly, the substitutions, Eq. (3.20) are
heuristic in nature. It is not apparent at this time how the
full nonparabolic anisotropic nature of the valence bands
can be included in the scattering problem.

Following the procedure outlined previously the scatter-
ing matrix becomes

G s s (16m?  NyETx(E)
A MM = T ONAONM 4 T [k (8) + kg (€)°]

Ty (&)of™&)|, N\M=L,H

x| X

M=LH

(3.22)

where the sum over M proceeds only over the light- and
heavy-hole bands and only the L =0 component of
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ONM(ﬁ,/lE’, &) expansion is projected out.

It will be shown shortly that the theory outlined above
produces Hall mobilities whose shape as a function of
temperature agrees with experiment, unlike the Erginsoy
theory. For quantitative agreement it has been found
necessary to employ an adjustable parameter multiplying
Eq. (3.22). There are several reasons why the theory, as
advanced as it is, may still be lacking here. There are of
course various simplifications regarding the band shapes
and anisotropic effects. The solid-state analog argument
is obviously an ad hoc procedure. Yet, I regard these as
minor approximations compared to the assumption of a &
function for the scattering potential®>

V(r,r')=V,d(r)d(r') .

This assumption neglects the structure of the scattering
center. Here, there is a real need for a calculation using
phase-shift theories encompassing the multiband nature of
the valence bands. The adjustable parameter will be
found to be different for each acceptor.

In anticipation of numerical results in Sec. IV I develop
for comparison the behavior of the Erginsoy and Ralph
theories in the limit of a two spherical-parabolic band.
Using Egs. (2.41) and (2.42) with Erginsoy’s theory gives

(3.23)

Syn~Ny(my&N?/T (3.24)

Bestay~1/Ny (3.25)
and for a single noninteracting band

ry=1. (3.26)
Similarly, for Ralph’s theory for & >>Ey

Sy~ Ny /Do (3.27)

(mip"“+mg")

Bty ~(T'2/Ny) , (3.28)
and for a single noninteracting band

ry=457/128=1.1044 . (3.29)

Apparently, in Erginsoy’s theory the ratio of the light- to
heavy-hole scattering efficiency is

Spi /Sy ~(myp /my)72~0.53 , (3.30)
while in Ralph’s theory it is
Sir/Sug~(mp /myg )2 ~0.15, (3.31)

so that in the latter theory light holes are scattered 3.5
times less than in the former theory. These relations will
serve merely as guides for further discussion. The true
picture is complicated by nonparabolicity, anisotropy,
band coupling, and the inapplicability of the
Matthiessen’s rule.

In ending this review of the neutral-impurity scattering
theories it should be observed that ultimately in semicon-
ductor applications the effective-mass approximation
(EMA) is invoked. As noted earlier, EMA works best for
sufficiently gentle potentials. It may be that the short-
range potentials of the neutral impurities are too abrupt
for the validity of EMA to hold.
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IV. RESULTS

Before exhibiting results for real samples a short discus-
sion of model systems will be presented. This will have
the advantage of tracking the influence of the ionized-
and neutral-impurity scattering separately.

A. Model system for the study of the ionized-
and the neutral-impurity scattering

The theory of Brooks-Herring as modified in Sec. 1I
was applied to the ideal system where there is only one
fully ionized acceptor level and there is no compensation,
i.e.,

N,=p, 4.1)
Ly*=(4me?/ekgT)N 4 . (4.2)

