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It is shown that the commonly used approximation for the no-loss angle-resolved photocurrent
from solids in general violates the optical selection rules if the final-state inverse low-energy electron
diffraction orbital is taken to be damped. The violations occur in the velocity formula, which is in-

consistent with the corresponding and commonly used acceleration formula in which the matrix ele-

ments are evaluated with respect to the gradient of the one-electron potential. It has recently been

shown that, in a correct description of the no-loss photocurrent, the bare matrix elements should be

replaced by the appropriate vector-coupling vertex function. We demonstrate that this modification
is needed in order to have correct selection rules and consistency between the velocity and accelera-
tion formulas for photoemission and photoabsorption. Our formalism further allows us to interpret
the commonly used acceleration formula in terms of a well-defined approximation which leaves out
local-field effects, and to give approximations which obey the selection rules.

I. INTRODUCTION

Photoemission spectra of solids can often be successful-
ly interpreted on the basis of one-electron concepts. How-
ever, in a pure one-electron theory the photoyield would
be limited by the penetration depth of the incident radia-
tion, whereas in reality it is limited by the escape depth of
the photoelectrons, which often is only a few atomic dis-
tances. Thus, in real solids only those photoelectrons
which have been intrinsically created near the surface con-
tribute to the observed spectrum. The current way to
remedy one electron from this deficiency is to include the
mean-free-path effects as an afterthought and take the
photoelectron orbital to be damped inside the solid. ' In
quantitative terms this means that the photocurrent ( J„)
is calculated from the expression

(1) also leads to inconsistencies in that it violates the opti-
cal selection rules, and that these problems are resolved by
a more accurate description of the photoemission process
given in Ref. 4, henceforth to be referred to as I. The fact
that Eq. (1) violates the optical selection rules has also
been observed by Hedin and Nykvist.

The origin of the selection rule violations is that the
damped photoelectron orbital is not an eigensolution of
the same one-electron Hamiltonian as the initial-state or-
bitals, and thus such violations do not occur within strict
one-electron theory. If we, on the other hand, use the "ac-
celeration" formula for the matrix elements and represent
the optical field by i A V V/co we obtain an expression

OCC

g ((X' '~A VV~/„) [ 5(e —e„—to).
n

OCC

J» ——Zing )(,X» '~b, ~P„) [ 5(s» —e„co). —

Here p„and I' ' are initial- and final-state orbitals of en-

ergies s„and e, , respectively (p is short for momentum
and spin), b, = i A V —is the coupling to the optical field,
and co is the photon energy. (We use units such that
R=e =m =1.) The effects of the mean free path are in-
troduced by solving the photoelectron orbital X» '(r) in
the effective potential seen by a quasiparticle. This poten-
tial consists of the total Coulomb potential ( Vc) and the
dynamical self-energy (X). The latter term is not Hermi-
tian and gives rise to a damping inside the solid.

It is known, however, that by introducing self-energy
effects in response functions without the corresponding
vertex corrections one violates macroscopic conservation
laws. ' %'e show here that the theory summarized in Eq.

This expression manifestly obeys correct selection rules
also when X»

' is taken to be damped. Unfortunately,
previous theoretical work gives no fundamental argu-
ments for choosing the acceleration formula above instead
of the velocity formula in Eq. (1), despite the fact that
they are not at all equivalent.

In the present paper we will confine ourselves to the
no-loss photoelectron current, except for a short discus-
sion of optical absorption, and the dipole (long-
wavelength) approximation. As the ambiguities arise
from introducing the photoelectron self-energy in an un-
critical way, a proper explanation must be based on a full
many-electron description of the photoemission process.
We here follow our earlier work, I. Equation (1) closely
resembles an expression for the no-loss part of the pho-
toelectron current Jz" given in I„

J» = f d~2 8» ——co)(X» I (A+ec)A (s)A„(E+co, e) ~g' ') .
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Our results above involve two modifications compared to
the approximation in Eq. (1): (a) the density of occupied
states, g„~g„)5(e—e„)(P„~ inherent in Eq. (1), has
been replaced by its interacting counterpart A &(e), and
(b) the bare coupling b = i—A V has been replaced by the
vector-coupling vertex function A„. [In Eq. (3) the energy
integration is confined to the quasiparticle part of A & .]

