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Self-similar ground-state wave function for electrons on a two-dimensional Penrose lattice
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I define a hopping Hamiltonian for independent electrons on a two-dimensional, infinite, quasi-
periodic Penrose lattice with a particular on-site potential, depending upon a parameter r. I then
find the exact ground-state wave function for this Hamiltonian. The wave function is shown nu-

merically to have a power-law decay from the origin, and the exponent is determined numerically.
The wave function may or may not be normalizable over the infinite lattice, depending upon the pa-
rameter r. The wave function is then demonstrated to be self-similar, in that the wave function for
two identical regions of the lattice is the same, except for a scale factor. The scaling of the wave
function is discussed, and a bound for the decay of the wave function established. Finally, I deter-
mine exactly the scaling distribution for the wave function, and thus calculate exactly the previously
introduced decay exponent. The wave function is shown to have a critical value of the parameter r,
above which the wave function is normalizable and thus localized, while below the wave function
has a power-law decay but is not normalizable.

I. INTRODUCTION

With the experiments of Schechtman et al. ,
' which

seem to show evidence for a quasicrystal structure in na-
ture, there has been a great interest in the physics of ma-
terials with quasiperiodicity, which are intermediate be-
tween periodic and random structures. The theoretical
understanding of these systems is usually based on gen-
eralizations of a nonperiodic tiling of the two-dimensional
plane first introduced by Penrose, and described by
Gardner. Important theorems are due to Conway, and
the papers of de Bruijn contain the most recent discus-
sion. At the same time, the one-dimensional quasiperiod-
ic Fibonacci lattices have been treated theoretically by
Kohmoto and Banavar, and by others. The properties
found for the zero-energy wave function by Kohmoto and
Banavar are the same as we fmd in this paper, where we
treat electrons on a two-dimensional Penrose lattice.

Other recent papers on electronic properties of a Pen-
rose lattice are by Odagaki and Nguyen, Choy, and
Kohmoto and Sutherland. ' These papers, however, are
largely concerned with the spectrum of the Hamiltonian,
and except for some exact results for the strictly localized
states in the peak, due to Kohmoto and Sutherland, have
little to say about the wave functions.

In this paper I present the exact ground-state wave
function for a tight-binding model for independent elec-
trons hopping on a two-dimensional infinite Penrose lat-
tice, with a particular on-site potential depending on a pa-
rameter. I was then able to give a rather complete
description of the properties of this wave function. It is
hoped that these properties are qualitatively the same for
more general systems.

fat tile thm Qle

rhombuses are the sites of the lattice, and the edges are
the bonds between nearest neighbors. I take the bond
length to be unity. When tiling the plane by these Penrose
tiles, there is a constraint on which edges can be adjacent.
This is traditionally expressed by labeling the edges of the
two tiles by either single arrows or double arrows as
shown in Fig. 1. The constraint then consists of requiring
the labels of adjacent edges to match. A portion of such a
tiling of the plane, with arrows, is shown in Fig. 2.

These arrows can be considered as a vector field on the
lattice. In fact, let A(y) be the vector field of single ar-
rows on the lattice, and B(y) the vector field of double ar-
rows on the lattice. The index y labels the bonds, and can
be taken to be the coordinates of the midpoint of the
bond. The values that the vector fields take are either
zero, if there is no arrow of the proper type on the bond,
or a unit vector pointing in the direction of the arrow, if
the arrow is of the proper type.

I now note from Fig. 1 that if I walk around the perim-
eter of either tile, I meet exactly one arrow of each type
going my way, and one arrow of each type going the op-
posite way. This means the circulation of either vector
field around a tile is zero, or

II. THE MODEL AND THE GROUND-STATE
WAVE FUNCTION

I begin my investigation with the familiar two-
dimensional quasiperiodic Penrose lattice derived from a
tiling by fat and thin rhombuses. The vertices of the

FIG. 1. The two basic Penrose tiles with edges labeled by ar-
rows are shown. Note that this labeling differs by that of de
Bruijn by exchanging single and double arrows, and then revers-

ing the arrows.