I have calculated the Hall and conductivity mobilities as a
function of temperature for different values of N, in-
cluding both phonon scattering mechanisms. When
N,=10' the characteristic turnover in the mobility is
seen since the ionized-impurity limited mobility increases
with temperature. Figure 2 shows the calculated r factors
for several acceptor concentrations. The lowest concen-
tration shown on the graph is representative of a sample
with almost no ionized-impurity scattering and is indica-
tive of the Hall factors for the two-phonon scattering
mechanisms. As the ionized-impurity concentration in-
creases the r factor for the light-hole band generally de-
creases and for the heavy-hole band increases. The effect
of the ionized-impurity scattering is strongest, of course,
at the lowest temperatures with the phonon scattering
dominating the r-factor behavior at higher temperatures.
Apparently the light-hole band is affected more than the
heavy-hole band by the presence of the ionized-impurity
scattering. With increasing N4, the r factors for both
bands in Fig. 2 tend to a limit determined by the ionized-
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FIG. 2. Calculated Hall factors from calculated mobilities in-
cluding the acoustic- and optical-phonon scattering with the
Brooks-Herring ionized-impurity formalism. The r factor for
the heavy- and light-hole bands are shown as well as the total r
factor. The numbers next to each curve are the total number of
ionized centers (cm—3).
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impurity scattering alone. Owing to the complicated en-
ergy dependence in the scattering matrix, Eq. (2.43), that
limit is not 3157 /512=1.9328 as it is in simpler theories.
As shown by Blatt’* for both the partial wave and Born
calculation, the r factor for a single spherical-parabolic
band rises from about 1.1—1.2 at 20 K and saturates in
value at about 1.7 above 100 K. The same conclusion was
reached independently by Mansfield.” The present calcu-
lation confirms this trend which in large part is deter-
mined by the energy dependence of the scattering rates.
Given the r factor behavior for ionized scattering alone, it
is natural then that the ry, being on the order of 0.5 for
N, =10" cm™3, will rise toward those values and r;, be-
ing generally high for N, =102 cm~3, will decrease to-
ward the same limit. The mixing of the phonon- and
ionized-impurity scattering in the r factor may not be a
monotonic function of the degree of each type of scatter-
ing. As shown by Mansfield™ it is possible for the r fac-
tor for the combined scattering to be outside the values
for either scattering mechanism alone.

The total r factor in Fig. 2 is influenced more by ry
than by r; since the weighting for ry in Eq. (2.52) is py,
the partial band occupancy. It is known that the heavy-
hole band’s carrier-concentration effective mass increases
by a factor of 2 from low to high temperatures and its
capacity to hold the carriers, that is py, also increases ac-
cordingly.” At these temperatures the weighting by py
offsets the advantage that the light-hole band has in the
weighting by virtue of its higher conductivity mobility.

The next model system incorporated both phonon
scattering mechanisms and the neutral-impurity scattering
using Ralph’s formalism as developed in Sec. III. The
model system this time has a constant density of neutral
centers Ny. The neutral-impurity scattering appears im-
portant for Ny greater than 10" cm™3. The low-
temperature mobility becomes proportional to Ny' for
neutral-impurity concentrations above mid —10'7 cm 3.
The neutral-impurity scattering using Ralph’s formalism
produces a turnover in uy at low temperatures for heavier
doping. Flatness, if any, in uy versus T is produced only
as a result of the competition between the neutral- and the
acoustic-phonon scattering mechanisms.

Figure 3 shows that the effect of the neutral-impurity
scattering, when combined with the acoustic- and optical-
phonon scattering, is to raise the total r factor at low tem-
peratures and lower it at intermediate temperatures. The
behavior observed for r, r;, and ry in Fig. 3 is remark-
ably similar to that found in Fig. 2 for the effect of the
ionized-impurity scattering. The explanation here is simi-
lar to that offered above. With increasing Ny, the partial
r factors ry for each band attempt to reach the limit indi-
dicative of pure neutral-impurity scattering for single
noninteracting bands. That limit is on the order of unity,
Eq. (3.25) and (3.29), for most models of the neutral-
impurity scattering. This requires ry to rise and r; to
fall in value, as Ny increases, from values r; and ry had
for Ny=0. This effect is strongest at low temperatures
where the neutral-impurity scattering is strong. The total
r factor is again dominated by ry owing to the higher
heavy-hole band concentration. Lastly, it is expected that
the r factors for Erginsoy’s theory should be lower than
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FIG. 3. Calculated Hall factors from calculated mobilities in-
cluding the acoustic- and optical-phonon scattering with the
Ralph neutral-impurity scattering formalism. The r factor for
the heavy- and light-hole bands are shown as well as the total
factor. The numbers next to each curve are the total number of

neutral centers (cm3).

for Ralph’s since the light holes in Erginsoy’s theory are
scattered 3.5 times stronger in that theory than in Ralph’s.
Explicit calculations presented next confirm that predic-
tion.

