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A consistent approach to atom —surface-energy transfer in one dimension is presented. A semi-

group technique is employed to estaMish equations of motion for a quantal phonon reservoir, which

is coupled to the propagation of a wave packet. The time-dependent Schrodinger equation is solved

using a pseudospectral technique. The average energy transfer to the bath is then determined. This

study supersedes conventional perturbative treatments and reveals the utility of one-dimensional

models in the study of particle-surface collisions at low energies.

I. INTRODUCTION

The mechanism by which a gas particle transfers its en-

ergy to a crystalline surface is imperfectly understood,
despite several attempts to model this phenomenon. ' The
particular case of a small-mass atom scattering from, or
adsorbing onto, a surface composed of large-mass atoms
at low surface temperatures must be treated quantum
mechanically. That is, not only must the propagation of
the scattering particle be given by the Schrodinger equa-
tion, the bulk atom motion must also be described by
quantum mechanics.

One practical instance in which these concerns dom-
inate is the fiow of a gas along a surface which need not
be at the same temperature as the gas. The microscopic
transfer of energy to or from the surface has macroscopic
consequences for the fiow of the gas. In the usual contin-
uum description of the gas fiow, the temperature jump at
the surface alters the boundary conditions of the hydro-
dynamic equations which then modify the macroscopic
properties of the moving particles. A convenient dimen-
sionless parameter which links the microscopic and mac-
roscopic descriptions is the thermal accommodation coef-
ficient ct(T„Tg), which is usually a function of both the
gas temperature Te and the surface temperature T, . The
conventional defmition of this quantity is

where E; and EJ are the initial and final energies of the
scattering particle and kz is Boltzmann's constant. If the
temperature of the gas and the surface are equal, this
quantity is known as the equilibrium accommodation
coefficient (EAC)

a( T) = lim a(T„Ts) .
T T.=T

The equilibrium accommodation coeff1ic1ent 1s the
relevant quantity for several experimental situations, espe-
cially flash desorption, in which the gas and surface are

equilibrated and then suddenly pumped to reduce the gas
pressure. The desorbing particles are collected and the
surface coverage is then monitored as a function of time.
Although the first theoretical calculations date from
Lennard-Jones and Strachan, there remains qualitative
disagreement between theory and experiment as the tem-
perature of the gas is lowered. For He on W, the predict-
ed EAC ct(0) =0, whereas the experimental data indicates
a(0)&0. This behavior persists even with the inclusion of
a binding potential well in one dimension; hence, it has
been speculated that one-dimensional theories must be in-
herently deficient.

On the other hand, these calculations were perturbative
results which did not incorporate higher phonon-gas cou-
plings. %hen more extensive, but still perturbative, com-
putations were performed, it was observed that one-
dimensional models could be used successfully, at least for
very weakly bound gas-surface systems. The extension of
this reasoning requires numerical rather than analytical
techniques for the solution of Schrodinger's equation. In
order to bypass the limitations of simple time-dependent
or time-independent perturbation theory, the Schrodinger
equation must be solved for a gas particle interacting with
a quantum-mechanical reservoir of phonons. To accom-
plish the solution of the time-dependent Schrodinger
equation, a fast-Fourier-transform (FPI') technique is
used to solve the partial-differential equation. The pho-
non bath is treated by a semigroup expansion technique
siniilar to that used in studies of vibrational relaxation of
liquids. ' Although we only consider couplings to second
order between the gas particle and phonons, this is not an
essential limitation of the technique, ' furthermore, the
model potential chosen supports 11 bound states, indicat-
ing that the previous restriction to a few shallow bound
states can be removed. The main qualitative result of
this work is that one-dimensional quantum-mechanical
models can be usefully employed in the examination of
the EAC without many of the limitations, or complicated
expressions, arising from the use of perturbation theory.

The following section examines the details of the
phonon-bath construction and the equations of motion
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that follow. Stx:tion III provides examples of the compu-
tations performed for the fully coupled system, which
demonstrate nonvanishing behavior of the average energy
transfer as the gas temperature is lowered. Section IV
concludes this work with a brief discussion of the results
and limitations of the model.

Specifically, a, a, and aa =X are

a(t) = —itoa {t)+—,
'

(y& —y2)a (t),

(t) = 2i—cuba (t)+(y) —y2)a (t),

N(t)=(y& —y, )X{t)+y, .