34 3904 1986 The American Physical Society



34 SELF-SIMILAR GROUND-STATE %'AVE FUNCTION FOR. . . 3905

FIG. 2. A portion of the infinite Penrose lattice with arrows
on the bonds is shown. The origin is at the center of the figure,
and coincides with the absolute maximum of the wave function.

etc., for 8, where 4 are a sequence of four unit vectors
directed along the edges of the tile, pointing in the direc-

tion of the path. This is simply the discrete analogue of
the line integral, and would be equivalent to curl A=0 for
a continuous system.

This condition then ensures that for any closed loop on

the lattice,

4 A=O,

etc., for B. Thus both A and 8 can be "integrated" to
give single-valued scalar functions m (x) and n (x) of the
lattice sites by

rrt(x)= g"n4 A,
etc., for 8, or

4 A(x+4/2)=m (x+4)—m(x) .

Examination of Fig. 2 shows that m =O, 1 and n ~O.
With these preliminaries, I now introduce a tight-

binding Hamiltonian for independent electrons, which sit
on the sites with an on-site energy V, and hop along the
bonds to neighboring sites. Thus, the Hamiltonian is to
be of the form

H%'(x) =—g %(x+4)+ V(x)%(x)=EV(x),

FIG. 3. A portion of the infinite Penrose lattice is shown.
This is a dodecahedron of radius 8 (5)=f'—the image of the
seed after inflating four times. A circle is drawn centered on
each site, with a radius proportional to the logarithm of the
wave function at that site.

Then the eigenvalue equation can be rewritten as

g exp[ —(r4 A+s4 8)j = V(x) —E .
NN

This is a local potential, depending only on the nature of
the local site at x. There are eight different sites, so the
potential takes only eight different values.

Because the wave function is positive everywhere, it is
the ground state, provided it does not increase too rapidly.
This is the case, as will be demonstrated in Sec. V. In
Figs. 3 and 4, I plot the logarithm of the wave function
over the lattice, for a portion of the infinite lattice. I have
chosen r =s =1.

In Fig. 5, I plot the wave function itself over the lattice,
again with the choice r =s = l. If we denote the depen-

where the summation is over all nearest-neighbor sites
separated from x by a unit vector h. The eigenvalue
equation can be rewritten as

g%'(x+4)/%(x) = V(x) —E .

I now try as an ansatz for an exact, unnormalized wave
function the following form:

%(x)=expI —[rm (x)+sn(x)]I .
FIG. 4. Graph of the 1ogarithm of the wave function over

the previous portion of the Penrose lattice.
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FIG. 5. Same figure as Fig. 4, except now I graph the wave

function itself instead. of the logarithm. The figure gives a
better idea of the electronic density.

dence of the wave function on the parameters r, s by
4(x

~
r,s), then we note the relationship

lntR(1(, )/R(1))/la(A

FIG. 6. Logarithm of the rth moment of the wave function
versus the logarithm of the radius of the region. Specifically, I
plot 1n[D(k

~
r}/D(1

~
r)] as a function of In[R (k)/

R (1)]/1n(f); all quantities are defined in the text. Note the ap-
proach to straight lines.

4"(x
~

r, s)=%( x~kr, ks) .

Thus we can relate different powers of the wave function
to the wave function for different parameters. Figure 5

then is also the probability density for the wave function
with r =s = —,'.

An interesting quantity to investigate is the integral of
the wave function out to a given radius, for the growth of
this quantity gives much information about the decay and
localization of the wave function. Instead of the radius, I
consider a slightly different variable R, defined to be the
distance from the origin out to the vertex of a decagon
centered on the origin, which I call the radius of the
decagon. This decagon has the same orientation as the
lattice itself. I then scale the radius R as R(k)=f",
where f=(i/5+1)/2 is the golden mean, so that whenev-
er k takes integer values, the did:agon is the same size as
an inflated sample.

