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A consistent approach to atom—surface-energy transfer in one dimension is presented. A semi-
group technique is employed to establish equations of motion for a quantal phonon reservoir, which
is coupled to the propagation of a wave packet. The time-dependent Schrédinger equation is solved
using a pseudospectral technique. The average energy transfer to the bath is then determined. This
study supersedes conventional perturbative treatments and reveals the utility of one-dimensional
models in the study of particle-surface collisions at low energies.

I. INTRODUCTION

The mechanism by which a gas particle transfers its en-
ergy to a crystalline surface is imperfectly understood,
despite several attempts to model this phenomenon.! The
particular case of a small-mass atom scattering from, or
adsorbing onto, a surface composed of large-mass atoms
at low surface temperatures must be treated quantum
mechanically. That is, not only must the propagation of
the scattering particle be given by the Schrodinger equa-
tion, the bulk atom motion must also be described by
quantum mechanics.

One practical instance in which these concerns dom-
inate is the flow of a gas along a surface which need not
be at the same temperature as the gas. The microscopic
transfer of energy to or from the surface has macroscopic
consequences for the flow of the gas. In the usual contin-
uum description of the gas flow, the temperature jump at
the surface alters the boundary conditions of the hydro-
dynamic equations which then modify the macroscopic
properties of the moving particles. A convenient dimen-
sionless parameter which links the microscopic and mac-
roscopic descriptions is the thermal accommodation coef-
ficient a(Ty,T,), which is usually a function of both the
gas temperature T, and the surface temperature T;. The
conventional definition of this quantity is’

E,—E,

T, )=t
T e )= T~ T

(1)

where E; and E; are the initial and final energies of the
scattering particle and kp is Boltzmann’s constant. If the
temperature of the gas and the surface are equal, this
quantity is known as the equilibrium accommodation
coefficient? (EAC)

a(T)=

g

_lerx:= Ta( T,,T,) . (2

The equilibrium accommodation coefficient is the
relevant quantity for several experimental situations, espe-
cially flash desorption,3 in which the gas and surface are
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equilibrated and then suddenly pumped to reduce the gas
pressure. The desorbing particles are collected and the
surface coverage is then monitored as a function of time.
Although the first theoretical calculations date from
Lennard-Jones and Strachan,® there remains qualitative
disagreement between theory and experiment as the tem-
perature of the gas is lowered.” For He on W, the predict-
ed EAC a(0)=0, whereas the experimental data indicates
a(0)£0. This behavior persists even with the inclusion of
a binding potential well in one dimension;> hence, it has
been speculated that one-dimensional theories must be in-
herently deficient.

On the other hand, these calculations were perturbative
results which did not incorporate higher phonon-gas cou-
plings.®* When more extensive, but still perturbative, com-
putations were performed, it was observed that one-
dimensional models could be used successfully, at least for
very weakly bound gas-surface systems.” The extension of
this reasoning requires numerical rather than analytical
techniques for the solution of Schrddinger’s equation. In
order to bypass the limitations of simple time-dependent
or time-independent perturbation theory, the Schrodinger
equation must be solved for a gas particle interacting with
a quantum-mechanical reservoir of phonons. To accom-
plish the solution of the time-dependent Schroédinger
equation, a fast-Fourier-transform (FFT) technique is
used to solve the partial-differential equation.® The pho-
non bath is treated by a semigroup expansion technique’
similar to that used in studies of vibrational relaxation of
liquids.!® Although we only consider couplings to second
order between the gas particle and phonons, this is not an
essential limitation of the technique; furthermore, the
model potential chosen supports 11 bound states, indicat-
ing that the previous restriction to a few shallow bound
states can be removed.” The main qualitative result of
this work is that one-dimensional quantum-mechanical
models can be usefully employed in the examination of
the EAC without many of the limitations, or complicated
expressions, arising from the use of perturbation theory.

The following section examines the details of the
phonon-bath construction and the equations of motion
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that follow. Section III provides examples of the compu-
tations performed for the fully coupled system, which
demonstrate nonvanishing behavior of the average energy
transfer as the gas temperature is lowered. Section IV
concludes this work with a brief discussion of the results
and limitations of the model.