B. Comparison of theory with experiment

The theory of Sec. III has been applied to the calcula-
tion of mobilities of boron-, aluminum-, gallium-, and
indium-doped silicon samples for which data could be
gathered. The initial estimates of dopant densities were
performed with an empirical r factor and a X? fitting rou-
tine which fits the charge-balance equation to the carrier
concentration versus temperature data.’® The experimen-
tal setup and procedure are explained by Mitchel and
Hemenger,”” and Hemenger.”®

Figures 4(a)—4(d) display the calculated hall mobility
for a representative set of boron-, aluminum-, indium-,
and gallium-doped silicon samples together with the ex-
perimental data. In each graph three cases are considered:
(1) phonon and the Brooks-Herring scattering; (2) phonon,
BH, and the neutral-impurity scattering employing
Ralph’s theory; (3) phonon, BH, and Erginsoy’s neutral-
impurity scattering. An adjustable parameter multiplies
the strength of Erginsoy’s and Ralph’s neutral-impurity
scattering to bring the theory and experiment into agree-
ment at low temperatures. More will be said about this
later.

For lower doped samples N, < 10'° cm ™3, examined in
the course of research, the ionized-impurity scattering, to-
gether with the phonon scattering, account very well for
the magnitude and shape of the mobility curve. For sam-
ples in Figs. 4(a)—4(d) the acceptor concentrations are
above 10" cm™? and the neutral-impurity scattering
starts to rival the strength of the other scattering mecha-
nisms as evidenced by the separation between the curves
with and without the neutral-impurity scattering. For

3
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FIG. 4. Comparison of the calculated (solid curve) Hall mobility and data (circles) for (a) boron-, (b) aluminum-, (c) indium-, and
(d) gallium-doped silicon samples. Curve 1 is calculated using both the acoustic- and optical-phonon scattering and the BH theory of
ionized-impurity scattering. Curve 2 in addition uses Ralph’s neutral-impurity scattering formalism while curve 3 uses Erginsoy’s

formalism.

four boron samples examined in the course of research the
factor multiplying the strength of the neutral-impurity
scattering was found to be between 2 to 2.8 for Ralph’s
formulation and 0.3 to 0.5 for Erginsoy’s theory. The ad-
justable parameters for the strength of the neutral-
impurity scattering were 3.5—4.5 for Ralph’s formula-

tion, 1—1.5 for Erginsoy’s formulation, for two aluminum
samples. For two indium-doped samples the adjustable
factors were between 3.5—5.5 for Ralph’s theory and
1.9—2.9 for Erginsoy’s. The adjustable parameters for the
strength of the neutral-impurity scattering for four
gallium-doped samples were between 5.5—6.0 for Ralph’s
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theory and between 1.8—2.0 for Erginsoy’s theory. These
numbers are based on data for a limited number of sam-
ples and are functions of the quality of data and initial X2
fits as these are inputs into the present calculation. The
limited range of data for the indium-doped samples, i.e.,
lack of data in the freeze-out and exhaustion regions,
makes the theoretical-experimental comparison less cer-
tain. In none of the samples examined did the variation
of Ey in Eq. (3.17) make much difference in the value of
calculated mobilities in the temperature range considered.
Variations of Ey change mobilities by few percent and
not by factors of 2 to 6 as is required. It is rather remark-
able that the adjustable factors turn out to be rather con-
stant for the given type of impurity implying that there is
some physics underlying the adjustment.

