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We describe the details of implementation of the film linearized muffin-tin orbital method of
Krakauer and Cooper [Phys. Rev. 8 16, 605 (1977)] for slab geometries. Using the constrained

wave functions as described by Krakauer and Cooper, we get consistently good results except for the
work function. %'e describe an alternate method that we have also implemented to improve the

work function. This discards the plane-wave orbitals while striving to improve the quality of the
basis functions for describing the vacuum behavior without increase in matrix sizes. %'e find the

quality of results poorer; therefore, in Appendix A, we suggest a way of increasing the variational

freedom by removing the constraint on the plane-wave orbitals. We report on our investigations on

the stability of the results with respect to variations in the most sensitive energy parameters that ap-

pear in the theory, and the effect on the results of various shaping approximations on the charge
density and on the potential. We find that because of the small matrix sizes, diagonalization times

are an insignificant portion of the total running time for a complete iteration. This total time per
iteration is only slightly faster (by a factor of 1.6) than a corresponding linearized augmented-plane-

wave iteration. However, because the small matrix sizes imply memory requirements which are
smaller than those of other methods currently in use, systems with a greater number of atoms in the
unit cell may be studied (for a given computer) than with those methods.

I. INTRODUCTION

A device widely used to calculate electronic structure of
transition- and noble-metal surfaces, and such surfaces
with chemisorbed species, is to use a slab geometry. This
device is based on the fact that the "healing length" for
d-band metals is rather short, and so for a five-layer sys-
tem the center layer exhibits close to bulklike behavior.
Thus the surface of the slab provides a good representa-
tion for the surface of a bulk metal. The semi-infinite
system, with an infinite number of atoms in a two-
dimensional unit cell is replaced by a system finite in the
direction perpendicular to the surface with a finite num-
ber N of atoms in the unit cell. If there are Nt layers in
the slab with Nz atoms per layer then X=XLXz. Sys-
tems with layers of one metal on a substrate of another,
with chemisorption at the surface of the former, involve a
slab of many layers. This arises out of the requirement
that regions far from the interface exhibit bulklike
behavior; while compounds, lower-symmetry solids, and
relatively dilute chemisorption superlattices involve large
two-dimensional unit cells with many atoms per layer.
The number of atoms per unit cell is, therefore, typically
much larger than for bulk systems. The large number of
atoms and the requirement of self-consistency, means long
computer running times and large computer memory re-
quirements. The kinds of physical systems, with surfaces
of interest, that may be studied using slab geometries are
limited by the available computer resources. This, for ex-
arnple, limits the utility of the highly productive linear-

ized augmented-plane-wave (LAP W) technique' for
treating complex systems as described above. This is be-
cause of the relatively large number of augmented-plane
waves (APW's) per atom, typically 50 or 60 for transition
metals, necessary to accurately represent the behavior.
Examples of calculations that encounter such limitations
are a recent LAPW calculation with 12 atoms per unit
cell that required a Cray computer, and a localized
(Gaussian) orbital calculation for 11 layers of Ti(0001)
that resorted to approximate self-consistency to avoid a
fully-self-consistent calculation involving a 206X206 sec-
ular determinant. (The corresponding LAPW deter-
minant would be about 3 times as large. ) Our film linear-
ized muffin-tin orbital (FLMTO) method, to be described
below, would require a 99X99 secular determinant for
this case.

The attractiveness of a method that would require rela-
tively smaller running times and memory requirements,
without sacrificing ability to investigate physical systems
with a large number of atoms in the unit cell, has strongly
motivated us to fully implement the FLMTO method (in-

volving a linearized combination (LC) of muffin-tin
orbitals (MTO's) and plane-wave orbitals (PWO's)
[LC(MTO-PWO)] described in the earlier work of
Krakauer and Cooper (referred to as KC in the rest of
the paper). For example, we want to study such large-
scale surface problems as the effect of copper monolayer,
and submonolayer coverages, on the chemisorption of car-
bon monoxide on transition metals. The value of the
linearized muffin-tin orbital (LMTO) technique in bulk
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calculations ' has been well demonstrated. For example,
Jarlborg et a/. ' have used this technique for calculations
on ternary compounds such as YRh48&. This involved 18
atoms per unit cell. Use of a maximum value of / of 1 (4
basis functions) for the 8 boron atoms and of 2 (9 basis
functions) for the other 10 atoms led to a 122)& 122 secu-
lar determinant.

This paper is a report on the progress of our efforts to
keep computer time and memory requirements small and
yet ensure adequate quality of results to capture the phys-
ics of the systems we will study. We evaluate our results

by a comparison of our layer-projected density of states
with other high-quality calculations, and of our work
functions with experimental values. Good values for
these two quantities, we hope, will ensure good charge
densities and detailed-band structures. The question of
such comparison has recently been discussed in detail by
Jepsen and Wilkins. "

Our efforts at minimizing computer requirements,
briefly, consisted of using an absolutely minimal basis set
obtained by constraining the vacuum functions by the
vacuum "tail cancellation condition" as outlined in KC,
and of trying various shaping approximations for the po-
tential. Using the same input muffin-tin (MT) potential,
for five-layer (100) copper, our LC(MTO-PWO) calcula-
tion only needs a 45&45 secular determinant to show
agreement in energy eigenvalues (after a single diagonali-
zation) with a corresponding LAPW calculation, to within
one millirydberg (mRy) in the region of the d bands.
However, while the diagonalization time is 120 times
smaller, a complete iteration consisting of a sequential
solution of the Schrodinger and Poisson equations is only
1.6 times as fast for a potential that is completely general
in all regions except the MT. Almost all the time saved in
diagonalization is lost in the setup of the secular deter-
minant. Even this time advantage may be lost with our
anticipated increase in variational freedom outlined in the
Appendix. However, our secular determinant size in-
creases much more slowly with increasing number of
atoms in the unit cell, so that we anticipate a substantial
advantage in being able to study the large systems of in-
terest mentioned in the beginning of this section. Other
methods that also can require only a small basis are the
linear combination of atomic orbitals (LCAO) method,
and the recently suggested linear augmented Slater-type
orbital method' (LASTO). In the next section we
describe the LC(MTO-PWO} method and our experience
with it, which motivates a variant of this method. We
call this variant the linearized augmented muffin-tin orbi-
tal (LAMTO) method, and give a brief description of it.

To complete this introduction we make some remarks
about our calculations to put them into perspective with
respect to other slab geometry calculations. %"e do not
make use of the atomic-sphere approximation (ASA).
The core states in our calculations are allowed to relax at
each iteration, i.e., they are recalculated for the new po-
tential at each iteration; we therefore can calculate core-
level shifts. In addition, our wave functions in the vacu-
um region are given in the Laue representation (i.e., the
wave functions are expressed in basis functions given as
the product of a plane-wave factor, giving the dependence

parallel to the surface, times a numerically determined
factor, giving the dependence normal to the surface,
which has the correct exponential decay for substantial
distances outside the surface). This means that the
LC(MTO-PWO) technique is an appropriate one for cal-
culating'~ the surface-He (or other) atom interaction po-
tential for use in understanding monoenergetic atomic
beam diffraction from single-crystal surfaces. As is gen-
erally done at the present time, we treat the exchange and
correlation potential in the local-density approximation
using density functional theory. ' We use the Wigner'
interpolation scheme for the evaluation of the correlation
potential.