I now restrict myself to r =s, and define D(k
~

r) to be
the sum of the wave function %(x

~
r, r) over all sites x

within the decagon of radius R (k). Equivalently,

Thus D (k
~
r) might also be called the rth moment of the

wave function 0'(x
~

1, 1), or the partial participation ra-
tios.

If r =0, then D (k
~

0) is just the number of sites in the
decagon of size R (k}, so that it grows as R (k). In Fig.
6, I show a plot of ln[D(k

~
r)/D(1

~
r)] veau~

=ln[R(k)/R(1)]/ln(f}, for various values of r. [Once
again, f is the golden mean (v 5+ 1)/2.] The curves ap-
proximate straight lines for increasing k, so one defines
an exponent a(r), where for large R„

with Do a more slowly varying factor. The exponent a(r)
is given by the slope of the curve divided by the scale fac-
tor ln(f). I find the following values:

r =0, a(0) =2 (exact),

r =0.5, a(0.5)=1.57+0.05,
r = 1, a(1)= 1.1+0.1,
r =2, a(2) =0.49+0.05 .

III. THE SELF-SIMILARITY
GF THE %'AUE FUNCTION

I now demonstrate the self-similarity of the wave func-
tion. Consider two identical regions of the Penrose lattice
of diameter D, located about points xi and xz, respective-
ly. According to a theorem of Conway, quoted by
Gardner, turbo such identical regions are never more than
2D apart, and are usually only D apart. Thus, identical
regions are very common in a Penrose lattice.

Corresponding points in the two regions are x~+x and
xi+ x. I write the wave function as

%'i(x) =0 (x, +x) and %,(x)=0 (x,+x),

and compare the two functions %i and %2.
Note first, however, that the vector fields A and 8 are

identical in the two regions, since they can be determined
locally. Thus,

A(xi+ x)=A(x2+ x),

etc., for B.
Now,

P

yi(x)=y(x2+x)=exp Q ' [—(rh A+sly. B)] =exp g 'o+ g '„,+ g i, [—(«'A+s~'B)]
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But since the vector fields are identical in the two regions,

„,[ (r4—A+s4 8)] „[(r4—A+s4 8}].

Thus, I rewrite the equation as

42(x)=exp g '„[(r—4 A+s4 8)]
P

Xexp g '
[ (r4—A+s4.8)]

=&'pi(x) .

One finally arrives at the result that the wave functions in

the two regions are multiples of one another, and differ
only by a scale factor or normalization constant,

%2(x)
=Q=exp g '„[(r4 —A+s4. 8))

'IIIi(x)

FIG. 7. {a) shows how the basic tiles are inflated to produce a
larger pattern, here shown on a smaller scale by darker lines. {b)
similarly shows the effect of a twofold inflation.

IV. SCALING PROPERTIES
OF THE %'AVE FUNCTION

The Penrose lattice itself is self-similar and the
transformation which relates two lattices of different sizes

is the inflation transformation. This transformation can
be used in either direction. For instance, the finite por-
tions of the infinite Penrose lattice in the figures were

grown by the inflation transformation from a seed of ten
tiles, which form a small decagon at the center of Fig. 2.
This method also has the desirable effects of preserving
the Ds dihedral symmetry of the lattice, and ensuring that
the maximum of the wave function is at the origin.

But the inflation transformation also can be used in the
other direction, so that for a given Penrose lattice, one can
find within it larger and larger Penrose patterns. In this
case, these patterns will be the previous lattices in the
growth process, suitably enlarged. The scale factor for
this transformation is the golden mean f=(v 5+ 1)i2. I
now want to exploit this aspect of the inflation transfor-
mation.