(9a)

(9b)

(9c)

II. PHONON-BATH DESCRIPTION

LH(X) =i [H,x] . (4)

The dissipative part has a structure and interpretation
similar to that of a quantal master equation:

L.,(x)= g y, ( v,xv,+ ——,
'
[v, v+,x],),

in which the yj are real numbers controlling the rate of
relaxation and the equilibrium properties of the system,
the VJ are operators within the Hilbert space, and the
bracket [A,B]+ is the anticommutator [A, B]+——AB
+AB. Once the parameters yj and operators Vj are
specified, the dynamical motion 1s completely determ1ned.

As an example, consider an operator evolving by first-
order processes in contact with an harmonic oscillator at
equilibrium. This implies that

0=ma a (6)

and the operators V~ ——a and V2 ——a . For a phonon
reservoir, boson statistics demand that

y, /y2 ——exp{ ha)/ks T), —

with either y, or y2 unconstrained in the absence of fur-
ther information about the system. Any operator then
evolves in time according to the equation of motion:

The equations of motion describing the time evolution
of the quantum reservoir may be realized by the use of a
completely dissipative I.iouville operator. The semigroup
description of the dynamics on the Heisenberg representa-
tion is given by

X=L (X)=LH(X)+LD(X),

where X is an operator in the Hilbert space of the system.
L is the Liouville superoperator, which naturally decom-
poses into HerInitian, I.~, and dissipative, I.~, terms.
The Hermitian superoperator is given by the usual
Heisenberg bracket

Note that at equilibrium [X(t)=0], a,q
=0, a,q

=0, and

N,q
1/[——exp{ha)lktt T) 1]—,

as expected. It is thus consistent to use known equilibri-
um values of the operators as initial conditions for the
differential equations.

In the more general case, an expansion of the interac-
tion Hamiltonian proves to be useful. During the course
of a particle collision with phonon bath, energy may ei-
ther be transferred to the bath oscillators, which is then
dissipated as heat, or as internal energy transfer in which
the energy of the different oscillator modes is rearranged.
For low-energy scattering from a surface, the excitation of
the reservoir phonons is not extremely violent; hence it is
a good approximation to retain only second-order expan-
sion terms in the amplitude X; of the interaction poten-
tial:

V;„,(z,x)=vo(z)+ g V&(z)x;+ g Vz(z)x;XJ . {10)

V) (z) = (z,x~ )
Bv

t X=0
(1 la)

9 V
V2(z) = (z,x~,X~ ) (1 lb)

Transforming the quadratic expression into normal modes

yj =gj(aj+aj )= gctkxk,

where g; =&1/2MJro~ gives the total Hamiltonian opera-
tor as

0= g cojaj aj+ Vo(z)+ V)(z) g g/cj '(aj+aj )

This procedure produces a separable interaction, of
course, which has been used previously. Since this ex-
pansion is a Taylor s series in X;, the individual terms are

X=ico[a a,x]+y~[axa ——,'(aa X+Xaa )]

+ye[a Xa ——,(a aX+Xa a)] .

+ Vp(z) g ggkc;, 'c;k '(a, +a, )(ak+akt),
l,J,k

(8) or, separating out the diagonal terms,

(12)

H = g cojaJaj + Vo(z) +2 V~(z) g g; (c;~ ') aj a~ + V) (z) g g;c,j '(a~ +a, )+ V2(z) g gJ. (c;~ ')
[aj~+ (a )J ]

J &„J &l l,J

+V2(» g 4,4c;, ck {a,ak+a, ak+a, ak+a, ak»
—1

i,j (~k}

from which the dissipative equations of motion follow:

aj —— ivt(zgJcj ' ——Ii [coj.+'2'(z)g~(c J
') ]+rj/2]aj. 2i V2(z)gt~{cj—') aj i V2(z)gt(cj '—) g gkc;k '(ak+ak),

k
(14a)
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~here ~j =yj2 —yj1,

(aj a-j )=i Vi (z)gj(cj-')(aj -aj')-i 2 V2(z)gj~(cj ')'[(a') j~ a-i'] y-jaj aj+y ii