In this paper we present a systematic investigation of
several important aspects of the implementation of linear
band theory using the self-consistent LMTO technique for
thin-film (slab} gcemetry. We first exhibit the close agree-
ment of LC(MTO-PWO) and LAPW eigenvalues (non-
self-consistent) for the same input potential. Next, we
study the effect of varying the energy parameters involved
in the linearization (i.e., values of fixed energy chosen for
calculating the basis functions) on the band-energy eigen-
values and on the work function, and thereby characterize
the degree of intrinsic uncertainty introduced into the
self-consistently-determined band structure through the
linearization procedure. We then study the effect of in-
cluding various degrees of complexity in the shape ap-
proximations used to treat the charge density as input to
the Poisson equation and the potential as input to the
Schrodinger equation. Finally, where appropriate, we re-
port the corresponding results with the LAMTO method.
We characterize the quality of self-consistent results
through comparison with the experimental work function
and with layer density of states (LDOS) from other calcu-
lations for ( 100) copper (our test case).

In discussing the benefits and limitations of the
LC(MTO-PWO} technique we will use calculations em-

ploying the surface linear augmented plane wave (LAPW)
technique' as a basis for comparison since both these
techniques construct their basis functions using a film
muffin-tin potential, as well as both being based on varia-
tional principles in energy.

Our aim has been systematically to develop the
FLMTO method and thereby to gain the advantages of an
LMTO-type methodology for studies of surface electronic
structure. In Sec. II we present an overview of our experi-
ences with the implementation of the LMTO method for
slabs for both the LC(MTO-PW) and the LAMTO
method; we follow this with Sec. III on methodology. In
Sec. IV we present and discuss our results in detail for
both methods and fully motivate Appendix A where we
outline a way to generalize the LC(MTO-PWO) method
to be able to use independent functions in the vacuum. In
the final section we summarize the status of the self-
consistent FLMTO method, and discuss some criteria for
defining success in the development of such a self-
consistent method for calculating surface electronic struc-
ture.

This paper is a progress report on our attempts to im-
plement efficiently the self-consistent LMTO technique as
applied to surfaces with the strong objective of keeping
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the basis size absolutely minimal throughout our various
efforts.

II. AN OVERVIEW OF OUR IMPLEMENTATION
OF THE LMTO METHOD FOR SLAB GEOMETRY

+ g [A, X, (r)+A, X, (r)] . (2.1)

To decrease the number of independent coefficients in the
variational calculation, the tail-cancellation condition is

The central feature of the LC(MTO-PWO) method is
the introduction of a basis consisting of (a) MT orbitals
(MTO's) to treat the region within the nominal film boun-
daries and (b) additional functions which we call "plane-
wave-orbitals" (PWO's), which are constructed from the
exact solutions of the Schrodinger equation in the regions
exterior to the film (i.e., "the vacuum"}, and which are
used to treat the vacuum behavior. The great advantage
of the LMTO technique is that one deals with a small
basis of functions to represent the electronic behavior.
This advantage is shared with its "parent" Korringa-
Kohn-Rostoker (KKR) technique. ' However, the fact
that the muffin-tin orbital technique is based on a varia-
tional principle, arith the variation being in energy, per-
mits linearization, i.e., neglect of the energy dependence of
the basis }4fTO and PWO functions over a certain energy
range, thereby giving energy-independent Hamiltonian
and overlap matrix elements, and hence a secular deter-
minant that is linear in energy. With an appropriate
choice of energy parameters (e.g., specification of E
values for 1=0,1,2 and vacuum, and a value of a. specify-
ing the kinetic energy} for use in the equations defining
the MTO and PWO functions [see Eqs. (4) and (5) of Ref.
6], the eigenvalues (band and surface-state energies) of the
system can be determined accurately over a large energy
range by a simple diagonalization of the secular deter-
minant. Thus one has the advantage of a small energy-
independent basis without the disadvantage of having to
calculate energy-dependent lattice sums. Also, since it is a
local orbital basis, it offers better ease in physical interpre-
tation (visuahzation in terms of scattering of electrons off
core sites} than plane-wave-type methods such as APW.

We now turn to practical questions of efficient im-
plementation of the LC(MTO-PWO) method without sa-
crifice in quality of results. We have tried to maximize
the efficiency of the method by minimizing the size of the
basis set, and by experimenting with various shaping ap-
proximations of the potential. To minimize the number of
basis functions, the basis set ioas constrained by imposing a
tail cancellation -condition in the uacuum, as described in
KC, thus eliminating independent fu. nctions from the uacu
um region. This is done by first expressing the wave
function as a linear combination of MTO's [X L (r—R)]
centered at the various atomic sites spanned by R, the
two-dimensional direct-lattice vector, and of PWO's cor-
responding to the upper and lower vacuum regions
[Xi (r) and Xi (r)],

%g(r) = g A L Q e'" X L(r —R)
a, L R

used to express the A i and Az, the coefficients for the
upper and lower vacuum PWO's, in terms of the A t,
the MTO coefficients. For d-transition element atoms,
this has the practical effect of reducing the size of the
basis set to 9 basis functions (1=0,1,2) per atom. We
note that with this procedure the tails of the vacuum
P%'0's are still present in the MT sphere and interstitial
regions. As vrill be discussed in Sec. IV on results, their
presence may be important for ensuring adequate quality
of the basis functions.

As already noted, with this vacuum tail-cancellation
constraint, for d-band metals we have 9 independent func-
tions per atom. This is only about one-sixth as many as in
the LAPW method. Our secular determinant and the di-
agonalization time is correspondingly much smaller, being
about 120 times faster for five-layer (100) copper. The
actual running time for one complete iteration (sequential
solution of Schrodinger and Poisson equations) depends
on the method used to calculate contributions from the in-
terstitial to the Hamiltonian and overlap matrix elements
and the degree of spatial variation allowed in the potential
in each region. Allowing full spatial variation in the po-
tential in the interstitial and vacuum regions and using the
fast Fourier transform (FFT) method leaves the
LC(MTO-PWO) method with a time advantage of a fac-
tor of 1.6 for five-layer (100) copper. Almost all the ad-
vantage gained in diagonalization of the small secular
determinant is lost in the calculation of contributions
from the interstitial to the Hamiltonian matrix arising
from full spatial variation of the interstitital potential.
This loss of running time in the setup of the Hamiltonian
matrix has two sources. One is that the nature of the
LC(MTO-PWO) basis functions requires the use of com-
plex arithmetic with a single complex multiplication tak-
ing up as much time as four real multiplications. The
second is that the solution of the Poisson equation for the
interstitial region is in the plane-wave form so that the
calculation of the Hamiltonian matrix elements involves a
time-consuming three-dimensional double Fourier sum.
We use the less time-consuming alternative of transform-
ing the potential and basis functions to real space with the
FFT.'

and carrying out the integrations in real space. We
also use the Ft' t' for charge density synthesis and for the
calculation of the exchange-correlation contribution to the
potential in the interstitital region. We now briefly report
our results with the LC(MTO-PWO) method beginning
with some discussion of work reported earlier. '

