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A two-component density-functional theory is presented for electron-positron systems. The phase
diagram of a two-component Fermi-Coulomb system is discussed, and explicit expressions are de-
rived for exchange-correlation functionals for use in the local-density approximation. The scheme is
then applied in a fully self-consistent calculation of electron and positron densities in atomic vacan-
cies in metals, treated in the jellium model. Comparison with conventional calculations, which do
not meet true electron-positron self-consistency, reveals considerable changes in the density distribu-
tions. However, we demonstrate that there are cancellation effects which render the corresponding
changes in observable annihilation characteristics relatively small.

I. INTRODUCTION

The fundamental question concerning the analysis of
positron annihilation in condensed matter is how the
electron-positron attraction distorts the electronic struc-
ture of the medium which one wants to probe. The at-
traction leads to a pileup of electron density at the posi-
tron, which manifests itself in the annihilation charac-
teristics. For the basic model system, a single delocalized
positron in electron gas, this effect is even quantitatively
well understood.! The total annihilation rate (contact
density) increases by a large factor dependent on the
electron-density parameter r,. However, apart from the
short-range screening, the electron states and naturally the
mean density remain unperturbed. The 2y angular distri-
bution (momentum density) shows relatively weak
changes from the independent-particle limit. For real ma-
terials with more or less tightly bound electrons and
nonuniform density, the situation is somewhat more com-
plex as the enhancement effects depend on the degree of
localization of the electrons. Nevertheless, at least for
metallic media, the total annihilation rate (lifetime) of
delocalized positrons is reasonably well understood by
spatially averaging over the positron probability distribu-
tion; the momentum-dependent enhancement effects are
more subtle but remain relatively small.?

Conceptual difficulties may, however, arise when the
positron is localized (trapped), typically at an open-
volume lattice defect. It is obvious that the localized posi-
tron will now also increase the average electron density in
the region into which it is confined, and a true calculation
requires that the electron and positron distributions are
mutually consistent. The problem of short-range screen-
ing in this highly nonuniform situation also becomes quite
complex.

The conventional way through these difficulties,
which has met with considerable success in analyzing and
predicting annihilation characteristics in various defect
situations, is as follows: Treat the short-range screening
essentially Jocally, i.e., with a dependence only on the elec-
tron density at the instantaneous position of the positron.
In metallic media this means that the positron enters the
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system as a neutral quasiparticle (a positron and its
screening cloud). One can then argue that the average
electron density is not affected by the positron. The posi-
tron potential in this approximation is the sum of the
Coulomb (Hartree) potential of the electron system and a
local electron-positron correlation potential. Consistently,
the annihilation rate can be calculated through the local-
density profile and the enhancement-factor data from
homogeneous systems.

This picture clearly breaks down in two cases. Firstly,
in some instances the positron may be detached from its
screening cloud, and therefore the local-density approxi-
mation (LDA) becomes invalid. The image-potential-
induced surface state’ is a case in point. Secondly, the de-
gree of positron localization can be such that the spatial
extent of the screening cloud is comparable to the extent
of the trapped positron state. Then it is clear that the
electron density near the positron will be seriously distort-
ed, and a self-consistent calculation is required.

Two-component density-functional theory®~!'© (DFT)
provides a systematic way of treating the latter situation.
We may regard the system of a localized positron and
electrons as one made of two interpenetrating nonuniform
liquids, characterized by their density distributions n  (r)
and n_(r). The formalism of one-component DFT can
be generalized to this case, and the self-consistency be-
tween n_(r) and n_(r) can be built in from the begin-
ning. Exchange and correlation effects are described in
terms of appropriate density functionals, which are ap-
proximated by using data from uniform two-component
plasmas. On the basis of DFT, this is completely legiti-
mate (although admittedly somewhat artificial; see discus-
sion of self-interaction and nonlocal effects below) also in
the case of a single localized positron. With the advent of
high-intensity positron beams,!! the laboratory realization
of many-positron systems is actually now becoming a pos-
sibility, and the methods will find several interesting ap-
plications there. Naturally, the techniques also lend
themselves for application into nonuniform electron-hole
plasmas'>!® with many intriguing properties. However,
electron-hole systems are often dominated by band-
structure (i.e., effective-mass and anisotropy) effects,

3820 ©1986 The American Physical Society



34 ELECTRON-POSITRON DENSITY-FUNCTIONAL THEORY 3821

whereas electron-positron plasmas are much simpler in
this sense.

The purpose of this paper is to provide the framework
and applicable input data for practical calculations within
the two-component DFT. In particular, we shall discuss
the electron-positron correlation functional and the
enhancement (screening) effects in two-component sys-
tems, with practical formulas for numerical applications.
Moreover, we shall report on calculations for an impor-
tant model system, a positron trapped at a simple metal
vacancy, and compare the results with those of the con-
ventional approach.