First, I show the inflation transformation in Fig. 7(a),
by showing the effect on the two basic Penrose tiles.
However, because a single inflation reverses the arrows, it
is actually more convenient to inflate twice. The result of
such a twofold inflation is shown in Fig. 7(b).

After a twofold inflation, two vertices of a big rhombus
that were previously connected by a single arrow, are now
connected by a single arrow and two double arrows, while
two vertices that were previously connected by a double
arrow, are now still connected by a double arrow, because
the two single arrows introduced have opposite orienta-
tion, and thus cancel.

Suppose I take the initial seed of ten tiles. The origin is
the reference point, and the ten sites at the vertices of the
perimeter alternate. Five of them (the fat vertices) are
separated a single and a double arrow away from the ori-
gin, while the other five (the thin vertices) are separated
only a double arrow away from the origin.

After I inflate k —1 times, k an odd integer, these ver-

tices are still the vertices of a decagon, but a decagon of
size R (k) =f . And the sites I called the thin vertices are
still only separated a single double arrow away from the
origin. Thus the wave function at this site is down from
the value at the origin by a factor of only exp( —s), and
does not decay at all with distance.

On the other hand, for the fat vertices, after I have in-
flated k —2 times suppose we have m single arrows and n
double arrows. After a twofold inflation, we have m'=m
single arrows and n'=n +2m double arrows. Thus for
the fat vertices, I start with (m, n) =(1,1), I get (1,3), then
(1,3+2)=(1,5), . . . , (l,k). Assume that r =s, then the
wave function on a fat site is down from the value at the
origin by a factor of exp[ —r (k + 1)]. Since this fat site is
now located a distance R(k)=f" from the origin, this
gives a power-law decay for the wave function on these
sites of the form

%(x
~
r, r) =exp( r)R—

Examine the tiles in Fig. 1; the scalar functions rn, n are
larger on some vertices, smaller on others. Now examine
the effect of a twofold inflation on the tiles as shown in
Fig. 7(b). Of all the new sites in and on the perimeter of
each tile, the scalar functions m, n are still either larger or
smaller on the same sites as before inflation. Thus, the
previously determined wave function on the fat site of a
decagon is a lower bound for the wave function over the
whole decagon.

V. LIMITING DISTRIBUTION
OF THE WAVE FUNCTION

Let (m, n) denote the arrow coordinates of a site or tile
from the origin, meaning that if x is the location of the
site or of the labeled corner of a tile, then m =m (x}and
n =n (x). (The labeled corner of a tile is the corner with
both single arrows going out. ) If I know the arrow coor-
dinates of a site x, then I immediately know the wave
function at the site x to be 0'(x)=exp[ —(rm+sn)].
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Thus if I know the numba of sites with arrow coordi-
nates (ni, n), then I know the number of sites with wave
function q(=exp[ (r—rn +sn}],and hence the moments of
4. This distribution I now determine.

First, if I examine Fig. 2, I see that the arrow coordi-
nates of aH tiles are of the form (O, n) L. et the distribu-
tions E(n) and T(n) denote the number of fat and thin
tiles, respectively, in a given decagon of radius R. If I
perform a twofold inflation, I obtain new numbers F'(n)
and T'(n) in a decagon of radius R'=f R. I can easily
find the relationship between the new and old distribu-
tions, and in this way generate distributions for larger and
larger regions of the infinite Penrose lattice.

The initial seed has the distributions:

E(n ~1)=0, except F(0)1)=5,

T(n
~

1)=0, except T(1
~

1)=5 .

After ( k —1)/2 twofold inflations, k an odd integer, I ob-
tain the new distributions F(n

~

k) and r(n
~

k) for a de-
cagon of radius R(k)=f .

Since the arrow coordinates of a tile are (0, n), the coor-
(hnates after inflation of the labeled vertex are unchanged,
because the single-arrow coordinate is zero. If there is a
fat tile with n, then I see from Fig. 7(b) that after a two-
fold inflation, there is a fat tile with n, three fat tiles and
one thin tile with n + 1, and one fat tile and two thin tiles
with n+2. Likewise for a thin tile with n, I again see
from Fig. 7(b) that after a twofold inflation there are two
fat tiles with n, and one fat tile and two thin tiles with
Pl +1.