II. PHONON-BATH DESCRIPTION

The equations of motion describing the time evolution
of the quantum reservoir may be realized by the use of a
completely dissipative Liouville operator.” The semigroup
description of the dynamics on the Heisenberg representa-
tion is given by

X=L(X)=Ly(X)+Lp(X), 3)

where X is an operator in the Hilbert space of the system.
L is the Liouville superoperator, which naturally decom-
poses into Hermitian, Ly, and dissipative, Lp, terms.
The Hermitian superoperator is given by the usual
Heisenberg bracket

Ly(X)=i[H,X]. 4)

The dissipative part has a structure and interpretation
similar to that of a quantal master equation:

LyX) =3 v;(V;XVi —5[V;V}" . X],) , (5

in which the y; are real numbers controlling the rate of
relaxation and the equilibrium properties of the system,
the V; are operators within the Hilbert space, and the
bracket [A4,B], is the anticommutator [A4,B],=AB
+ AB. Once the parameters y; and operators V; are
specified, the dynamical motion is completely determined.

As an example, consider an operator evolving by first-
order processes in contact with an harmonic oscillator at
equilibrium. This implies that

H=w0a'a (6)

and the operators V,=a and V2=af. For a phonon

reservoir, boson statistics demand that
Yi/ys=exp(—hw/kgT) , (7

with either y, or ¥, unconstrained in the absence of fur-
ther information about the system. Any operator then
evolves in time according to the equation of motion:

X:ia)[aJ'a,X]-}—y,[aXa*—%(aa*X +XaaT)]
+y,la'Xa — Ha'ax +Xa'a)) . (8)

J

Specifically, a, a2, and aa'=N are

d(t)=—iwa(t)++(y;—yr)a(1), (9a)
a Ht)=—2iwaXt)+(y,—yy)at), (9b)
N(O=(y,—y)N(D+7, . (9¢)

Note that at equilibrium [X(7)=0], aeq=0, a§q=0, and
Neg=1/[explhw/kgT)—1],

as expected. It is thus consistent to use known equilibri-
um values of the operators as initial conditions for the
differential equations.

In the more general case, an expansion of the interac-
tion Hamiltonian proves to be useful. During the course
of a particle collision with phonon bath, energy may ei-
ther be transferred to the bath oscillators, which is then
dissipated as heat, or as internal energy transfer in which
the energy of the different oscillator modes is rearranged.
For low-energy scattering from a surface, the excitation of
the reservoir phonons is not extremely violent; hence it is
a good approximation to retain only second-order expan-
sion terms in the amplitude X; of the interaction poten-
tial:

Vi, X)=Vo(2)+ 3, Vi(2)X;+ 3, Vo (2)X,X; . (10)

i ij
This procedure produces a separable interaction, of
course, which has been used previously.” Since this ex-
pansion is a Taylor’s series in X;, the individual terms are

Vi(2)= %(Z,X,-) (11a)

3 X;=0

and

v
aX;0X;

Vy(z)= (2,X;,X;) (11b)

X;=0, X;=0 '
Transforming the quadratic expression into normal modes

Yj =§j(a}~ +(11T)= ZC,-ka s

ik
where &, =V'1/2M jo; gives the total Hamiltonian opera-
tor as
H=7Y a)ja;'raj + Vo2 +Vi(2) 3 &jeif a; +a;)
J ij
+Vy(2) 3 Eikrcii e (a;+a) Nax+ai) (12)
ik

or, separating out the diagonal terms,

H=73 oaa] +Vy(2)+2V3(2) 3 e Vaja;+ Vi(2) 3 Eici Nay+a))+ Vy(2) S Ee; P ai+(a )]
J ij ij

ij

+Vyz) 3, §j§kc,-j“lc,v;l(ajak+ajTa,Z+aja,:+a;ak), (13)

i,j (k)
from which the dissipative equations of motion follow:

dj=—iVi(2)§c; ' —{il;+2Vy(2)E (e ' Pl+7;/2)a; = 2iVo(2)EX ey Va] —iVy(2)E (e ) Y Encik Nax+a])
k