The rest of the paper is organized as follows: In Sec. II
we outline the two-component DFT. Section III contains
a detailed discussion of the phase diagram of a two-
component Coulomb-Fermi system. The correlation func-
tionals and density-enhancement factors are constructed
in Sec. IV, and Sec. V reports the results of the model cal-
culations for vacancies. A short summary is given in Sec.
VL

II. DENSITY-FUNCTIONAL THEORY

The total energy of system of interacting electrons and
positrons moving in an external potential V., can be writ-
ten in terms of the following functional,’

E[n ,n_]=F[n ]+F[n_]
+ [dr Ve (D[n_(1)—n, (0]
 n_(r)n(r) e
——fdrfdr —“Tr'l""—'*‘Ec p[n+)n—] ’
(1

where F[n] denotes the one-component functional® for
electrons (or positrons) only and E;P[n_,n_] is the
electron-positron correlation-energy functional. The vari-
ational Kohn-Sham procedure applied to E[n,,n_]
leads to a set of one-particle equations for electrons and
positrons (atomic units are used throughout; the particles
masses are equal to the bare electron mass:
m,=m_=m),

— V(D) + |pxeln (1) + (1)
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ono.() YT (r)=¢; ¢ (1),
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where u,. is the exchange-correlation potential for each
component,
n_(r')—n_(r')—ny(r)

¢(r)= [dr @)

lr—r'

is the Hartree-Coulomb potential, and

N+
n_(n= 3 |03 ny=3¢H0]|?, (5)
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and nq(r) denotes the density of positive charge providing
the external potential. Equations (2)—(5) should be solved
self-consistently; € in Eq. (5) is the electron Fermi energy
and N, the number of positrons.

III. THE GROUND-STATE ENERGY
OF A HOMOGENEOUS ELECTRON-POSITRON
SYSTEM

In order to construct correlation potentials for the inho-
mogeneous electron-positron system, we first discuss the
energies of homogeneous systems. As the results are to be
used in our density-functional formulation, we consider
the total energy E; of the system of N_ electrons and
N, positrons as consisting of the following parts:

Er=Ei+E,+E, . 6)

E, and E, are the noninteracting kinetic and exchange
energies, respectively, and E, is the correlation energy. It
contains the electron-electron, positron-positron, and
electron-positron correlations:

E.=E;*+EPP+E;? . (7
The correlation energy per unit volume can be expressed as
El=n_e*(n_)+n_ eP(n )+E{P(n n_), (8

where €2 and €27 are the respective correlations per parti-
cle. Recently, accurate values for £/ were calculated us-
ing Monte Carlo methods by Ceperley and Alder,'* and
these results will be used below. We would like to em-
phasize here that Ej?(n,,n_) cannot be generally ex-
pressed by terms of the energy per particle in the same
sense as €.° or €8P, It is possible only for n,
—0 [EjP—>n eP(n_)] or ny=n_ [E}?=ne?(n),
where n is the density of electron-positron pairs]. The
few results which can suit our purposes refer just to these
limits. There are also some recent results'® for
n,=tn_.

The first case (n —0) corresponds to one positron in
an electron gas. The paper of Arponen and Pajanne' pro-
vides electron-positron correlation energies for the whole
metallic-density regime and also for the limit r;— oo,
where the correlation energy reaches the value of the ener-
gy of the Ps™ ion. Their curve is reproduced in Fig. 2,
and the suitable formulas interpolating it for all values of
r, are presented in Appendix A.

The next case more familiar from semiconductor phys-
ics is one where the numbers of electrons and positrons
are equal (n,=n_), i.e., a particular case of electron-
hole plasmas with m , =m _. Since the properties of this
system have not been calculated as consistently as for one
positron in electron gas and are not known for the whole
range of r;, we discuss them more carefully, separating
out density regions with very different physical behavior.
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A. Metallic-density regime

For the compensated case n, =n_, the metallic region
is relatively well described. We discuss two approaches
dealing with the two-component plasma where correlation
energies are calculated, the first given by Vashishta, Bhat-
tacharyya, and Singwi (VBS),!? and the second presented
recently by Lantto et al.'’

The VBS approach is based on the theory of electron
correlations by Singwi et al.,'® generalized to a two-
component system of electrons and holes in a semiconduc-
tor. There are also earlier generalizations of the theory to
a positron in homogeneous electron gas.!” These formula-
tions take into account the multiple interaction of the two
components in a self-consistent way. The results seem to
be satisfactory for small r; and for a considerable part of
the metallic-density range. However, for r; > 4.5 they be-
gin to exhibit divergencies. Although Bhattacharyya and
Singwi!® tried to remove these by subtracting a part of
positron-electron correlations in a parameter-dependent
approach, their method, however, has deficiencies and was
not used in the VBS calculations.