Converting these observations into equations, I fmd the
following recursion relations for the distribution func-
tions:

F(n
(
k}=2E(n

)
k)+3F(n —1 ] k)+F(n —2

(
k)

+2T(n
)
k)+ T(n —1

)
k),

T(n
~

k+2) =2T(n —1
( k)+F(n —1

~
k)+2F(n —2

(
k) .

Then from our initial conditions, the equations can easily
be iterated, and in fact can be solved exactly.

One feature that can easily be seen from the equations,
alld whic11 was deterlllined previously, is that F(n

~
k) =0

for n & k, and etc. for T. This leads me to introduce the
scaled variable z =n /k. Then for large k, I find the scal-
ing forms for 0 &z & 1,

E(
~
k) F~slu( —(}

T(n
~
k) T~Skr(s }}—

The coefficients Eo, To are more slowly varying functions
of k.

These forms then give us the scaling distribution
P(n

~
k), which is defined to be the limit as k ~ 0(} of the

number of sites in a decagon of radius f, with arrow
coordinates (m', n'), where +ni'=nTn hus, P(n

I
k) is

also the scaling distribution for ln[%(x
~

1,1)]=n. The
result is

P(n ~k)=P(z, k)=Pof' " ", 0&z& 1,
=0, z&1,

where z =n/k, and Po is determined by the overall nor-
malization to the total number of sites as

P(}——20f [2k ln(f)im]'i

This expression can now be used to evaluate the moments

D(k
~

r)= g }P(x
~
r, r)= g W(x

~

1, 1)
I
x

I
&a(k) I

x
I

&~tk)
1

—+k J P(z, k)exp( rkz—}dz .
0

For large k, this integral can be evaluated by the saddle-
point method, and I find

D(k
~

r)—+expIk [8ln(f)zo(1 —zo) —rzo]),

where zo is the value of z at which the exponent is a max-
imum, given by

[1—r/81n(f)] if r & Sln(f),
0 if r &Sin(f) .

Substitution gives

D( r)~ ~ f2[i —r/sin(f}} if r & 8 ln(f)
1 if r &81n(f) .

Combining this result with the expression for the radius
of the decagon, R (k) =ff, the exponent a(r) can now be
evaluated as

2[1 r/8 ln(f—)], r & 8 ln(f),
0, r&81n(f) .

The fit with the previous numerical data is excellent.
Note that when the parameter r in the potential becomes
greater than the critical value r, =41n(f) = 1.9248. . ., the
wave function becomes square integrable and hence local-
1zed.

VI. CONCLUSION

Since I knew the exact ground-state wave function —in
fact, I started with the wave function and then construct-
ed the Hamiltonian accordingly —I could evaluate the
properties of this wave function in much greater detail
than one could hope to do for a general system. Yet the
properties I have found are qualitatively vrhat one might
expect for the general case. As I mentioned in the Intro-
duction, the one-dimensional Fibonacci lattice can be
treated by the same methods, and the self-similarity is the
same for certain states in the spectrum. However,
Kohmoto and Tang have found other states which are
chaotic. " Thus I am led to conjecture that for at least
some eigenstates of a more general quasiperiodic system:
(1) the wave functions exhibit self-similarity, in that por-
tions of a wave function over identical configurations
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differ only by a scale and phase factor, and (2} the distri-
bution of the wave function for larger and larger regions
approaches a rather simple scaling function. Kohmoto
would go further, and argues for a particular scaling rela-
tion between exponents for the wave function and the den-

sity of states. " Perhaps my conjecture is only based on

hope, and, on thoro exactly solved models, yet I see nothing

pathological in the particular model I have solved, except
possibly the fact that I could solve it.
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