As we will show in detail, the vertex correction in Eq.
(3) is quite substantial and almost entirely removes the
violation of the selection rules. There remain, however,
small terms which are proportional to the lifetime width
I (e) of the hole left behind. Thus one can say that Eq. (3)
is correct to the same precision as the no-loss current it-
self can be defined. When I (e) is small, the final states of
the solid left behind are almost stable, and we have no dif-
ficulty in distinguishing between the elastic and the loss
parts of the photocurrent. When I (e) is large, on the oth-
er hand, we are in spectral regions where strong loss satel-
lites are overlapping with the "elastic" contributions, and
the distinction between a loss and an elastic part becomes
ambiguous and less useful. In a metal, hole states with
energies e above the first plasmon satellite usually have
only a very small lifetime width. The same situation
occurs in semiconductors and insulators with energies less
than a band-gap energy below the top of the valence band.
Thus, for such final hole states the no-loss current is rath-
er well defined and correctly described by Eq. (3).

In the velocity formulation of the photoemission pro-
cess, where the coupling is taken as A P, correct selection
rules are obtained only by including a consistent descrip-
tion of the relevant vertex function. It is quite difficult to
obtain good approximations for such vertex parts, and
thus the velocity formulation is rather awkward to use in
practice. This has motivated the second part of this work,
namely the derivation of correct many-electron counter-
parts to the acceleration formula in Eq. (2). In practical
application by Pendry and by others the potential V in
Eq. (2) has been taken as the total effective one-electron
potential. As we will show, in a many-electron descrip-
tion one should instead take the matrix elements with
respect to e '(co)A. Viu, where iu is the potential from
only the nuclei and where e(m) is the dynamical screening
function. Note that A Viu gives the polarization obtained
by displacing the nuclei by an amount A and that such a
displacement gives rise to a finite potential, despite the
fact that iu itself is infinite. A vertex function enters also
in the correct acceleration formula, but it plays no crucial
role for establishing correct optical selection rules.

We derive the acceleration formulas in two different
ways. One is based on commutation relations, and one is
based on the Bethe-Salpeter equation for particle-hole ex-
citations. The latter method allows us to give criteria for
having a consistent description in approximate schemes
and to give simple low-order approximations. It also al-
lows us to give a physical interpretation of the approxima-
tion in Eq. (2). As we will show, replacing e '(co)A. Viu

by A.V V in the proper acceleration formula for the elas-
tic photocurrent corresponds to neglecting the local-field
effects. Local-field effects, which are connected to the
spatial variation of the induced part of the field, should be
particularly important in the surface layer. Thus we ex-

pect the approximation in Eq. (2) to be less useful for
describing the surface photoelectric effect.

The expression in Eq. (3) for the elastic photocurrent
correctly transforms into the corresponding acceleration
formula in spectral regions where the concept of a no-loss
current is meaningful. The approximation in Eq. (1), on
the other hand, does not have this property, which again
illustrates the necessity of vertex corrections. As we will
discuss at the end of this paper, similar problems occur in
approximate treatments of optical absorption. Thus, ap-
proximations analogous in Eq. (1) which include self-
energy renormalizations but no vertex part also violate the
optical selection rules (as well as the f-sum rule), and are
inconsistent with the corresponding acceleration formulas.

II. DISCUSSION OF A SIMPLE MODEL

P~ (r)=f„(z,p~~)exp(ip~~ r~~),

(r) —g (z) exp( jp[( r[~) (9)

[Here h = —V /2+ Vc, u„, is the exchange-correlation
potential used for occupied states, and X (e) is the time-
reversed self-energy. The label

~~
indicates components

parallel with the surface. ] An easy calculation shows that
Eq. (1) gives the current

J~ =2'(A„p„) g ( (g~ ~
f„) ( 5(e~ —e~ co) . —

On a one-electron level u„, has to be chosen real and thus
different from X (ez), which has an anti-Hermitian part
of several eV at typical photoelectron energies. Thus, in
general (g~ ~ f )&0 and J~ ~0.