Lantto’s'® results are based on the hypernetted-chain
(HNC) approximation of many-body theory. These
methods have given interesting results for the electron
liquid.’®?° Also, the results for one given positron in a
homogeneous electron gas do not exhibit any divergencies
over the range of r,.2! Therefore, in spite of the fact that
this method provides slightly higher values of total energy
than VBS (Fig. 2), we used these results below. In Fig. 1
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FIG. 1. Total energy of positron-electron (n,=n_) and

pure electron system vs r; for metallic densities. L and VBS
denote the results of Lantto (Ref. 15) and Vashishta, Bhatta-
charyya, and Singwi (Ref. 12) per e-p pair, respectively. CA-F
and CA-P denote the results for the total energy per electron of
the pure electron gas in the ferromagnetic and paramagnetic
state, obtained by Ceperley and Alder (Ref. 14).
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we also present the total energy per electron-positron pair
versus 7, using the VBS and Lantto results for the corre-
lation energies. Both curves exhibit minima around
rs=~4. The VBS-curve minimum almost reaches the value
of —0.5 Ry, which is the energy of Ps atom (or exciton).

For small r; the curves come close to each other and
the electron-positron correlation energies tend to the cor-
responding values (Fig. 2) for electron-correlation energies
calculated by Ceperley et al.'* It seems that for the
n =n_ plasma the correlation energies already around
rs ~ 1 become independent of the particle charges.

As r; increases the numerical convergence of both
methods becomes slow and for r,>8 in VBS and for
rs>6 in Lantto’s calculations the results become diver-
gent or unstable, respectively. It is not surprising for the
VBS theory; for the case of one positron similar theories
have failed.!” It is, however, a more unexpected result of
Lantto’s approach. The HNC methods have generally
worked well for greater r;, as was shown, e.g., for one
positron in an electron gas.?! The instabilities may advo-
cate the appearance of states which cannot be described by
similar wave functions as for smaller r;, and we expect
that some “bound” states can be created. Such bound
states are forbidden for one positron among many, be-
cause of the strong scattering in the positron-electron sys-
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FIG. 2. Positron-electron correlation energy vs r; in

positron-electron system of different n, /n_ ratios. The curve
for one positron in a homogeneous electron gas (Ref. 1) is denot-
ed by AP. The results of Lantto for n, /n_=1 and 0.5 are
denoted by L. The dotted curve presents the results of Vashish-
ta, Bhattacharyya, and Singwi (Ref. 10) for n /n_=1. For
comparison, the correlation energy in the pure electron gas (per
electron-electron pair) is also presented (CA) (Ref. 14).
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tem,?? but for the case n, =n_ pairing of particles for
some large r; may be possible. Probably true Ps-like
bound states cannot appear at once, but rather states of
very small energy, with wave functions of Cooper or hy-
drogenic type. Brinkman and Rice?® found such solutions
for r, in the metallic-density regime, using only a model
potential which did not take into account strong electron-
positron (-hole) correlations. Unfortunately, the VBS and
HNC schemes are not adapted to take into account the
possibility of creating bound states, and may therefore fail
in this region.

It is worthwhile, however, to pay attention (Fig. 2) to
the trend of both the correlation energy curves for r; > 4.
While the VBS curve shows no tendency to bend down to-
ward the Ps (or excitonic) value of energy, Lantto’s curve
starting from r;=~4 goes down. This is another reason
which, in our opinion, makes the latter results more
trustworthy.

For r; > 6, with diminishing kinetic energy and correla-
tions between particles of like charge, certainly, the
“bound states” start to dominate. Some authors>>?* even
expect for r; =~ 10 a Mott-type phase transition. However,
before discussing it we turn to the case of a very dilute
positron-electron system.

B. Molecular phase

As has been indicated by Brinkman ez al.,>>? there is
a possibility of binding four particles (two Ps atoms or
two excitons) into a neutral molecule. The binding energy
of this molecule is 0.029 of the positronium rydberg,”’
which gives the total energy of the molecule as ~1.0145
Ry (—0.507 25 Ry per pair).

The mean interpositron distance is about 6.94 a.u.,*
and we can regard the molecule as two weakly coupled Ps
atoms (excitons). A  sufficiently dilute neutral
(N, =N_=N) positron-electron system can be built
from such Ps, molecules. The interactions between mole-
cules are of the van der Waals type, repulsive for small
and attractive for greater distances. For large r; some au-
thors?” expect the possibility of building greater com-
plexes of molecules, although Brinkman and Rice** con-
sider it impossible. In our opinion, even if such com-
plexes can exist, the change in the binding energy will be
so small that for our practical purposes there is no need to
consider them.

More important is the exchange energy. Because of the
very small binding between particles within the molecule,
it can exist only when electrons and positrons are paired
into singlet states. Thus there is no exchange between
electrons (and positrons) inside the molecule. However,
the electron (or positron) in this molecule can ‘see” all the
N —2 remaining electrons (positrons) which have both
spins down and up. We assume that the exchange energy,
which depends only on wave-function properties, is the
same as in noninteracting electron gas. Thus the ex-
change energy €, does not contribute to the molecular en-
ergy eps, but should be added to the total energy of the
system in comparison with the energy of separate mole-
cules. It is the main factor responsible for the interaction
between the molecules. Thus the total energy per

electron-positron pair in the molecular phase consists of
the following terms,

Er= %epsﬁ—e,‘ +e +AeSPP L AL 9

where g, is the kinetic energy and Ael®??, and Ael” are
correlation contributions to the interaction between the
molecules.