(14a)
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where sz‘}/jz—'}/jl,

(a] a;)=iV(2)&;(c;j ' Na;— aJ) —i2V5(2)EH e D T)z—-a]] ‘r]a,aj+y11

+iV,(2)§(cif )zgkc,.k (ajak—~ajak+a,-az——a;ak , (14b)
a 2= —(i[20; +4V,(2)EXci ] +7)af —i2V (2 e 'a;—iVy(2)EX e ¥ (2afa;+ 1)
—i2V2(z)§,-(ciJ-“)2§k(cik Naja;+aza;) (140)
(a)"ar) =(—i{ox —@; + 2V (D) E(cit P —EXey ' 1) — (7 +74)/2)a] ay +i 2V, (2)[ X ey Vajar — Ebieic Va)af
+iV1(2)[&;(cif Dax —Exlcik l)aj 14iVy(2)E (e )Egk(ctk Na}+ajay)
—iVy (@)l ) S &(e Dla) P +a]a;+1], (14d)

J

(aj'ak

=(—i{w;+ap +2V, @[ Eh (e VP +Eh (e ) — (1) + ) /2)aj0 —i 2V () £ ey afar + £ (eic ayaf]

—iVy(2)[&;(c ax +Exlcix ‘)a,]_;Vz(z)g,(c,;’)zgk(c,k Nat +aja) —iVy(2Ex(cic! 2§,<c,;‘) a}+aja;) .

The interest here is in simple one-dimensional models
with appropriate modeling parameters so that it is only
necessary to examine the relaxation of one oscillator cou-
pled to a dissipative bath. The coupling of the transla-
tional motion into the bath-oscillator description is
achieved in a self-consistent-field fashion, by quantum
mechanically averaging the bath variables. In Eq. (10),
Vi(z) and V,(z) are replaced by (V,(#)) and (V,(¢)),
where

(4= [ ¥l zn4E0z0dz . (15)
These equations of motion become

a(t)=—i{Vi(1)E—{i[w+2(V,(t))E*]+7/2}a

—2i(V,y(1))€%", (16a)
d A= —{i[20+4( V(1)) ] +7}a?
—2i(Vy(D))€a —i{Vy(1))EXN2aTa +1), (16b)

laTa)]=i(V (1) €@ —at)—2i{V, (1)) EY(a ' —a?]
—ra'a +71, (16¢)

where 7=v,—¥;. Introducing the real combinations,

X1=af+a , (17a)
X,=i(a"—a), (17b)
X;=a'a, (17¢)
X,=(a"?+a?, (17d)
Xs=i(a")?—ia?, (17¢)
the equations of motion are
X\=—1/27X+0X, , (18a)
Xy=— 17X, —[0+4(Vy())ENX, —2(V,(1))E, (18b)
Xy=—1X3— V() EX, —2{ V() EX s +7, , (18c)

(14e)

.

Xyo=—1X4+[20+4( V(1)) E1 )X s+ 2( V(1) )EX, , (18d)

Xs=—1X5—[20+4(V,(2)) )X, —2( V(1) }EX,
— 2 V(1)) EX2X;3+1) .

It is more convenient numerically to integrate the real
equations (18) than the equivalent complex set (16).

Some qualitative features of these equations may be
readily ascertained. The variables X; and X, are uncou-
pled from the remaining variables, and they basically
serve as driving terms for the other variables X3, X,, and
X5, which eventually induce two-phonon processes. Ele-
mentary manipulations in the limit (V,(t)) << (¥V,(2))
(which always holds for reasonably choices of particle-
surface interaction at the beginning of the collision) pro-
duce

(18e)

X, ()=C, (elio+dri_p—lio—ay)t) | (19a)
X,(1)=C,(elio+ar)_ o —lio—4y))
t
+C3 fO <V1(S)>ds . (19b)

where Ay=7;—¥2,<0 and where C; are constants.

TABLE 1. Numerical values used in the computations for
He-W

Grid values
Nerr =256
Niime = 880000
At=1.0 a.u.