The data displayed in Figs. 4(a)—4(d) show clearly that
very good agreement with experiment has been reached
when the BH theory and the phonon scattering are com-
bined without any adjustable parameters. This is true as
far as the magnitude and shape of the mobility curves are
concerned. The fine undulations in Fig. 4(a) are due to
the varying degree of ionization of boron as a function of
temperature. At the lowest of temperatures p =0, so that

Ly*~Np(1—Np/N4)/T, (4.3)

and L increases with temperature. As temperature rises,
p increases as holes are promoted to the valence band with
p rising exponentially. As the consequence the free-
carrier screening becomes effective and L drops in value.
On further increase in temperature the exhaustion region
is reached and

ps=p=N,4—Np (4.4)

and

Ly2~T"! (4.5)

again, so that L, increases with temperature. The three
temperature regimes find their reflections in the mobility.
Given the adjustment of the strength of the neutral-
impurity scattering there is very little that differentiates
between the Ralph and Erginsoy theory in Fig. 4(a). The
neutral-impurity scattering using Sclar’s theory,?’ and
also the theory of Meyer and Bartoli,% were tried as well
and found to be practically indistinguishable from the
theory of Erginsoy, as was also found to be the case by
McGill and Baron.?! The Matthiessen’s rule was found to
be totally inappropriate.

Figures (4b) and 4(c) show the comparison of theory
with experiment for aluminum- and an indium-doped
samples with doping exceeding 10" and 10'® cm™3,
respectively. In the higher temperature regions the com-
bination of the ionized-impurity and optical-phonon
scattering account well for both the shape and magnitude
of the data. The influence of the neutral-impurity scatter-
ing is more visible here since aluminum and especially in-
dium have large ionization energies so that these impuri-
ties remain neutral up to higher temperatures. The fine
undulations in the mobilities seen in Fig. 4(a) are not seen
here since by the time the exhaustion region is reached the
ionized-impurity scattering is not as important as it is at
lower temperatures. There is an important difference be-
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tween the Ralph and Erginsoy theories which is apparent
in Fig. 4(c) for indium-doped silicon. Unfortunately, that
difference arises in the freeze-out region, T < 50 K, where
no accurate data could be taken. It is quite possible that
the indium samples contain boron which is overcompen-
sated so that the X2 fit would not reveal its presence.

Figure 4(d), on the other hand, is representative of a
large selection of data available to the author for gallium-
doped silicon (mostly mid-10'® cm~3 region, though).
The need for the neutral-impurity scattering is self-
evident in Fig. 4(d). The agreement between experiment
and theory for lower-doped gallium samples indicated
that the phonon and BH scattering are well understood.
On the basis of these results, it can now be said that scal-
ing of the scattering cross section using the experimental
Ejg, Eq. (3.4), is not enough to account for the strength of
Erginsoy’s neutral-impurity scattering.

Most serious is the discrepancy between the Erginsoy
theory and experiment at low temperatures in Fig. 4(d)
and other similarly doped gallium samples. The calculat-
ed mobility does not bend over as required by the experi-
ment. Given that Erginsoy’s theory yields temperature-
independent mobility this result may seem surprising, at
first. A large amount of numerical “experimentation” has
shown that Matthiessen’s rule is not obeyed and the mo-
bility is the result of competition between the four scatter-
ing mechanisms considered here. The knowledge of the
temperature dependence of each mobility mechanism
alone is but a rough guide of how the total mobility will
behave with all the mechanisms present all at once.
Higher doped, mid-10'" cm~* and up, silicon gallium
data’ in fact shows the mobility bending over at low tem-
peratures and not merely flattening out. (At still lower
temperatures there is of course a precipitous drop in the
mobility as the hopping mobility regime is reached. The
bend over discussed above is not related to this large drop
in the mobility.)

It has been shown by McGill and Baron?! that there is
little that distinguishes the theories of Sclar, Erginsoy,
and McGill and Baron for neutral-impurity scattering in-
volving a single band. Sclar’s formulation is the form
that Ralph’s theory assumes in the limit of noninteracting
bands. When I applied Sclar’s theory treating the light-
and heavy-hole bands as decoupled indeed the results were
close to the predictions of Erginsoy’s theory in Figs.
(4a)—4(d). Therefore, it is the coupled nature of the
valence bands in Ralph’s theory that accounts for the
correct temperature dependence of the calculated mobili-
ty. The need for adjustment of the strength of neutral
scattering is common to all calculations to date. In the
case of Ralph’s theory the discrepancy may be connected
with the zero-potential range assumption and possible
breakdown of the effective-mass formulation for rapidly
varying potentials.