+ i V2(z)gj(cj ) g gkc;k (ajak —aj ak+ajak —aj ak ),—1 —1

k

a j=—Ii[2uij+4Vz(z)gj(cj ) ]+yj Ia~ i—2V, (z)gjcj 'aj i—V2(z)gj(cj ')2(2aja +1)
—i2V2(z)g (c; ') ggk(c;k ')(aka +aka. ),

k

(aj ai, )=(—i[Nk —COJ+2vz(z)[gk(c;k ) —(J(cj ) ]] (TJ —+1 k)/2)ajak+izvz(z)[(J(cj ) aJai, (k—(ck ) aJai, ]
2 —1 2 2 —1 2 2 —1 2 2 —1 2

+i Vi(z)[gj(cj ')ak gk(c—;k ')aj ]+iV2(z)gj(cj ') g gk(c;k ')(ak+akak )
k

i Vz—(z)gk(c;k ') g gj(cj ')[(aj ) +ajaj+1],

(14b)

(14c)

(14d)

(aj ak)=( —iI~J+~k+2Vz(»[4«j ')'+4«j ')']] —(yj+yk)/2}ajak &2—V2(»[gj'(cd ')'ajak+gk(c k) a'jak]

—iVi(»N)«j ')ak+4«k ')aj] —Vt(zz4g«j') +4«ik ')«k+akak) t'V2(zCk«k ') g(j«, ')«,'+a,'aj) .
k j

(14e)

( A (t) ) = f g (z, t)A (z, t)g(z, t)dz .

These equations of motion become

a(t)= i ( Vi(t—) }g—Ii [to+2( V2(t) }g ]+y/2]a
—2i( V2(t) }ga

a (t)= —Ii[2co+4(V2(t)}g ]+yIa
—2i( V2(t))ga i {Vz(—t))g (2a a+1),

[a a (t)] =i( Vi(t) }g(a at} zi ( V2(t)—)gz[(a—t)2 —az]

—TQ 0 +y1,

(16a)

(16b)

(16c)

The interest here is in simple one-dimensional models
with appropriate modeling parameters so that it is only
necessary to examine the relaxation of one oscillator cou-
pled to a dissipative bath. The coupling of the transla-
tional motion into the bath-oscillator description is
achieved in a self-consistent-field fashion, by quantum
mechanically averaging the bath variables. In Eq. (10),
Vi(z) and V2(z) are replaced by (Vi(t)} and (V2(t)),
where

X4 —— yX4+—[2co+4( V2(t) }g ]X5+2(Vi(t))F2, (18d)

X5 ———yX5 —[Zoo+4( V2(t) }g ]Xg —2( Vi (t) )/Xi

—2( V2(t) )g'(2X3+1) . (18e)

(t) g (eiiru+dy)t e (iu ay)t—)— (19a)

X (t) g (e {ice+ay)t e (iso ay)t—)—
+C3 f (Vi(s))ds, (19b)

where hy =y1 —y2 & 0 and ~here C; are constants.

It is more convenient numerically to integrate the real
equations (18) than the equivalent complex set (16).

Some qualitative features of these equations may be
readily ascertained. The variables X1 and X2 are uncou-
pled from the remaining variables, and they basically
serve as driving terms for the other variables X3, X4, and'

X~, which eventually induce two-phonon processes. Ele-
mentary manipulations in the limit ( Vz(t)) «( Vi(t))
(which always holds for reasonably choices of particle-
surface interaction at the beginning of the collision) pro-
duce

where ~=y2 —y1. Introducing the real combinations,

X1 =Q +a

Xz ——i (a —a),
X3=Q a

X4 ——(at) +a

X5 i(a ) ——ia-f2 . 2

the equations of motion are

X, = —1/2yXi+t0Xz,
X,= —,

' TX, —[co+4( V,—(t)}g']X, —2( V, (t) }g,
X3 — F3 ( Vi (t) &(X,—2( V, (t) )g'X, +1

(17a)

(17b)

(17c)

(17d)

(17e)

(18a)

(18b}

(18c)

TABLE I. Numerical values used in the computations for
He-%.

Grid values

XFFT ——256
N„,=880000
ht= 1.0 a.u.