The results reported in Ref. 17 were with a potential
that ~as planar averaged in the interstitial and vacuum
regions over planes parallel to the film (i.e., that included
"vertical warping"). The reported time advantage of a
factor of 3 over the corresponding LAPW calculation was
with a one-dimensional double Fourier sum for the verti-
cal warping contribution to the Hamiltonian matrix ele-
ments from the interstitital region. This planar-averaged
(vertically-warped) potential in the interstitial region gave
us work functions in excellent agreement with experiment
for five-layer (100) copper and nickel and layer density
of states comparable to other calculations, and layer den-
sity of states for five-layer (0001) ruthenium that we
judged to be good. The work function for ruthenium,
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however, was disappointingly too small (by about 1 eV)
compared to the experimental' value. We therefore im-

plemented the FFT to handle potentials of more general
spatial variation (full warping) in the interstitial region
and included code to handle full warping in the vacuum.
With the fully-warped potential (except in the muffin-tin
region) the work function for five-layer (100) copper be-
comes too large, by about 1.5 eV. The layer density of
states did not change in any significant way as far as we
could judge by simply looking at the plots corresponding
to the vertically- and fully-warped cases. This behavior of
the work function for five-layer (100) copper is difficult
to understand. The good agreement with experiment for
copper and nickel with the vertically-warped potential
may be due to the procedure used for planar averaging the
potential in the interstitital region. The method used for
planar averaging is not unique because of the presence of
the MT holes. The details of this will be discussed in Sec.
IV. However, no ambiguity in the potential exists for the
fully-warped result.

Thus we were led to conclude that there is a fundamen-
tal problem in calculating reliable work functions with the
LC(MTO-PWO) method. We feel that the origins of this
difficulty lie in the use of the tail-cancellation condition.
Since the vacuum functions are restricted by the tail-
cancellation condition, we believe that this unduly con-
strains the behavior of the charge in the surface region to
which the work function is sensitive. To release this con-
straint without increasing the number of basis functions
we tried the LAMTO method outlined below.

The LAMTO basis functions use the same MTO's as
the LC(MTO-PWO) method. The important difference
from the latter method is that the PWO's are discarded
and at the vacuum boundary a linear combination of u
and u ~ ("dot" means energy derivative) —the solution
and its energy derivative, of the Schrodinger equation in
the vacuum region —is matched with continuous logarith-
mic derivative to a lattice sum of MTO's at the nominal
boundary (because of the imposed tail-cancellation condi-
tion in vacuum, i does not appear in our original
FLMTO methodology). (The LAMTO method that we
developed and implemented' seems to be identical, in-
sofar as we can judge, to that used in recently published
work by Kasowski and Tsai. ) With this basis the layer
density of states for five-layer (100) copper is quite poor,
especially for the surface layer (compared to other calcula-
tions ' which agree among themselves), while the work
function is sensitive to the exact details of the MTO s (i.e.,
choice of energy parameters Fi and choice between use of
Hankel and Neumann functions, see Ref. 23) that are
used, and can vary by as much as 2 eV. The LAMTO
method is unsatisfactory without further improvements in
variational quality. Unlike the LC(MTO-PWO) method,
it does not reduce to the film KKR method in the exact
limit; and it is therefore difficult to see the directions in
which the method may be systematically improved.

In those cases where we could compare to results of
other calculations, ' ' the LC(MTO-PWO) method
gave us good results, except for the work func-
tion, '82'222 even when we only used vertical warping.
We therefore feel it more useful to improve the

LC(MTO-PWO) method by dropping the variational con-
straint of tail cancellation in the vacuum than to pursue
the LAMTO method. Using the methodology outlined in
Appendix A, a modest increase in basis size should retain
the essential advantages of the method and give good
work functions. As discussed in Sec. III on methodology
and in the concluding remarks of Sec. V, this increase in
basis size giving independent PWO basis functions would
relieve the constraint on the charge density behavior in the
vacuum boundary region, which is the probable cause of
the problems with the work function, essentially without
modifying the spectral density relative to the Fermi ener-

gy. For a five-layer copper system the running time for
the method of Appendix A should be about the same as
for an LAPW calculation for a five-layer copper system.
For larger systems the basis size would not increase as fast
as for the LAPW method since the number of site-
centered functions remains the same (9 per atom for d-
band metals) and we do not foresee the need for increasing
the number of independent PWO's.

III. METHODOLOGY

In this section we present the details of our methodolo-

gy and some techniques of implementation. In Sec. III A
we outline the choice of our basis functions and in Sec.
III 8 we write down the wave function in each region of
space for the LC(MTO-PWO) method. In Sec. IIIC the
wave functions for the LAMTO method are given. The
solution of the Poisson equation is discussed in Sec. III D
and the various shaping approximations for the charge
and the potential are discussed. The setup of the secular
determinant is presented in Sec. III E.

A. Basis functions: Linearization and core
ortholonalization

The basis functions are defined with respect to the film
muffin-tin potential with the geometry shown in Fig. 1.
The film muffin-tin-potential is angular averaged in the
muffin-tin sphere, region I; volume averaged in the inter-
stitia1, region II; and planar-averaged parallel to the plane
of the film, in the vacuum extending from +zi to + oo,
respectively, region III. This film muffin-tin potential is
recalculated at each iteration, and we emphasize that this
restricted form of the potential is only used in defining
the basis functions (as in the LAPW method). A more
general form of the potential can then be used in solving
the secular equation through the application of a varia-
tional principle. %'e use the MTO and P%0 basis func-
tions, given by Eqs. (4), (8), and (Al) of KC with one
modification (outlined in Sec. V of KC). The modifica-
tion is to replace Ji and Ei in Eq. (4a) of KC, i.e., to
modify the definition of the MTO's and PWO's in the
MT sphere regions. JI is replaced by J I which is a linear
combination of u I and u i, where u I is the energy
derivative of u~i. (Here, as in KC, u i is the solution of
the Schrodinger equation for the o.'th muffin-tin spherical
potential part of the film muffin-tin potential and is nor-
mahzed to unity in the MT sphere region. ) Thus
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Then for r' =r —r~ in the ath MT sphere

X r(r') =i'YL, (r')[a ru r(r')+b iu r(r')],

(3.1a)

i
r'i &5, (3.1b)

where L = jl,m I, u
&

—[r}u &/r}E]p E, , 5 denotes the

ath muffin-tin sphere radius and Er is the energy parame-
ter chosen to represent bands of a given l character. The
coefficients in Eqs. (3.1a) and (3.lb) are determined by the
continuity conditions on the MTO basis functions and
their radial derivatives at the muffin-tin sphere radius.