Potential parameters
Dy=5.0976x10~* hartree
a=0.688 bohr~!
zp=3.0 bohr

Model parameters
¥2=6.3%10"3 rad/a.u.
®=2.42%10"° rad/a.u.
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Clearly, the phonon-bath variables are initially disturbed
from equilibrium by the first-derivative form. Significant
excursions from equilibrium can only arise when (V,(¢))
becomes large. In the case of particle-surface scattering,
this situation only arises when the particle is within the
vicinity of the potential minimum. Once this situation
obtains, the system then exhibits pronounced nonlinearity
and deviations from equilibrium. Within the model, then

ime(psec)= 0.097 norm= 1.00000 temp= 35 0
6
5 (a)
4
3
s
\ \
0
-60 -40 -10 0 20 40 60
g
0
-4 i
|
|
,8-4
T T T T T T
0 4 8 12 16 20 24

rormg' distance (tohr)

time(psec)= 0.774 norm=  1.00000 temp= 35.9

5
M (C)
-20 -0 0 70 40
T T T T T
4 8 12 16 20

-~

o - o G

-60
2

0 24

normal distance (bohr)

higher-order processes necessarily lag behind the first-
order processes, which, in turn, are influenced initially
only by the lowest-order coupling and then driven by the
second-order term.

Similarly, after the collision if there is a short residence
time of the particle near the surface, (V(z)) and (V,(¢))
will both vanish as t— « and the number operator be-
comes constant. On the other hand, if trapping does
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FIG. 1. (a)—(d) These figures display a temporal sequence of helium-atom scattering from a static surface at 35 K. The upper part
of each figure is a plot of the Fourier-transformed wave-function amplitude. The lower part is a plot of the wave-function amplitude
as a function of normal distance to the surface. The Morse potential used to model the interaction is superimposed. There is no trap-

ping or energy transfer within the accuracy of the calculation.
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occur, the equations will be continuously driven and the
phonon number X; will remain time dependent. That is,
it will not achieve a new equilibrium value after the col-
lision.
III. COMPUTATIONAL RESULTS
The one-dimensional model above was employed to
study the scattering of helium atoms from W as a func-

tion of temperature. The initial wave packet was chosen
to have a Maxwell-Boltzmann distribution in momentum
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space. That is, the width and normalization of the wave
packet were determined by the temperature as

1/4

kgT —z2 i
mKp e /2mkgT) ipoz 20)

T

Yt =0,z=+c0)=

This choice mimics the conditions of most desorption and
accommodation experiments. As the temperature ap-
proaches O K, a Bose-Einstein distribution must be used
for the incident He atoms. For the temperature range
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FIG. 2. (a)—(d) Same plots as Fig. 1 with a time-dependent interaction between the scattering particle and surface.
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considered here, these statistics were not distinguishable
from the Maxwell-Boltzmann distribution. The wave
packet was then propagated by the time-dependent
Schrodinger equation

W _ 1 3%
= T 2m 8 +[Vol2)+ Vilz,X (1) ]y 21

using the FFT algorithm to evaluate the kinetic-energy
operator and second-order differencing for the time depen-
dence.® The time dependence in Eq. (2) is implicit, arising
from the reservoir values. Their time evolution is given in
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Eqgs. (18a)—(18e), with initial conditions dictated by the
known equilibrium values: X;=0 (i#£3), X3=N. A
standard predictor-corrector algorithm was used to solve
these equations.!! Also, since relatively long propagation
times were considered, it was necessary to absorb the wave
funcl:gion at the edge of the numerical grid by an attenua-
tor.

The method essentially incorporates the following algo-
rithm. A temperature is chosen which determines the en-
ergy and shape of the wave packet. The propagating wave
function is averaged over the coupling terms to produce
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FIG. 3. (a)—(d) Same plots as Fig. 2 at 75 K.
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(V(t)) and {V,(t)), which are then used to evaluate the
X;(t). These terms supply the implicit time dependence in
Eq. (21) and the next propagation step is determined.
This technique is a type of self-consistent-field approach
which has been previously used.!*> The particle-surface
potential was a Morse form with parameters given by
Goodman!* for a similar one-dimensional study of the
He-W system. For the parameters chosen the potential
supports 11 bound states.

The parameters y;, ¥,, and o, the bath oscillator fre-
quency, are considered as adjustable variables. ¥, and ¥,
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are only constrained by the requisite boson distribution,
Eq. (7). It is possible to relate ¥, to the phonon spectral
density following Tully,'> or by choosing a simplified
model for the bulk solid. Likewise, it may be estimated
from experimental parametrizations or slab calculations.'®
Given the uncertainty in these procedures, it seemed ap-
propriate to vary these parameters over the ranges sug-
gested by these techniques for this specific problem. It
has already been observed that the final results of a
scattering calculation are not exceedingly sensitive to their
precise values.”> A cursory scan of the possible values for
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FIG. 4. (a)—(d) Same plots as Fig. 2 at 115 K.
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TABLE II. Average energy change, fractional energy change,
and normalization as a function of temperature after 16 psec.