Since the distance between molecules is large, Al ®P?
and Ae;”? are small and, in addition, cancel against the ki-
netic energy. Besides, our calculations based on wave
functions given by Akimoto and Hanamura?® and made
within the LDA show that the correlations within the
molecule are almost the same as for electron gas of
r;~15, thus confirming that Ael®P? should be weak.
AelP is also small, as the electron-positron interaction is
well screened within a molecule. The above considera-
tions provide us with the following formulas for the
molecular region,

e~ Teps, +Ex (10)
and [cf. Egs. (6) and (7)]
5P =ep,—el*—el?. an

1
Thus, for r,— «, er approaches the value 7&ps, from

below as —r,~!. The electron-positron correlation energy
becomes larger in absolute value with increasing r,, slowly
(as 2&°°) approaching the value %SPSZ.

C. Intermediate region

As shown by Brinkman and Rice,? the description of
the molecular state in terms of a weakly interacting gas of
molecules breaks down at r;~13.8 when the energy
gained by the formation of molecules is overcome by the
repulsive interactions and the molecule can decay into two
separate ‘“‘quasipositronium” atoms. We use the term
“quasipositronium” rather than positronium, since Ps
cannot exist for this range of r, as an isolated atom. Ac-
cording to some authors,?® such bound states can appear
when increasing 7, at the end of the metallic region (see
Sec. ITIA). Brinkman and Rice,? using the Mott cri-
terion for the metal-nonmetal transition, found that for
rs ~9.8 a transition in the compensated electron-hole plas-
mas can take place. Within the range 9.8 <r; <14 we deal
with an “excitonic phase,” in the language of electron-
hole systems. In this phase the positron-electron system
can exist as separate pairs in which particles are strongly
bound, but with also strong interaction between the pairs.
Therefore and according to the arguments of Kohn and
Majumdar,” we are of the opinion that there should be no
sharp transition at a definite density, the more so as this is
not the case of binding of a light particle to a heavy one,
but both particles are light and recoil effects further
smoothen the transition. The same arguments can be used
also for the transition from the “excitonic” to the molecu-
lar phase.

Based on these considerations, and bearing in mind that
the correlation-energy curve in the metallic-density regime
goes down with r, it seems reasonable to obtain the
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values for correlation energy €;? in the intermediate re-
gion simply by smooth interpolation between the metallic
and molecular phases. We expect that the error of this in-
terpolation does not exceed the errors in the calculated
values for the metallic or molecular phases.

The values for the total energy in this region are ob-
tained by summing:

Er =€ =€, + 265457 . (12)

The corresponding curves for the total and electron-
positron correlation energies per pair are presented for all
values of r; in Fig. 3, and interpolation formulas for the
whole range of r; are given in Appendix A. It is interest-
ing that the maximum of both (n, =n_ and n,—0)
curves lies in the center of the metallic-density regime.
The total-energy curve has a deep minimum close to
ry==14, just in the region where one can expect a transi-
tion from separated pairs of particles into Ps, molecules.
This minimum is considerably deeper than the one around
re=4. Around r;=6, a maximum in the total energy
separates the regions of stability.

We would like to emphasize that both (total- and
correlation-energy) curves for the case n,=n_ are
presented here for the first time for the entire range of
density, and despite partly qualitative considerations used
in order to complete them, may be used for further calcu-
lations, e.g., for constructing correlation potentials for
two-component systems.

IV. CORRELATION-ENERGY FUNCTIONAL
AND ENHANCEMENT FACTOR

For the general case of nonequal electron and positron
densities, one should recall that the electron-positron
correlation-energy functional is presented as discussed in
Sec. II, in terms of the energy per unit volume rather than
per particle.
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<
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FIG. 3. The full diagram of total and positron-electron corre-
lation energies (per positron-electron pair) vs r, for the compen-
sated (n =n_) positron-electron system. The division of the
diagram into separate metallic and molecular phases is denoted
(see discussion in Sec. III). The energy of the Ps atom is —0.5
Ry and that of the Ps, molecule (per e-p pair) is —0.507 25 Ry.
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Only for the limits n, —0 and n =n_ can the total
correlation-energy functionals (see Fig. 4) be expressed in
the LDA by the familiar formulas,

Elny,n_] — [drn (De?(n, —0,n_(r), (13)
L —0

where e;?(n, —0,n_)=¢eap(n_) is the known result of

the theory of Arponen and Pajanne’s,' and

ElP[n,,n_] = fdrn(r)si"’(n+(t),n_(r))|,,=,,+=,,~,
n=ny

where

Ez-p(n+’n_ ) | n—n+=n_:€L(n)

is the energy per pair from the Lantto approach'® comple-
mented in Sec. II of this paper. On the basis of this
knowledge we construct the surface of energies per unit
volume E}P(n . ,n_) throughout the (n_ ,n_) plane.