This replacement of J) by J) has the desirable feature
of supplying the first correction term in the linearized
energy-independent basis functions and at the same time
guarantees orthogonalization s to the core functions at all
sites a+P as well as for a =P. Since Eq. (3.1}changes the
definition of the ath MTO within the ath MT sphere, the
defi'nition of I{.'r in Eq. (4c} of KC for the ath MTO out-
side the ath muffin-tin sphere must also be changed. This
is done by replacing E& with K) given by Eq. (24) of KC
when JI is replaced by J ~. This gives

X r(r)=srK r(a.,r}

FIG. 1. Schematic figure showing geometry used to define
the film muffin-tin potential. Regions I, II, and III and boun-
daries at +z~ and %zan are described in the text.

shape consisting of a parallelopiped with spherical holes
in it. %e deal with this geometry by extending the inter-
stitial functions into the holes by choosing "pseudo-
muffr'n-tin" functions which have the form appropriate to
the MT sphere with zero potential:

X,, L, (r') =r'Y/(r')[c, , )r '+d, rr '+'j, (3.3)

K~L(r}=4mQCr'r L a JL (a, r R r—p)—l+ 1' —k"

Lt LII

X&r". ( R rp+—~,)—

when r is within all other MT spheres; and

K ~ I (r') =i 'Yr (r')(i r~'+')ht' "(«')

(3.2a)

(3.2b)

when r is in the interstitial, i.e., neither in any muffin-tin
sphere nor in the vacuum. Note that in the interstitial re-
gion E L (r) =E r, (r). The PWO's for r within the MT
spheres is given by Eq. (25) of KC.

Before closing this subsection, we define another set of
functions in the MT sphere regions. To calculate the in-
terstitital contribution to the Hamiltonian and overlap
matrices and to solve the Poisson equation in the intersti-
tial region, we have to deal with an awkward geometrical

I

where c r and d~ r are determinrxi by continuity at the
MT sphere boundary with the true interstitial functions of
Eq. (4a) of KC.

B. Wave functions in the three regions

We follow the Appendix of KC for writing the wave
function in the three regions shown in Fig. 1. Starting
from the film wave function [Eq. (Al) of KC] and using
the vacuum tail-cancellation conditions [Eqs. (A3a) and
(A3b) of KC] to eliminate the A;~ coefficients, we arrive
at Eq. (A5a) of KC which we no longer require to be zero.
Substituting Eq. (A5a) of KC in Eq. (Al) of KC we have
the generalizations of Eqs. (20a) and (20b) of KC for
multilayer films for rr2~0.

The representation of the linearized film wave function
for r in the Pth muffin-tin sphere region is

4L (J)I',r')
%„(r)= Q A, L(k) @L(NP, r')5 p+ g

a,I. a~i(& ) —air(J ~ )
(3.4)

@I(ff, r') =i'YL(r')[upi(r)+cur(fP)u p i(r')], (3.5a)

uPD(fP) D(uP)—
u PrD(ff') D(uP)— (3.5b)

where

D(fP) =~p[(ff')'~f/']. =s, (3.5c)

where r'=r —zp. The structure matrix EL I includes thePa

effect of all off-site basis function "tails." Other quanti-
ties in (3.4) are defined as follows:

I

is the logarithmic derivative evaluated at the th rnuffin-
tin sphere boundary, in which ff stands for J or Xt, and
f' denotes the radial derivative. In Eq. (3.4), b is the
band index, and k is a two-dimensional wave vector in the
two-dimensional Brillouin zone. Then with r as indicated
inside the Pth MT sphere, the quantity within large
parens in Eq. (3.4) is just the Pth MTO, XpL (r) of Eq.
(3.1) given by the first 5~p term, plus the contribution
from the "tails" falling within the Pth MT sphere of all
other MTO's and of all PWO's. The structure matrix
4g~g 1s given by
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C'I (&P) e»(ivy )

xII'

~(gapa
'" rye l'+I+i)i' lT—ltd ) (3.6)

b i(k+N~ ) r (1)+k rupper g ~ i, me iik„m +vacrZ (3.7)

with a corresponding expression in the lower vacuum.
Here E„„ is the constant value of energy chosen as

where rp =rp r—~ gives the relative positions of the
atoms in the two-dimensional unit cell. The matrices
BL L and TL, L, are defined in the Appendix of KC. Bz~z

is the two-dimensional structure function (in the usual
sense of KKR theory), and the matrix TL, I includes the
effects of electronic propagation normal to the film plus a
two-dimensional lattice sum of Bessel functions. Thus
through Bz I we include the tails from all the MTO's and
through TL, i, we include the tails of all the PWO's. The
wave function for the pseudo-muffin-tin sphere is quite
similar except now expressions given by (3.3) are used in-
stead of (3.1). A detailed derivation of Eq. (3.4) for the
case of a monolayer is given in Appendix B.

The treatment for region III of Fig. 1, i.e., in the "vacu-
um" above and below the film boundary, is unchanged
from KC. We continue to use the tail-cancellation condi-
tion in the vacuum region. This means that we restrict
the basis function in the vacuum region to the special
form given by the solution of the Schrodinger equation
for a planar-averaged potential in that region. We now
believe that this restriction sufficiently constrains the
charge distribution in the boundary region so as to ad-
versely affect the work function. This use of the tail-
cancellation condition allows us to specify the coefficients
of the PWO's in terms of the coefficients of the MTO's
when giving the wave function as a linear combination of
MTO's and PWO's. Thus the size of the secular deter-
minant is given by the total number of MTO's assigned to
the muffin-tin spheres in the two-dimensional unit cell.
Then the wave function in the upper vacuum is

b+ g ~i;m&i, m «ur) (3.8)

Here A L and A; have a one-to-one correspondence to
the coefficients in Eqs. (3.4) and (3.7). [The index i is 1

(2) for the upper (lower) vacuum. ] The X;m are the
plane-wave orbitals (PWO's) defined in Eqs. (8a) and (8b)
of KC.

C. %ave functions for the linearized augmented
muffin-tin orbital method

As was discussed in the Introduction, the work function
for the test case (five-layer (100) copper) with fully-
warped potential was about 1.5 eV higher than experimen-
tal values. This prompted us to explore ways of eliminat-
ing the constraint on the vacuum functions so that they
were not restricted by the special form of Eq. (3.7). How-
ever, since we were reluctant to increase the basis size we
did not take the most obvious route of dropping the tail-
canceBation condition in the LC(MTO-PWO} method and
using the additional variational freedom of the PWO's
thus gained. Instead we dropped the PWO's altogether
and matched the lattice sum of the muffin-tin orbital tails
to a linear combination of uz (E„„,z) and ii k (E„„,z)
with continuous first derivative at the nominal vacuum
boundaries +z&. As we shall see in the next section, this
actually worsens the results.

For r in the muffin-tin sghere regions, Eq. (3A) is valid
with the replacement of Tz L in Eq. (3.6}by

representative of the behavior in the vacuum recon; g is
a two-dimensional reciprocal-lattice vector; u ~' is an ex-
act solution of the one-dimensional Schrodinger equation
for a z-dependent potential (z is the direction normal to
the film); and the A i are written in terms of the A
(MTO coefficients) using the vacuum tail-cancellation
condltlon.

In the interstitial region the film wave function is

+q(r;„,}= g A L (k) g e'"' EL (r;„,—R—r~)
a,L R

8 2 .I —I'+ I
p 8% i ~ 1

[
y+e ~+ is (ep e)[ Q (r—p-r ) 1)L+i —~Q (Hp —r')]

A a 2Qm

where 1'L+ ——Yz (K +Q z),8(Q ) is the usual unit step function, Q =z2 —(k+g ), and g is the two-dimensional
reciprocal-lattice vector. By this replacement we have simply restored the two-dimensional lattice sum of Bessel func-
tions given by (11c) of KC that was included in TL L . We note for later reference the anti-Hermitean nature of the ma-
trix DI rL.