Potential parameters

Do ——5.0976' 10 hartree
a=0.688 bohr-'
zo ——3.0 bohr

Model parameters

yq
——6.3 X 10 rad/a. u.

m =2.42 X 10 rad/a. u.
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TABLE II. Average energy change, fractional energy change,
and normalization as a function of temperature after 16 psec.

~&final
(10 bohr)

1.50
1.95
2.55

hE/E;„;,

0.112
0.066
0.056

Nol I11allzation

0.39
0.29
0.26

yz and ro was made until a significant interaction of the
particle and surface was observed. This procedure rough-

ly corresponds to finding a resonance region which dom-
inates the interaction. It should be noted that for small
values of co&10 rad/a. u. , the surface atoms are too
weakly bound and the surface disintegrates. The Morse-
potential parameters, the modeling parameters, and the
propagation-grid information are displayed in Table I.

Calculations were performed at 35, 75, and 115 K. Ini-
tial runs at these temperatures were made with the time
dependence removed —that is, for a completely static sur-
face. To the accuracy of the calculation no bound-state

trapping occurred. A representative time sequence at 35
K is given in Figs. 1(a)—1(f).

The initial wave packet is placed outside the interaction
region and given negative momentum. The wave packet
spreads as it moves toward the wa11; the leading edge
(greatest momentum component) collides with the repul-
sive wall. The remainder of the wave packets arrives
later, interfering with the reflected wave. As the collision
progresses, the wave packet resides briefly in the interac-
tion region and then decays away over a long time span.
As expected, there are two timescales in the collision: the
bulk of the wave packet interacts and leaves quickly with
the decay of the residual trapping occurring slowly. The
tine-dependent amplitude is measured by the normaliza-
tion of the wave packet and it is clearly zero within the
accuracy of the computation at the end of about 15 psec.
These runs demonstrate that static interactions are inade-
quate in treating accommodation in one dimension.

Figures 2(a)—2(d), 3(a)—3(d), and 4(a)—4(d) display time
sequences using the modeling parameters in Table I for
the three different temperatures, 35, 75, and 115 K.
These differ from the static case in that long-time adher-
ence to the surface does take place. In all cases, substan-
tial energy accommodation occurs as given in Table II.
The amount of energy transferred to the surface remains
essentially constant as the temperature is lowered. These
results are in accord with similar time-dependent pertur-
bation approaches, which indicates that it is not the one-
dimensional aspect of the previous models that is deficient
but rather the limitations of the perturbative treatments.

IV. DISCUSSION

The general conclusions to be drawn from this work are
twofold. First, it is possible to couple a translating parti-
cle to a quantal phonon bath in a physical fashion and to
treat it consistently. The use of semigroup techniques to
evaluate the dynamics of dissipative systems leads to a
tractable formalism for the phonon reservoir. The appli-
cation of a self-consistent-field method to the particle-
bath coupling presents an examination of nonlinear effects
which would be quite difficult to evaluate with perturba-
tion theory. Indeed, in this study a moderately deep in-
teraction well was handled easily in the presence of damp-
ing effects.

The semigroup technique includes certain higher-order
effects, such as phonon dispersion, and may be readily
generalized to incorporate others such as multiphonon ef-
fects. The scan over the modeling parameters would then
select the physically relevant resonance conditions for
more general interactions. That is, the model should gen-
eralize and display increasingly realistic behavior. The
conditions for maximal energy transfer between particles
and surface could be determined. Also, it should be em-
phasized that adsorption to the surface presents no diffi-
culty for the propagation technique since it is stable and
accurate over long periods of time. These features make
the model attractive for more general particle-surface in-
teractions.

Second, the value of one-dimensional models for
particle-surface interactions should not be underestimated.
It is certainly true that higher-dimensional effects are ab-
sent, such as lateral motion on the surface. These effects
can play an important role in some circumstances. As a
first step, though, the utility of simple models should be
explored to determine their true limitations, not those im-
posed by lower-order perturbation theory. A serious
obstacle to any type of surface study remains the uncer-
tainty in the choice of bath-particle interaction parame-
ters. At present, it appears to be reasonable to take these
values as fitting variables, but this is not a completely sa-
tisfactory procedure. Possibly the simple one-dimensional
models could be used in conjunction with other computa-
tions of surface behavior and experiment to establish a
better understanding of the dynamic coupling.
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