The correlation potentials, defined as functional deriva-
tives of the correlation energies

=]

-0t .
-0.2
(4
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1 1

0 n_/2 n_ 3n_/2
n,lau3)

FIG. 4. Components of total correlation energy €. (per elec-
tron), in the positron-electron system of varying positron density
n,. The electron density corresponds to r,=6. €2? is the
positron-positron correlation energy (per positron), € is the
electron-electron correlation energy (per electron), and €£” is the
electron-positron correlation energy, defined as e{P=n_(e,
—e.*)/n, —ebP.
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S8EZP[n ,n_]
on
SES?[n,,n_]
on _

pilng,n_J= ’

(14)

u_ny,n_J]=

become partial derivatives of E}P(n,,n_) along the
n,,n_ directions,

OEyP(n ,n_)

p(ng,n_)= an, )
(15)
( ) OEyP(n ,n_)
M n+’n— - an-

Since for n, —0, E}? behaves as n_ gsp(n_), the slope
of the surface (parallel to the n, axis) close to the n_
axis is equal to eqp(n_). In turn, for n, =n_=n, Ey
equals ney(n). The surface EpP(n,,n_) is, of course,
symmetric with respect to n, and n_. Taking this fact
into account and assuming the continuity of partial
derivatives in all directions, one obtains

#-('l+’n— )n+=n_=n =p+(n+,n_ )n

1 d
== = . (16
> 3 [ne(n)]=poln) . (16)
Let us now assume the following analytic form
for EZ?(n . ,n_),%

L=n_=n

EP(n, ,n_)=n_[a(n, )+b(n,)n_+c(n,n:], (17

where n _ (n, ) denotes the smaller (greater) of the densi-
ties n, and n_. Then the unknown coefficients a(n),
b(n), and c¢(n) can be found by solving the following set
of equations:

3E{P(n,n_) "
an+ n,=n =n——'u0n ’

3EVP(n  ,n_)

R AR Lt J =gppln_), (18)
an+ ‘n+—>0

EyP(ny,n_) ,,+=,,_=,.=’1€L(")-

The solution is
a(n)=gpp(n),
b(n)=——711-[3EL(n)——28Ap(n)——uo(n)] , (19)

c(n)=Lz[,uo(n)+€Ap(n)—2£L(n)] .
n

Thus, applying data from the correlation energies for
n, —0and N, =n_ and using the symmetry properties
of EyP(n,n_), we can provide correlation energies for
the whole density plane (n_,n_). The form (17) is ad-
mittedly arbitrary but useful for practical purposes. In
Fig. 5 a few cross sections through E}P(n,,n_) are
presented.

The correlation potentials needed for solving the self-
consistent equations (2) and (3) are simple derivatives of
(17) with respect to n, and n_. They are continuous and
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FIG. 5. Values of the positron-electron correlation energy
(per unit volume) E¢P(n . ,n_) vs n for various values of n _.

well behaved at n, =n_. Some examples of values for
these potentials are presented in Fig. 6. One can see that
for a given value of the electron density n_, the magni-
tude of the correlation potential i _ for electrons reaches a
maximum in the region where the positron density is
greater than n_ and, in turn, the potential for positrons
p, becomes larger with n decreasing below n_. Thus,
the correlation forces between unlike particles in inhomo-
geneous systems where, e.g., positrons are clustering
around a negative potential and electrons are repelled by
it, will act towards smoothing the densities.

For lower densities n, and n_, an unexpected feature

emerges: the potentials may become slightly positive.
0 T T
8
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FIG. 6. Positron-electron correlation potentials vs r; for vari-
ous electron densities (r,” =2,4,6,8). Potentials for electrons are
denoted p~ and potentials for positrons are denoted .
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This results from the special character of the Arponen-
Pajanne’ correlation-energy curve. The derivative of this
curve is positive already for r; > 6. Thus, for sufficiently
small n .,

u_zgr?:—n+eAp(n_)=n+%eAp(n_ )>0. (20)

This effect does not appear if other correlation-energy
values!” are used, since they tend to the limit —0.5 Ry
from below. As p—0 only for very low density and the
corresponding potentials are very small, for such applica-
tions as, for instance, positron annihilation in point de-
fects of metals, the effect is completely negligible.