The wave function in the upper vacuum region is

%i,(r)= g 3 L, (k) Qe [F"L uI,
" (E„„,z).+6"I iii, (E„„,z)].

u, L m

(3.10)

with a corresponding expression for the lower vacuum.
L. and 6 L. are determined by continuity of the

function and derivative across the upper vacuum boun-
dary at +z„and the other quantities are as defined in Eq.
(3.7). We note that Kasowski and Tsai have indepen-
dently arrived at equations that seem very similar. %e

use the form given by Eq. (16) of KC for the lattice sum
of interstitial functions to carry out the matching at the
vacuum boundary. This ensures both accuracy and speed.
If Eq. (16) of KC is further expanded in a Fourier series
over an interval +zi (as is done to calculate interstitial
matrix elements) and that expression used for matching,
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as in Eq. (7}of Ref. 20, a large number of plane waves are
required in the perpendicular direction to ensure conver-
gence, particularly with terms involving the derivatives.
Good convergence is necessary in this case because anti-
Hermitean terms arise from matrix elements in the vacu-
um region that cancel with the anti-Hermitean part that
results from Eq. (3.9) when calculating matrix elements
from the MT region.

In the interstitial region the film wave function is just
Eq. (3.8) with the second term (PWO's) deleted.

D. Poisson equation solution

In this subsection we first discuss the way in which the
geometrical problems of solving the Poisson equation are
dealt with. Wc mentioned this problem while presenting
the pseudo-muffin-tin wave functions, where we men-
tioned that having plane wave representations, of both the
charge density and thc potential, in thc interstitial region
greatly simphfies the task of solving the Poisson equation.
(This is so because the key to solving the Poisson equation
lies in defiiung charge neutral regions of convenient
geometrical shape in order to use some version of the
Ewald te:hnique for dealing with the lattice of nuclear
charges. 6

)

For purposes of solving the Poisson equation, the two-
dimensional unit cell is separated into two regions, each of
which is made to be charge neutral. The two regions are
the muffin-tin spheres and the entire two-dimensional
unit cell. We shall first describe how we obtain a neutral
charge distribution in each of these regions, and then how
the potential is obtained. For descriptive convenience, we
shall describe the procedure as though there were only a
single muffin-tin sphere in the two-dimensional unit cell.

We first separate the two-dimensional unit cell into the
muffin-tin sphere and the remainder of the cell (intersti-
tial plus vacuum}, which for brevity we shall refer to as
"interstitial"' in the present discussion. %'e next extend
the second region from being the interstitial (i.e., the unit
cell with a spherical hole in it) to being the full two-
dimensional unit cell. We do this by using the pseudo-
muffin-tin wave function defined at the end of Sec. III A.
Since this pseudo-muffin-tin wave function is defined so
that it is continuous with the true interstitial function, the
pseudo-charge density obtained from this is also continu-
ous with the interstitial charge density so that we have a
charge density defined over the whole unit-cell region.
The pseudo-muffin-tin charge density is now subtracted
from region I, the muffin-tin region.

At this point in the procedure for solving the Poisson
equation (PE) we have defined two regions, in each of
which the PE can be solved separately. These are (l) the
muffin-tin sphere and (2) the full unit cell (i.e., unit which
repeats periodically in two dimensions). Because of the
linearity of the PE, the solution of the PE consists of the
sum of the solution in each of the two individual regions.
The total charge summed over the two regions is neutral,
but each of the regions individually is not charge neutral.
To solve the PE in each region, each one must individual-
ly be charge neutral. To achieve this we add a Gaussian
to the muffin-tin sphere (region 1) and subtract the same

Gaussian from the entire unit cell (region 2).
The solution of the PE in regions 1 and 2 is straightfor-

ward on taking account of their respective geometries. In
region l, we spherically average the charge; while in re-
gion 2, this requires using a Fourier-transformed represen-
tation for the charge density (the resulting potential is in
the plane-wave form). Calculating the contribution to the
Hamiltonian matrix from this Fourier-transformed poten-
tial consumes the major fraction of the running' time (see
Sec. III E for details).

E. Setup of the secular determinant

We now discuss the setting up of the secular deter-
minant which yields the solution of the Schrodinger equa-
tion. In doing this we bear in mind that the potential
"presented to" the Schrodinger equation is the sum of
those in regions 1 and 2 as described above.

The evaluation of the matrix elements of the potential
in the muffin-tin sphere is straightforward. The poten-
tials from both regions 1 and 2 contribute to the total po-
tential in the sphere. Except for spherical averaging, we
evaluate the matrix elements of the total potential in the
sphere exactly.

To evaluate the matrix elements of the potential in the
interstitial, we extend the integrals over the potential to
the whole unit cell and subtract out a correction for the
integral over the muffin-tin sphere, using again the
pseudo-muffin-tin functions of Eq. (3.3). In evaluating
this correction, we use spherical averaging. Thus whatev-
er warping is present in the pseudo-muffin-tin sphere
from the analytic extension of the interstitial charge den-
sity is retained in the Hamiltonian. Similarly the overlap
matrix from the interstitial region is calculated by first
calculating the overlap over the whole unit cell and sub-
tracting from the latter the overlap over the pseudo-
muffin-tin region.

Before closing this section a word about Fourier expan-
sions is useful. The interstitial functions, with the help of
the pseudo-muffin-tin basis functions, are defined over the
whole unit cell. We evaluate and store the corresponding
Fourier coefficients. These expansions for both wave
function and potential, are over an interval, in the z direc-
tion, bounded by +z2 and —zq. These boundaries are ap-
proximately one muffin-tin radius outside the nominal
vacuum boundaries +z, and —z, (see Fig. 1). This
achieves the desired accuracy in representing the behavior
of the functions at the boundaries +z~. The integrals are
carried out over the true unit cell defined by the boun-
daries +z&. Integrals involving the potential are currently
carried out in configuration space, with the help of FFI',
and points in the real-space sum that lie outside the nomi-
nal vacuum boundaries are dropped.

IV. QUALITY OF RESULTS AND DISCUSSION

To characterize the quality of results from our two
FLMTO methods we consider the following aspects of the
output from the calculations. We use results for a five-
layer copper (100) slab as the basis of discussion. First,
we exhibit the close agreement of the LC(MTO-PWO)
and LAPW eigenvalues for the same input muffin-tin po-
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tential, generated from self-consistent atomic charge den-

sities, and the lack of such agreement for the LAMTO
method. Second, we report the effect of including various
degrees of complexity in the shape approximations used to
treat the charge density as input to the Poisson equation
and the potential as input to the Schrodinger equation; the
discussion will be confined to the LC(MTO-PWO)
method. Since we now have the capability of including
full warping (except in the muffin tin) in our calculations,
the discussion of the shaping approximations is for the
sake of completeness and for putting our previously re-
ported caIculations' in perspective. Third, we report the
effect, on the self-consistent results, of varying the energy
parameters involved in the linearization. Fourth, and last,
we look at the layer-projected density of states and the
work functions, comment on the deficiencies, and look at
ways to increase the variational freedom in each case.

We test the quality of our LC(MTO-PWO} and LAM-
TO methods by a preliminary comparison with an accu-
rate LAPW calculation. We use the same film muffin-tin
potential, generated from self-consistent atomic charge
densities, use the same energy parameters, with suitable
choice of a (within a few millirydbergs of the Et ——2 ener-

gy parameter, to capture d-band behavior} for both our
methods and show the resulting eigenvalues in Table I.
The LAPW calculation provides a good standard for com-
parison because it was done with a 1arge basis that was in-

creased to insure that the calculations were fully con-
verged (i.e., insured that further increase of basis made no
difference).