A_Etﬁnal
T (K) (10~3 bohr) AE /E Normalization
35 1.50 0.112 0.39
75 1.95 0.066 0.29
115 2.55 0.056 0.26

7, and @ was made until a significant interaction of the
particle and surface was observed. This procedure rough-
ly corresponds to finding a resonance region which dom-
inates the interaction. It should be noted that for small
values of @ <10~% rad/a.u., the surface atoms are too
weakly bound and the surface disintegrates. The Morse-
potential parameters, the modeling parameters, and the
propagation-grid information are displayed in Table 1.

Calculations were performed at 35, 75, and 115 K. Ini-
tial runs at these temperatures were made with the time
dependence removed—that is, for a completely static sur-
face. To the accuracy of the calculation no bound-state
trapping occurred. A representative time sequence at 35
K is given in Figs. 1(a)—1(f).

The initial wave packet is placed outside the interaction
region and given negative momentum. The wave packet
spreads as it moves toward the wall; the leading edge
(greatest momentum component) collides with the repul-
sive wall. The remainder of the wave packets arrives
later, interfering with the reflected wave. As the collision
progresses, the wave packet resides briefly in the interac-
tion region and then decays away over a long time span.
As expected, there are two timescales in the collision: the
bulk of the wave packet interacts and leaves quickly with
the decay of the residual trapping occurring slowly. The
time-dependent amplitude is measured by the normaliza-
tion of the wave packet and it is clearly zero within the
accuracy of the computation at the end of about 15 psec.
These runs demonstrate that static interactions are inade-
quate in treating accommodation in one dimension.

Figures 2(a)—2(d), 3(a)—3(d), and 4(a)—4(d) display time
sequences using the modeling parameters in Table I for
the three different temperatures, 35, 75, and 115 K.
These differ from the static case in that long-time adher-
ence to the surface does take place. In all cases, substan-
tial energy accommodation occurs as given in Table II.
The amount of energy transferred to the surface remains
essentially constant as the temperature is lowered. These
results are in accord with similar time-dependent pertur-
bation approaches,” which indicates that it is not the one-
dimensional aspect of the previous models that is deficient
but rather the limitations of the perturbative treatments.

IV. DISCUSSION

The general conclusions to be drawn from this work are
twofold. First, it is possible to couple a translating parti-
cle to a quantal phonon bath in a physical fashion and to
treat it consistently. The use of semigroup techniques to
evaluate the dynamics of dissipative systems leads to a
tractable formalism for the phonon reservoir. The appli-
cation of a self-consistent-field method to the particle-
bath coupling presents an examination of nonlinear effects
which would be quite difficult to evaluate with perturba-
tion theory. Indeed, in this study a moderately deep in-
teraction well was handled easily in the presence of damp-
ing effects.

The semigroup technique includes certain higher-order
effects, such as phonon dispersion, and may be readily
generalized to incorporate others such as multiphonon ef-
fects. The scan over the modeling parameters would then
select the physically relevant resonance conditions for
more general interactions. That is, the model should gen-
eralize and display increasingly realistic behavior. The
conditions for maximal energy transfer between particles
and surface could be determined. Also, it should be em-
phasized that adsorption to the surface presents no diffi-
culty for the propagation technique since it is stable and
accurate over long periods of time. These features make
the model attractive for more general particle-surface in-
teractions.

Second, the value of one-dimensional models for
particle-surface interactions should not be underestimated.
It is certainly true that higher-dimensional effects are ab-
sent, such as lateral motion on the surface. These effects
can play an important role in some circumstances. As a
first step, though, the utility of simple models should be
explored to determine their true limitations, not those im-
posed by lower-order perturbation theory. A serious
obstacle to any type of surface study remains the uncer-
tainty in the choice of bath-particle interaction parame-
ters. At present, it appears to be reasonable to take these
values as fitting variables, but this is not a completely sa-
tisfactory procedure. Possibly the simple one-dimensional
models could be used in conjunction with other computa-
tions of surface behavior and experiment to establish a
better understanding of the dynamic coupling.
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