The key observable signal is the annihilation rate pro-
portional to the overlap of electron and positron densities.
When n (r) and n_(r) are known, the conventional way
of calculating annihilation rates has been based on the ap-
plication of the local-density formula

A=mrie [drn, (n_(DT(n_(r), @1
where
3
J(n_)+10
Tin_)= [1+’—"—6i— 22)

is the Brandt-Reinheimer expression’! approximating the
P pp g

electron-density enhancement at the positron position,
valid for a single positron in an electron gas' (n —0).
The constants r and ¢ appearing in Eq. (21) are the elec-
tron radius and speed of light, respectively. Within the
two-component formalism one should replace Eq. (21) by

k:ﬂrécfdrn+(r)n_(r)g(0;n+,n*) (23)

using a new formula for the contact density, i.e., the value
of the pair correlation function at the origin g(O;n_,n_)
which properly describes enhancement effects in the
positron-electron  mixture. Recently, values for
g(0;n . ,n_) have been calculated by Lantto'® for n
—0, n,=+n_, and n,=n_ (see Table I. Since for
practical applications g (0;n +,n _) must be known for all
values of n, and n_, we use an interpolation scheme
similar to the one used for E;P(n _,n_).
Thus,

gn,,n )=aln In’ +b(n,)n% +cn,n_+goln,)

forn,<n_, (24

TABLE 1. Values (Ref. 15) of the contact-density enhance-
ment g(0;n,,n_) in a homogeneous two-component Coulomb-
Fermi gas for different values of the electron density parameter
r; and the density ratio x =n_ /n_.

rs x—0 x=0.5 x=1
1 2.16 1.91 1.81
2 3.97 3.37 3.07
3 7.35 5.67 5.0
4 13.11 9.22 7.87
5 24.3 13.75 11.5
6 40.4 20.8 16.4

where

a(n)=—nl—}[Zk(n)—6g1(n)+8g2(n)—2go(n)] ,
b(n)=#[—3k(n)+llgl(n)——16g2(n)+5go(n)], (25)

c(n)=-}l—[k(n)=4g1(n)+8g2(n)—4g0(n)] ,

and go(n), g,(n), and g,(n) are functions interpolating
and extrapolating Lantto’s data for n . —0, n, =n_, and
n+=%n_, respectively (see Appendix A and Fig. 7).
The suitable extrapolation ensures the proper behavior of
these functions for r,—0 [the random-phase-
approximation (RPA) limit] and r;— o (the Ps limit).
The function k(n) results from the continuity and sym-
metry of g(0,n,n_) throughout the (n _,n_) plane and
reads

da
dn

For fixed n, and n_ the two-component positron-
electron contact amplitude is generally smaller than for
one positron in a homogeneous electron gas of the same
density, and varies smoothly with the ratio n, /n_. An
example (r;=1) of contact densities for various values of
x=n_ /n_ is presented in Fig. 7.

k(n)=+n——g(n) . (26)

22F 7 7 T T T ' |
fs=1
20} -
18 1 1
L O.ZX:D! 08
18| enhancement factor b
in two-component
L gas 4
S
< X=0
X=0
10} X=1 .
L " L n 1
0 1 3 5
[s{au.)

FIG. 7. The contact density g(0;n,,n_) in a homogeneous
positron-electron gas for different values of r, and the density
ratio x=n,/n_.
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V. APPLICATION TO POSITRON 3 3 .
TRAPPING AT VACANCIES § ° S|o g 5
L5 |
. Q o
We have applied the full two-component scheme to the 2.5 z o —~ p
case of positron trapping at vacancies of simple metals - == § 2
such as Al, Zn, Cd, Mg, Hg, Li, and Na. The vacancies -8 Sls 3 -
were modeled as spherical holes in the jellium background - =
. b
with g
3 E w ~
no(r)= O(r —Rws) , 27 E £ 312 3 b
4} 273 2|3 & 7
5B “
where Rys is the Wigner-Seitz radius. Note that in this X § S R = -
case (N, =1) the self-exchange—correlation potential jp o o £ T
. . . O a S| g= 2
txln (1)) in Eq. (3) is replaced by that for a fully-spin- = S z2 2%
polarized system (pfc), since the single positron has a R &
well-defined spin. In order to obtain a realistic trapping g 3
potential for positrons, we mimic the repulsion®~¢ of the g n
positron from the true host-ion cores by an added square- = g 1T & -
well potential for a positron. The values of the density 8= =2 q = -
parameter rg, the valency Z, and the kinetic-energy well g2 0|3 N
E, are given in Table II, where also results for the calcu- SEIIF|aT ¢ o
. . . . . . > g = — N O (%)
lated positron lifetimes and binding energies are present- =53 S|~ = Q
ed. These latter values are compared with ones obtained 3§ E b
when no crossterms are taken into account in the one- E = =
particle equations. A typical result is a greater binding e §_ oy
energy for positron in vacancies in the full approach. § £ g 5 .
Differences between these two cases are rather small for ‘g g 2 S|= = =
all metals, especially for those of greater r, although for e S 8l w 9 .~ !
some cases the change when applying the two-component EBZ|= | -
approach is quite large. Only for aluminum is the new gns 18 5 n
28 3
828
< o @
SE§
T T T T T T T 1<}
h % gg —_ 8 o o
AR Ll o I
E=E r=
SES|IB |2~y
“‘f, 2% > A ~
a WY _ | = —
= 8 5 S|~ = g
8§52 I
2 ¢
g .2 >
22
323
] Ll N ]
s =} - O
T & S|3~<
=T % 18 g «
g8 3 S 2 &
2538 '
g &
> T8 x
E&8
o =8 ©
L
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5SS = =
= > —_ =
232 55 s
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w
FIG. 8. The positron probability distribution |¢*(r)|? and = E °
the effective trapping potential V,,,(r) for the Al vacancy. E-_'-ll i:
Solid curve, two-component density-functional theory; dotted [ > N = > % % ]
curve, assuming no electron-density response to the entering ﬁ ‘2 g § 2 - 2
positron. S 5 O NR RR -
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T T T T T T T T T

vacancy in Al

r{au)