In Table I we have given the energies (in mRy) of the
eigenstates classified according to the four symmetry
types for the k=[(—,', —,

' )nia.] point in the two-

dimensional Brillouin zone. We see from this table that
the LAPW and the LC(MTO-PWO} eigenvalues are in
close agreement (differing by 1 or 2 mRy or less in the
part of the energy range encompassing the d bands).
Thus the LC(MTO-PWO) technique fulfills our expecta-
tion of equal variational quality with much greater com-
putational speed (for the film muffin-tin potential). The
eigenvalues from the LAMTO method show similar
agreement for the X z and X 3 states. The X 2 state is pure
d while X& is a mixture of p and d. LAMTO states for
the X

~ and X4 show the greatest disagreement, ranging
from 9—35 mRy, with the corresponding LAPW calcula-
tion. The state X

~
allows mixing between s, p, and d

while X 4 has p, -like states which may hybridize with d s.
These differences indicate a problem both in representing
states with strong sp-like character and in capturing hy-
bridization effects, as we shall see when examining the
self-consistent layer-projected density of states. We recall,
in this connection that the Fermi energy of copper is
determined by sp-like bands.

We have studied the effect of including various degrees

TABLE I. Comparison of LC{MTO-P%0) and LAMTO eigenvalues with those of LAP% for the
same input muffin-tin potential, generated from atomic overlaps, and the same energy parameters (plus
specification of ~2) for both methods described in this paper. For each atom in the unit cell the 1=0 en-

ergy parameters are 540 mRy and for I =1 or 2, 420 mRy. The vacuum energy pirameter is 420 mRy
and ~~ +as set at 449 mRy. A typical point at k=( 4, ~ )m/a in the two-dimensional Brillouin zone was

chosen for comparison. Eigcnvalues are classified by the four symmetry types X ~, X 2, X 3, and X q for
the five-layer (100) copper film.

LAP%
Energy (mRy), X

~
states

LC(MTO-P%0) LAMTQ
Energy (mRy), X3 states

LC(MTO-P%'O) LAMTO

—14
168
278
442
461
481
497
511
525
544
655

20
193
302
443
462
482
497
512
526
544
666

8
191
304

478
489
506
515
534
552
769

348
400
448
470
537

349
402
448

538

349
402
449
471
538

Energy (mRy}, X 2 states
LC{MTO-P%0) LAMTO

373
419
448
505
556

LAP%'

64
266
430
451
480
488
503
537

Energy (mRy)„X ~ states
LC(MTO-P%'0) LAMTO

97
275
431
452
481
488
504
537
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of complexity in the shape approximations used to treat
the charge density as input to the Poisson equation and
the potential as input to the Schrodinger equation for the
LC(MTO-PWO) method. We only briefly discuss this
study because we now have the capability to routinely in-
clude full warping for the potential in our calculations.
However, we note that substantial amounts of running
time may be saved if for some purposes it is felt that in-
cluding vertical warping in the potential is sufficient.

The first shaping approximation consisted of averaging
the charge density, spherically in the muffin-tins, over the
volume in the interstitial, and over planes parallel to the
film in the vacuum before solving the Poisson equation
for each iteration. The resulting self-consistent work
function of 10 eV for five-layer (100) copper is much too
large compared to an experimental value ' of 4.6—4.8
eV. The potential for each iteration in this case is the
film muffin-tin potential.

As the second shaping approximation we still use the
film muffin-tin potential at each iteration for solving the
Schrodinger equation but the charge density input to the
Poisson equation was allowed full spatial variation in all
regions except the muffin-tin sphere where it was spheri-
cally averaged. The resulting potential was shaped to film
muffin-tin form. The self-consistent work function was
better at 8 eV, but still too large.

As the next shaping approximation in solving the
Schrodinger equation, we include vertical warping in the
interstitital potential. We then obtain a work function of
4.9 eV in excellent agreement with experiment, as well as
agreeing very closely with previous self-consistent calcula-
tions ' for ( 100) copper. (We mention that the
vertically-warped results were also excellent for (100)
five-layer nickel, but the work function for (0001 )
ruthenium was too small by about 1 eV.) There is some
ambiguity in the definition of planar averaging and we
now discuss this in greater detail along with our pro-
cedure for handling the exchange and correlation for this
case, so that our results with full warping (except in the
muffin tin) of the potential (to be presented at the end of
the discussion) can be put in perspective.

For simplicity of discussion it is useful to start with a
potential that is allowed full spatial variation in the inter-
stitial region. We recall that by the process of analytic
continuation of the wave function, and hence the charge
density, the interstitial potential is extended over the
whole unit cell. We further recall that the muffin-tin zero

is defined as the interstitial auerage of the potential. The
process of interstitial averaging may be imagined as first
planar averaging over planes parallel to the film boundary
but with circular holes cut out of them, corresponding to
planes of intersection with the muffin-tin spheres. This
planar-averaged potential must now be averaged in the
perpendicular direction between the nominal vacuum
boundaries at +z&, to give the muffin-tin zero of the po-
tential. The same result may be achieved by convoluting
the unit-cell potential with a three-dimensional step func-
tion that takes the value zero within the muffin-tin sphere
regions. However„a large number of Fourier coefficients
of the potential must be kept to represent the sharp falloff
of the step at the muffin-tin sphere boundary. To save
computer time we have resorted to a cruder approach.
We simply planar averaged (right through the muffin-tin
spheres) the unit-cell potential (i.e., over the complete
plane regardless of whether it cut through a muffin-tin
sphere region). The resulting planar-averaged potential is
in error from contributions of the analytic extension of
the potential into the muffin-tin regions. If this planar-
averaged potential is now averaged in the perpendicular
direction, the result is not the muffin-tin zero. We
corrected for this by subtracting a constant (recalculated
at each iteration} equal to the difference between the
muffin-tin zero and the average value of the crude
planar-averaged potential (i.e., the average over the whole
unit cell). This constant, which we expected to be small,
is surprisingly large, being about —500 mRy. A second
error is introduced by our handling of the exchange and
correlation which is calculated using a charge density that
is shaped to the same form (i.e., vertically warped, planar
averaged in vacuum) as the final potential that is used in
the crystal Schrodinger equation. This then is the
vertically-warped potential that we used in reporting our
earlier results. '

We have now implemented the fast Fourier transform,
and routinely use potentials of full spatial variation in the
interstitial and vacuum and charge density of full spatial
variation (spherically averaged in MT sphere region} in
calculating the exchange correlation contribution. This
avoids the errors mentioned above. The resulting self-
consistent work function with the LC(MTO-PWO)
method for five-layer (100) copper is 6.3 eV (compared
to the experimental value ' of 4.6—4.8 eV).

To study the effect of varying the energy parameters in-
volved in the linearization on the energy eigenvalues and

TABLE II. Fermi energy and work function for several sets of energy parameters. (Calculations
were for five-layer (100) copper. } Energies are in mRy except for work functions, which are in eV.
The first three sets are for the LC(MTO-P%'0) method, with vertical sharping for the first two and full
warping for the third as explained in the text. The last two sets are with the LAMTQ method with
fully-warped potential.