One might ask if these problems disappear if the damp-
ing effects are included also for the initially occupied
states. The proper way to include these effects is to re-
place the independent-electron density of occupied states

To illustrate the principles of how selection rules are
violated in the approximation in Eq. (1), we consider here
a simple model with translational invariance along the
surface. We assume that the system is confined to the re-
gion z «0 and expose it to radiation at normal incidence:

5H = g b, „c c„e '"'+H. c . (4)
m, n

Here cn is an electron operator, and

b, „=(m
~

—iA„V„~ n) .

As is well known, the perturbation in Eq. (4) does not give
rise to any transitions, owing to the translational invari-
ance along the x direction, and the total photocurrent is
zero. Equation (1), however, gives a nonzero current as
soon as the photoelectron damping is introduced. The ini-
tial (P„) and final (Xz ') states obey the one-electron
equations

(h +u„,)P„=s„P„,
[h+& (ep)]Xp

' epX~——
and can be taken as
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by its interacting counterpart A &(e) and thus to leplace
Eq. (1) by

J»= f de2m5(e» —e —c0)(X» '~ &A((s)& ~X» '), (ll)

where X' '(r) is the same time-reversed low-energy elec-
P

tron diffraction (LEED) orbital as in Eq. (7). Making use
of Eq. (9) and introducing a complete set of orbitals IP„ I

we obtain from Eq. (11)

J» 2m(——A„p, )'g (y»' '~m)(m ~A((e» co—) ~n)

Since the state density A & is confined to the solid, we can
restrict the sum in Eq. (12) to orbitals P„which vanish
for, say, z & zo. Now, the state density (rn

~

A (e)
~

n ) is
a positive-definite matrix. Further, the LEED orbital
X»

' penetrates an escape depth into the solid. Thus, in
general (n ~g» ')&0. As a consequence, also the ap-
proximation in Eq. (10) in general violates the selection
rule of a vanishing photocurrent at normal incidence.

The selection rule violations show up in a very clearcut
way in the simple model considered above. Similar viola-
tions also occur in more complex systems and may give,
for example, incorrect behavior of peak intensities with
respect to polarization angles. As we will show in the
next section, these problems disappear, to within the accu-
racy discussed in the Introduction, when the correct
vector-coupling vertex function is included.

III. ACCEI.ERATION FQRMUI. AS
FOR THE PHOTOEMISSION PROCESS

A. General

In one-electron theory one easily obtains the accelera-
tion formula in Eq. (2) from commutator relation

[p,h]= —iVV. We now wish to derive a corresponding
expression for the no-loss photocurrent from an interact-
ing solid.

In the dipole approximation one is effectively taking
the optical perturbation as

5H =A Pe ™+H.c. , (13)

The second interaction term is translationally invariant
just like the kinetic energy T. Thus,

[P,H]= P, g w(j) = i g—Vw(j),

which gives

co(N, s
~

P
~
N) = —(E,s

~
[P,H]

~
X)

=i Ns Vwj
J

for final N-electron states
~
N, s ) with an energy co above

the ground state
~
E ). Thus, we can instead take the cou-

pling to the radiation field as

5H'=(i/cu) g A Vw(j)e '"'+H.c .

Going through the same procedure as described in I we
obtain the no-loss photocurrent as

where P = QJ pj is the total momentum and where A is
the applied, external field. (Note that only the external
field is assumed to be spatially homogeneous. The corre-
sponding total effective field exhibits a rapid variation in
each unit cell as well as at the surface and has a finite
penetration depth. ) The Hamiltonian of the solid is of the
form

H =T+ g v(ij)+ gw(j) .

J»"——f de2n5(e» —e —co) (X» 'i A, (e+c0, e)A &(E)A, (a+co, e) iX» '),

where the vertex A, gives the response in the inverse of the Green s function 6 to the scalar perturbation —A Vw:

(x
~
A, (s+c0, e)

~

x') = f dt dt'd y[ —56 '( t, xt'x)/5 (yw, 0)]e"+"" '"'[—A Vw(y)] . (16)

Introducing the usual screened, scalar vertex

Ao(12;3)= —56 '( l2)/5'(3),

which Slvm the response to an increment in the total Coulomb potential Vc and the dielectric function 6
[e '(12)=5VC(1)/5w(2)], we can rewrite A, as

(x
i A, (e+c0, e)

i
x') = f d yd zAO(xe+co, x'e;y)e '(y, z;co)[ —A Vw(z)] .