FIG. 9. The electron density at a vacancy in Al (jellium
model). Solid curve, two-component density-functional theory;
dotted curve, electron density in absence of the positron. The
density is given in units of the bulk electron density n,.

value of the binding energy somewhat smaller. There is a
small difference between the present result for Al and the
one presented earlier.’? It is due to improvements in the
electron-positron correlation energies and potential: the
previous values were based on the VBS results. For Li no
bound state is formed when the conventional approach is
used. However, in the full two-component scheme,
positron-electron correlation is greater and a bound state
has appeared. For Na, when treating correlation conven-
tionally, one obtains a very weak binding, which increases
considerably in the two-component approach.

In the conventional calculation the effective trapping
potentials for positrons are rather short ranged, whereas
in the two-component case they are longer ranged. In Fig.
8 the effective potential for a positron in the Al vacancy is
shown. It is nonmonotonous inside the vacancy, which is
caused by the particular character of the potential p
when both densities n, and n_ are varying. It also
ranges considerably further from the vacancy. The posi-
tron is a little less localized, as can be seen from Fig. 8,
where |7 (r)|?is also plotted.

Figures 9 and 10 show the self-consistent electron den-
sity for a jellium vacancy in Al and Mg, both with and
without a positron present. One can see the essential in-
crease of n_(r) inside the vacancy, and larger Friedel os-
cillations of the electronic charge outside. The change in
n _(r) from the conventional approach is presented in Fig.
11 for Al and Mg. Here one can also see the positron-

T T T T T T T T T

vacancy in Mg

rlau)
FIG. 10. As in Fig. 9, but for a vacancy in Mg.

= Mg

Al

1 1 1 1 n d
0 1 2 Bt v 5 6 7 8 9 10
Al Mg

rlau)

FIG. 11. Differences in electron density between convention-
al and two-component density-functional approaches; the curves
for Al and Mg are taken as examples.

induced difference density An for both metals.

Figure 12 presents the contributions to the effective po-
tential Vg for electrons both for the two-component and
the conventional approach. One can see that in the two-
component scheme the scattering potential is weaker.

The positron trapping potential Vf,fﬁp is presented for
Al in Fig. 13. One can see here again a change of the
shape inside the vacancy. In the new approach V;:7 is
essentially larger, but it is compensated to a high degree
by the self-exchange and self-correlation contributions in-

o
o
T
|

Electron potential (Ry)

rlau)
FIG. 12. Effective scattering potentials V*f for electrons at

the Al vacancy: (a) two-component density-functional ap-
proach; (b) conventional density-functional approach. u,. is the
exchange-correlation part and ¢ the electrostatic part of the ef-
fective potential. V:? comes from electron-positron correlation
in the two-component theory.
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osf .
04 R ’
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Positron potential ( Ry)

r (a u)
FIG. 13. Effective trapping potentials Vf,fﬁp for a positron in

the Al vacancy: (a) two-component density-functional ap-
proach; (b) conventional density-functional approach. ¢ is the
electrostatic and V¢? the positron-electron correlation part of
the effective potential. uf, is the positron ferromagnetic, self-
exchange correlation in the two-component scheme. The reduc-
tion in the positron kinetic energy which contributes to Vfgp is
E,=0.352 Ry.

side the vacancy. Moreover, outside the vacancy the posi-
tron self-interaction has a long tail and, consequently, the
effective trapping potential becomes long ranged. The
self-interaction effects due to the LDA are discussed in
Appendix B.

It is also very interesting to compare the lifetime values
given by the two approaches (see Table II). Both compare
well with experiment. The two-component calculations
using Eq. (23) give values differing from the conventional
ones by less than a few percent, even if the average density
profiles are grossly different. This signals that, as far as
the annihilation rates are concerned, there is a cancella-
tion between (i) the electron pileup in the trap region due
to the presence of the positron, and (ii) the diminished
contact rate due to the nonzero positron density. This
amounts to noting that in the vacancy the screening densi-
ty is redistributed among the average component and the
short-range enhancement.

VI. SUMMARY

A general density-functional theory is presented for
two-component Coulomb-Fermi systems. In particular,
we have constructed the electron-positron (electron-hole)
correlation-energy functional and its derivatives (the

correlation potentials) throughout the (n,,n_) plane.
This construction is based on existing many-body calcula-
tions for the two limiting cases, n, —0 and n =n_.
Moreover, we discuss the complete phase diagram of the
homogeneous electron-positron plasma. In addition, we
present an interpolation formula for the contact density in
the two-component mixture for use in annihilation-rate
calculations.