Evac

150
150
150
150
150

200
200
150
150
150

290
290
290
350
350

400
400
450
510
510

503
480
464
521
534

4.9
6.3
6.9
6.4
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TABLE III. Energy eigenvalues at k=( 4, ~ )m/a for first three sets of energy parameters shown in

Table II. Energies are in mRy.

—126
—45

59
132
141
216
238
267
291
310
327
330
333
344
352

—130
—51

50
115
120
192
212
239
263
282
300
305
308
318
325

Difference
(1 —2) Set 3

—108
—24

94
174
177
196
218
246
262
286
288
291
294
294
311

355
366
370
380
383
386
390
402
403
411
416
430
435
511

Set 2

329
338
342
351
354
356
362
370
372
383
384
401
410
491

Difference
(1—2)

26
28
28

29
30
28
32
31
28
32
29
25
20

321
329
334
335
344
345
353
365
373
376
376
390
392
447

work function, we have studied shifts in behavior between
results for different sets of energy parameters. We present
these results in Table II. Two sets are shown for the
LC(MTO-PWO) method with vertical warping, one set
(set 3) with full warping, and sets 4 and 5 are for the
LAMTO with full warping. The table displays only vari-
ations with respect to ~ between sets 1 and 2 and between
sets 4 and 5, because the methods seem to be the most sen-
sitive to that parameter. In the following discussion we
shall make use of results that are not explicitly given in
the table. Comparing sets 1 and 2 we see that the rather
large change in II brings about a significant but smaller
change in the work function (of about 0.5 eV), while the
shift in energy eigenvalues is rigid (i.e., constant) within
30 mRy or less over most of the energy range (see Table
III). This change in z required about eight iterations for
reconvergence of the potential to within 10 mRy; smaller
changes in Ir require fewer iterations. The method is
least sensitive to the I =0, 1, and vacuum energy parame-
ters and somewhat more sensitive to the 1=2 energy pa-
rameter, requiring between four and eight iterations for
reconvergence for variations between 90 and 490 mRy.
The corresponding largest shift in the work function is
only 0.2 eV. In Table III we also show a set of eigen-
values for the fully-warped calculation with the
LC(MTO-PWO) method (set 3) for comparison; the shift
in the eigenvalues from those of set 2 is less than 20 mRy
over most of the energy range, with little spectral distor-
tion, while the work function moves up significantly to
6.3 eV.

The LAMTO method (sets 4 and 5, Table ID shows
greater sensitivity to changes in ~ (changes of about 100
mRy shifting the work function by 0.5 eV). Set 4 corre-
sponds to a "reasonable" choice of ~ (i.e., close to the po-
sltioll of d llaIlds). As Inally Rs 12 Iterations IIlRy be re-
quired with the LAMTO for reconvergence to within 10
mRy for the potential. The work function is no better
than that with the LC(MTO-PWO) method (however, see
23), and, as we shall see, the corresponding layer-projected
density of states is very poor.

We now discuss our layer-projected density of states for
five-layer (100) Cu shown in Figs. 2—4. The first two
figures are with the LC(MTO-PWO) method for the
vertically- and fully-warped potentials, respectively, and
the third is with the LAMTO method using the fully-
warped potential. In each case the top panel is the surface
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FIG. 2. Layer-projected density of states for a system con-

sisting of a five-layer slab of (100) Cu. S, I, and C denote the
surface, interface {next-to-surface), and center layers, respective-
ly. This calculation is for a vertically-warped potential using
the LC(MTO-P%0) method as described in the text. The densi-

ty of states should be multiplied by 2 to take account of spin de-
generacy.
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FIG. 3. Layer-projected density of states for a system con-
sisting of a five-layer slab of (100) Cu. S, I, and C denote the
surface, interface (next-to-surface)„and center layers, respective-

ly, This calculation is for a fully-warped potential using the
LC{MTO-PWO) method as described in the text. The density of
states should be multiplied by 2 to take account of spin degen-

eracy.

FIG. 4. Layer-projected density of states for a system con-
sisting of a five-layer slab of (100) Cu. S, I, and C denote the
surface, interface (next-to-surface), and center layers, respective-
ly. This calculation is for a fully-warped potential using the
LAMTO method as described in the text. The density of states
should be multiplied by 2 to take account of spin degeneracy.

layer, the middle panel is the subsurface layer, and the
bottom panel is the center layer. For both methods there
is very little (barely noticeable) change in spectral shape
with changes in energy parameters. Upon comparing
Figs. 2 and 3 we see that in the surface layer the leading
edge shows a small shift of about a tenth of an eV. There
are some minor changes in the shape for all three layers.
As far as we can judge, the layer density of states with

either vertically or fully-warped potential for the
LC(MTO-PWO) method shows good agreement with oth-
er self-consistent calculations. ' The density of states
with the LAMTO method, on the other hand, shows seri-
ous distortions for the surface layer (Fig. 4, top panel).
The start of the initial rise is about an eV lower, and while
the LC(MTO-PWO) method gives a peak within half an
eV from the initial rise, the rise for the LAMTO calcula-
tion continues over 1.8 eV from iis onset before reaching
its maximum. Further, it does not exhibit the series of
steps on its trailing edge. The density of states are shifted
half an eV downward for the subsurface and center layers
from those of the LC(MTO-PWO) method.

We now present qualitative arguments for each method
to show that the variational freedom must be increased to
obtain good work functions, while retaining a good-
quality layer-projected density of states for the LC(MTO-
PWO) method. In the LC(MTO-PWO} method, even

with the use of the tail-cancellation condition in the vacu-
um, the basis functions are a mixture of MTO's and
PWO's that provide a good representation to capture all
the essential features of the layer-projected density of
states. However, the constraint on the vacuum functions
hmits the variational freedom of the method and the abili-

ty of the charge to readjust near the vacuum boundary,
giving a poor value of the work function. In Appendix A
we suggest a way of utilizing the full power of the
LC(MTO-PWO) method and avoiding the convergence
problems in the exterior regions. This we believe will

give us good work functions, in addition to the already
good layer density of states with only a modest increase in

the size of' the secular determinant, thus still providing
computational advantages for studying complex systems
with many atoms in the unit cell.

%"e recall, as was described in the Methodology section,
that if we take the LC(MTO-PWO} method without im-

posing the tail-cancellation condition, delete the P%0's
everywhere, and replace the lattice sum of MTO tails in
the vacuum by a linear combination of u (z) and i ~(z)
with continuous logarithmic derivative at the vacuum
boundary, we get the LAMTO method. However, delet-
ing the PWO's renders the resulting formalism, in the ex-
act limit, inequivalent to the film KKR method due to
loss of scattering information from the vacuum boun-
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daries. In practice, as we see from the results, the LAM-
TO method is inferior (as it stands) to the LC(MTO-
PWO) iilethod witll the saiile size basis. We beheve tliat
this occurs for two reasons, which may be related and

equally important. First, the basis functions in the vacu-
um exhibit broad peaks outside the nominal boundary re-
gion for 1=0 and 1. This is unlike the functions for the
LC(MTO-PWO) method which exhibit exponentially de-

caying behavior. If we think of the interstitial and vacu-
um potential as being qualitatively similar to an ideal
square-well potential in the z direction, it is clear that the
latter functions are the better representation. Second, the
absence of PWOs in the muffin-tin and interstitial re-

gions msy represent an important handicap in capturing
hybridization effects and the position of the s- and p-like
bands near the Fermi energy for the copper system. This
is because a relatively few LMTO's alone may be inade-

quate to capture the necessary behavior in the perpendicu-
lar direction within the interstitial region. %e contrast
this behavior with the bulk systems where periodicity in
all three directions enables the use of modulated plane
waves in all three directions in the bulk LMTO method.
Thus the absence of PWO's means that a substantial ex-
pansion in the number of basis functions may be needed
to improve the LAMTO method. In our future work we
plane to revert to the LC(MTO-PWO) method.