C. Use of the calculated r factors in the Hall data fits

The ultimate utility of the calculated r factors is in fit-
ting the carrier concentration data to the charge-balance
equation in order to extract the dopant densities and ac-
tivation energies.'® The hole concentration is given by
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p=r/qRy , (4.6)
where the Hall coefficient Ry is measured experimentally.
The carrier concentration is then used in the charge-
balance equation

P+Np=3 N4 , 4.7)
i

where the sum proceeds over all acceptors. The density-
of-states effective masses of Madarasz, Lang, and
Hemenger’>* were used to calculate p in Eq. (4.6).

The calculated r factors for samples in Fig.s 4(a)—4(d)
are shown in Figs. 5(a)—5(d). In each graph four cases are
exhibited: (1) phonon scattering only, (2) phonon and BH
scattering, (3) phonon, BH, and Ralph’s neutral scattering,
(4) phonon, BH, and Erginsoy’s neutral scattering. The
main effect of the ionized-impurity scattering is to raise
the r factor in the freeze-out region, p ~0, and lower it as
the temperature is increased. The inclusion of the
neutral-impurity scattering further lowers the r factor for
Erginsoy’s theory for the whole temperature range while
in Ralph’s theory at the lowest of temperatures the r fac-
tor increases over the value for phonon and BH scattering
only. These trends were explained in Sec. IVA. Here it
ought to be added that owing to the stronger scattering of
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light holes in Erginsoy’s theory, see Egs. (3.30) and (3.31),
the r factor is diminished from that in Ralph’s theory
since, as discussed in Sec. IV A, light holes increase the r
factor while the heavy holes have the opposite effect. For
more heavily doped samples, the differences between the
two neutral-impurity scattering theories in Fig. 5(a)—5(d)
are large enough to make a difference in the quality of the
subsequent X? fits.

The carrier-concentration data was multiplied by the
calculated r factors and then used in the fit to the
charge-balance equation, Eq. (4.7). Table I provides a
quantitative measure for the goodness of fit using the cal-
culated r factors and including r =1 for comparison. It is
assumed that Ry is determined with experimental accura-
cy of 3%. For boron-doped samples the X* for both
theories are comparable since the calculated r factors
differ little for samples used in this study. These fits are
generally better than the fit with r =1 as far as the calcu-
lated X? and when one considers the calculated activation
energies. The accepted values of activation energies of ac-
ceptors in silicon are 44.39, 69.03, 72.73, and 155.58 meV
for boron, aluminum, gallium, and indium.®! Lipari
et al.®? gives activation energies about 1.5 meV larger.

The comparison for aluminum-doped samples also
gives good X2 and activation energies using the calculated
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FIG. 5. Calculated Hall factors for the samples in Fig. 4. Curves 1—4 are as follows: (1) optical and acoustic phonon only, (2)
phonon + BH ionized-impurity scattering, (3) phonon, BH, and Ralph’s neutral-impurity scattering, (4) phonon, BH, and Erginsoy’s

neutral-impurity scattering.
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TABLE 1. Comparison of X? fits to the data for doped silicon samples using calculated r factors and
r=1. The concentrations of acceptors and donors are in cm~ and the activation energies are in meV.

Sample r=1 Erginsoy Ralph
No. 1 (119-757-1037) Ng 2.79x 10" 2.42x 10" 2.42 10"
Np 2.11x 10" 2.88x 101 2.88x 10"
Eg 45.13 43.89 43.89
X2 5.11 1.37 1.37
No. 2 (188-458-1087) Na 4.61x10" 3.67x 10" 3.65x 10"
Ng 3.13x 10" 5.50x 10" 5.15x% 10"
Np 2.81x 10" 5.20 10" 4.78 %102
Ea 72.96 71.40 70.99
Ep 44.08 43.11 43.36
x? 1.15 0.30 0.17
No. 3 (109-285-0957) N 1.33%x10"7 7.99x 10! 7.73% 10
Ni_x 2.42x% 10" 1.89%x 10" 2.05x% 10"
Np 2.38x 10" 1.84x 10" 1.99x 10"
En 168.60 168.54 166.39
En_x 112.67 113.96 113.46
X2 0.881 0.902 1.061
No. 4 (0164-432-0724) Noa 5.28x 10! 3.80% 10 3.75x 10
Ny 3.01x 10" 2.11x 10" 3.00x 10"
Np 2.58x 10" 2.36x 10" 2.54x 10"
Eg. 74.15 72.31 72.79
Eg 44.85 44.58 44.49
X? 0.453 0.882 0.373