The techniques are applied in fully-self-consistent cal-
culations where the distorting effect of the localized
(trapped) positron on the electron states in its vicinity is,
for the time time, taken into account. The noteworthy
feature is the interplay between the mean density increase
and the decrease in the local-contact-density—en-
hancement factor (short-range screening). In the limit of
very strong localization (e.g., by increasing the positive
particle mass), the former term always dominates and one
recovers the correct limit where the particle is treated as a
static charged external perturbation. The calculations are
performed for the model problem of positron trapping at
simple metal monovacancies. The results show interesting
cancellation effects; i.e., although the changes in both
electron and positron densities from the conventional cal-
culations (which partly ignore the cross correlations) are
large, the changes in physical observables such as the an-
nihilation rate or the binding energy are relatively small.
This gives credence to the standard calculational tech-
niques used in positron-defect spectroscopy. On the other
hand, the present technique may soon find interesting new
applications with the advent of the true electron-positron
plasma experiments in the facilities for intense slow-
positron beams. Such applications include various surface
phenomena, many positrons confined into a single void,
and various positron-ion complexes.
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APPENDIX A: INTERPOLATION FORMULAS

In this appendix we present some interpolation formu-
las for the electron-positron correlation energy in the case
of one positron in a homogeneous electron gas, and in the
case when the number of positrons equals the number of
electrons. The formulas corresponding to the first case
are based mainly on the results of Arponen and Pa-
janne'*?? and those corresponding to the second make use
of Lantto’s'® data and the results of Sec. II. The formulas
have been derived so that the correlation-energy function-
al and its derivatives are continuous over the entire range
of r;.

1. Correlation energy of one positron
in a homogeneous electron gas (in Ry)

We write, for r; <0.302 (the RPA result),
e P(ry)=—1.56/1r;+(0.051 Inr, —0.081)lnr, + 1.14 .
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For 0.302 <r, <0.56,
e7(r,) = —0.92305 — 209439
rS
For 0.56 <r, <8.0, (A1)
13.15111 | 2.8655
eP(r,) = — —0.6298 .
: (ry+2.52  r+2.5

For 8.0<7; < 0,

e®P(n(ry))=—179856.2768n2+186.4207n —0.524 .

2. Correlation energy for a fully compensated
system (n, =n_) (in Ry)

We write, for 0<r; <0.8,
£2P(ry)= —0.238 31+0.078 95 Inr; .

For 0.8<r, <6,

28.3225 6.4466
(ry+5.02  (r;+5.0)

For 6 <r, < 15.85, (A2)

—0.52548 .

e P(ry)=—

e°P(r;) = —0.307 265 —0.148 162 tanh[0.391 45(r, —9.8)] .

For r, > 15.85,
€P(rg)=—0.507 25 —2gculry)

where eca(7;) is the result of Ceperley and Alder'* as in-
terpolated by Vosko et al.*
3. Contact density

The formulas for the contact density (the value of the
pair-distribution function at the origin) are presented for
the following cases: (A) n, —0 (one positron in a homo-
geneous electron gas),

8olrs)=1+1.23r,+0.8295r>"
—1.26r2+0.3286r2+r2 /6 ,

B)n, =n_,
g1(r)=1+0.51r,+0.65r2—0.51r"24+0.176r; , (A3)
and () n,=+n_,

82(r)=1+40.6r,+0.63r>—0.48r)2+0.167r] .

The formulas are interpolations of Lantto’s!® results

(Table I) preserving the proper behavior when r,—0
(RPA limit) and for 7;,— .

APPENDIX B: SELF-INTERACTION CORRECTIONS

For a positron trapped at a vacancy in Al, we have
solved the self-consistent equations (2) and (3) also in the
case where the positron self-interaction has been subtract-
ed. Then, Eq. (3) for the positron is written as

SE:—p[n«l-an—]
on (1)

=etyT(r), (Bl

n_(r')—ny(r')

—ivi- far vt

|r—r'|

and the change in the positron effective potential in rela-
tion to (3) is
n (1)
AVgl(r)=— fm
After this correction, the positron effective potential be-
comes stronger (by ~20% at the origin), and the
positron-electron correlation part of this potential also
grows up (by ~40%). The positron then becomes some-
what more localized at the vacancy, and attracts more
electronic charge towards the center of the vacancy.
However, the enhancement of the electron density inside a
vacancy is very small and the net effect on positron life-
times is nearly negligible (240—243 psec). The change in
the positron binding energy is from 1.59 to 1.12 eV.
These comparisons are made with the calculations where
crossterms and LDA self-interaction terms are included.

dr'—p.(n (1)) . (B2)

*Permanent address: Institute for Low Temperature and Struc-
ture Research, Polish Academy of Sciences, 50-950 Wroclaw,
Place Katedralny 1, Poland.
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