V. SUMMARY AND CONCLUSIONS

In our efforts to adapt the LMTO method to slab
geometries we have explored the use of two modifications
of MTO basis functions as used in bulk calculations, with
the object of minimizing demands on computer resources
without sacrificing quality of results. Of these two ver-
sions of the LMTO method for slabs, on the basis of the
detailed study described above, the LC(MTO-PWO)
method incorporating the tail-cancellation method is
much Inore promising. This method gives good, and we
believe adequate, spectra of eigenvalues for understanding
the electronic behavior of surfaces insofar as these are
characterized by the layer-projected density of states, but
gives generally inadequate work-function values. We be-
lieve that this defect with regard to the work-function
values is a consequence of the constraint placed on the
charge distribution in the vacuum boundary region
through use of the tail-cancellation constraint in defining

the basis functions. Therefore, in Appendix A we have
outlined the modifications in the LC(MTO-PWO) method
necessary upon eliminating the tail-cancellation con-
straint.

The question of whether the work function is a good
"one-number" test of self-consistent electronic structure
calculations, along with the effects of use of various
exchange-correlation potentials, has been discussed in de-
tail by Jepsen and Wilkins" for the LAPW method. (We
do not expect the answer to be different for the LMTO
method. ) It is possible to have the correct relative energy
distribution of states, but a poor work function, because
the latter depends on the correct positioning of the Fermi
energy with respect to the absolute zero of potential at in-
finity (vacuum zero). Thus a rigid shift of the bands
would not affect the density of states, and yet would give
a poor work function.

The second version of the LMTO method we have ex-
plored for slab geometries, the LAMTO method, does
poorly both for the work function and for the density of
states, because discarding the P%0's worsens the quality
of the basis functions even in the muffin-tin regions. We
have now implemented snd tested the third method, the
LC(MTO-PWO) method, without tail cancellation, sug-
gested in Appendix A. The results have fulfilled our ex-
pectations and will be reported elsewhere.

We have also investigated the sensitivity of the eigen-
values with respect to changes in the energy parameters
and the effect on the work function of various shaping ap-
proximations of the charge density distribution and poten-
tial. The eigenvalues are stable with respect to changes in
the energy parameters. Averaging the charge density out-
side the muffin-tin spheres before calculating the potential
strongly affects the work function, while averaging the
potential (as calculated from the charge density with com-
plete spatial variation) has a much smaller effect.
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APPENDIX A

In Appendix A, we increase the variational freedom for the LC(MTO-PWO) method by making the PWO's indepen-
dent functions. We restrict our attention to the upper vacuum z )zi, since the lower vacuum can be dealt with similarly.
Using the expression given by the left side of Eq. (15a) of KC for the crystal wave function for r in the upper vacuum,
and making use of Eq. (16) of KC to rewrite that, we have

I +iK r ' 2iri ic +L, '+m ~a '& ~a ig zge QA~L(k) e '+Hi ci +Aq s2 e +Hi ui,
" (z)

a, L Ill
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As noted in Sec. IV of KC, for Q &0, the integrals
(for calculating matrix elements of the secular deter-
minant) in the vacuum regions do not converge. This
problem can be circumvented in the same way that false
zeros due to nonorthogonality of the MTO tails were el-

iminated. This is accomplished by replacing the osrillat-

ing function e with a linear combination of ui, (z)
ig z ~ (],)

and its energy derivative matched with continuous first
derivative at the vacuum boundary. This linear combina-
tion takes the form

—2~Q'[s i ul,
" (z) —si u I,

" (z)], z&z),
(A2)

where s~ is as defined in KC and s
&

is its energy
derivative. This replacement is strictly not necessary for
Q ~0. However, numerical integrations involving the

product of u&'~(z) and e may be avoided if the re-
placement (A2) is made for all values of Q

The wave function in the interstitial region is still given
by Eq. (3.8), but the A; ~ are now independent variational
coefficients. In the muffin-tin region the wave function is

e„(r)=+A L(k) eL(Xi, r')5 p+g aLL ++A, y, (r),b b a eL (Jp, r') ~ b

a,L coi(iii )—coi(J ~ )
(A3)

rC the Pth MT sphere where r'=(r —rp), and where
b,L L is now given by Eq. (2.6) with TL L replacixl by DL L
of Eq. (3.9). The X; (r) are the plane-wave tails from the

iK r+iQ s
two vacuum regions of the form e " which must
now be expanded in spherical waves inside the muffin-tin
with the Bessel function in the expansion replaced by the
appropriate linear combination of u@i and u ~ i.

qll, (r)= g AL(k) pe' '"XL(r—R)
L R

+ gA; (k)I; (r) . (81)

Using the explicit expression for the MTO, XL(r—R), as
given by Eq. (4a) of KC, we have

APPENDIX 8

In Appendix 8 we present the derivation of the repre-
sentation of the linearized film wave function for r within
the muffin-tin sphere for the case of a monolayer film
[derivation of Eq. (3.4) for the monolayer case]. From
Eq. (9) of KC, the wave function for

~

r
~

&S (within the
muffin-tin sphere) is

'pg(r) = g AL[uL(r)+(ci+isia '+')JL(r)]
L

+yAL y '"e"
ils(. (rLR)+—gA, X; (r).

L R (~0) i, m

It can be shown that

QAL g e'"' s&EL(r —R)+ gA; X; (r)= —QALsi[ia '+'JL(r)]
L R(~0) l, m L

+ g ALsf g JL'(r)[~L'L &+'+'TL—L], for a & 0 .
L L'

(83)

Therefore,

0'g(r) = Q AL [uL(r)+ciJL(r)]+ g ALsi g JL (r)(BL L i a++'—TL L ) ..
L L L'

Linearization implies that

uL (r)+ciJL(r) =sic i@L(Xi,r), (85a)

JL (r) =s i@L(Ji,r), (85b)

where c i and s i are the energy derivatives of the coefficients ci and si, respectively.
The wave function can now be written as

$
%'s(r) = g ALsic i 4L(Xi,r)+ g 4L (Ji,r)(BL L i ' ~d +'+'TL L—)

L Cl
(86)
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Redefine ALsic i=At,' and from the boundary condi-
tions at the MT radius we get that

4L (Ji,r)
+k(r)= QAL, (&) +L(Ni, r)+ g bt L

L tot Ni —cot J~

4t(Nt ) @t(Nt)

NI
0

tot (Nt ) to(—(J()
(87)

with

4t (Nt ) @t(Nt )
(Bt L i— tr + +'Tt L) . (89)
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