r factors. The r =1 assumption leads to activation ener-
gies higher than experimentally accepted. There is a
long-standing puzzle regarding the degeneracy factor for
indium. The theoretically accepted value for the ground-
state degeneracy for column III acceptors in silicon is 4.
It is also true that the degeneracy factor in the charge-
balance equation takes into account all the excited states
of the impurity. The position of odd-parity excited states
is well known from optical experiments.®"®? Their in-
clusion in the “effective” degeneracy factor does not influ-
ence the fit much, except for very heavily doped samples,
owing to the proximity of these states to the valence-band
edge.'® Less is known about the even-parity states, 328384
Experiment and theory place I'j states close to the
valence-band edge again,* but there is evidence of a
Raman-active twofold degenerate I'; level in Si:B 23.8
meV above the ground state. To date there has been no
observation of a similar level for other column III accep-
tors in silicon. Nevertheless, Hall-data fits for indium-
doped silicon give activation energies closer to the optical-
Iysgneasured values for the degeneracy of 6 rather than
4.

To complicate matters further there is evidence that
there is an excited level of neutral indium acceptor about
4 meV above the ground state.?¢%”-%8 The consensus ap-
pears to attribute the level to the dynamic Jahn-Teller ef-
fect®® caused by the strong vibronic coupling with the
highly localized hole wave function on indium in silicon.
The X level in indium®~% has been identified as an
indium-carbon complex with activation energy of 112.8

meV. Like a similar Al-X level®* in aluminum-doped sil-

icon, it has trigonal symmetry and its ground-state degen-
eracy is therefore 2.

Table I gives the fit for the gallium-doped sample.
From the X? one sees that the Ralph theory is better than
Erginsoy’s theory and produces activation energies closer
to the experimental values. The choice of r=1 con-
sistently overestimates the activation energies. It is true
that parameters for residual acceptors, such as boron in
Si:Ga, will be less well determined from a fit than param-
eters for the major dopant. The use of r =1 leads to ma-
jor dopant concentrations as much as 50—80 % off from
densities obtained using the theoretically determined r
factors.

V. SUMMARY AND CONCLUSIONS

The conductivity and Hall mobilities for doped p-type
silicon have been calculated with a new theory which
combines the acoustic-phonon, optical-phonon, ionized-
impurity, and neutral-impurity scattering. The effect of
band nonparabolicity has been taken into account exactly
in the treatment of the scattering mechanisms and in the
solution of the Boltzmann equation. The band anisotropy
was incorporated in the calculation of the phonon scatter-
ing rates and the major effects of band anisotropy were in-
corporated in the treatment of the ionized- and neutral-
impurity scattering. The present treatment obviates the
need for the relaxation-time approximation.



4046

The comparison between experiment for four dopants
in silicon and theory leads to several conclusions. The
Brooks-Herring theory of ionized-impurity scattering, as
modified in Sec. II, yields good agreement with experi-
ment, without any adjustable parameters, for the doping
concentrations and temperatures considered.

The state of neutral-impurity scattering theories is a
less well-settled matter. The comparison between Ralph’s
and Erginsoy’s formulations, using mobilities and
carrier-concentration data fits as criteria, shows that
Ralph’s approach is better. The advantage is traced to the
inclusion of the coupled valence-band nature of the prob-
lem in Ralph’s formulation. The need for adjusting the
strength of the neutral-impurity scattering in either theory

FRANK SZMULOWICZ 34

is a glaring deficiency in our state of knowledge of
scattering mechanisms.
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