All matrix elements are now expressed in Vw, and correct selection rules are obtained regardless of the approximations
used for the LEED orbital, state density A &, and the vertex function. Neglecting the vertex correction we obtain the
simple expression

J»"'=
2 (X» '~ [e '(c0)A Vw]A&(e» —ce)[e '(c0)A Vw] ~X» '),
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which is analogous to the independent-electron result in

Eq. (2). Thus, we see that to a first approximation the
matrix elements in the acceleration formula should be tak-
en with respect to the effective perturbation e '(co) A Vw.
The vertex corrections could be estimated by, say, time-
dependent local-density theory if need be, but they need
not be included in order to have correct selection rules.

The result that acceleration formulations involve
e '(co)A Vw has been obtained earlier by Hermeking,
but no explicit result for the no-loss part of the current
has been given. Instead„Hermeking obtains an expression
of similar structure as our Eq. (3) [Eq. (3.15) in Ref. 6] by
neglecting three-particle correlations and claims that it de-
scribes the entire photocurrent. [Hermeking's expression
includes first-order vertices of all possible orderings and
not just the time-ordered part as in our Eq. (3).] We do
not agree on this statement. To the contrary, we believe
Eq. (3.15) in Ref. 6 leaves out the processes responsible for
the extrinsic losses, i.e., those loss diagrams which survive
in the limit of high photoelectron energies.

The applied field in the acceleration formula, —A Vm,
corresponds to displacing aB nuclei by an amount —A
while keeping the electron charges fixed. On a microscop-
ic level this field is rapidly varying, but the corresponding
averaged macroscopic field corresponds to a polarization
of —ZA per atom, where Z is the charge of a nucleus.
Consequently, no divergency occurs when summing up
the contributions from all constituting atoms. The
dynamical screening e '(co) transforms this field to a
screened effective field. Owing to the anti-Hermitian part
in e ' this effective field is spatially damped inside the

I

solid with a decay length equal to the penetration depth of
the incident radiation. %hen co is small compared to all
core-electron energies, it is reasonable to assume the
screening of the core electrons to be instantaneous, which
suggests the approximation

E (co )V to eq (co )Vl8,0„

Here w;,„ is the total Couloinb potential from the ion
cores, and e„gives the screening from only the valence
electrons.

8. Mutual consistency of velocity
and acceleration formulations

In a correct theory the velocity and acceleration formu-
lations should of course be equivalent. Unfortunately, the
approximation in Eq. (1), or its extrapolation to include
interaction effects on the initially occupied states, Eq.
(11), fails badly in this respect. The velocity and accelera-
tion formulas for the no-loss current proposed here, on
the other hand, we here show to be equivalent to within
terms of the order of the hole lifetimes.

Let us first consider the approximation in Eq. (11)
without vertex corrections. In this approximation the
contribution to the photocurrent from irutially occupied
states of energy e = a» —co is given by

2~&x»'-'I s~ &(.)~'IX,'-') .

To transform this expression to an acceleration form we
use the Dyson equations for X»

' and A &. We obtain

&X» I
b,A&(e)= —

&X» 'I [(a+co)b, —bs]A&(e)

=—
&X» 'I I[A+X(a+co)]h —b[h+X(e)+6 '(e)]Id &(e) .

[Note that &X»
'

I
G '(a+co)=0. ] The density of occupied states we write as

A&(e)= G(e)I(s)G (s),l

2'

(20)

(21)

where

I (e) = —,[X(e)—X (e)]
1

(22)

is an Hermitian positive-definite matrix in one-electron labels which gives the hole lifetimes due to the many-electron in-
teractions. Using the explicit forms of h and b we can now rewrite Eq. (20) as

&&» 'I ~~&(e)= . &&» 'I [—A'VI'c+X(a+co)A'V —A VX(e)]p (e) — . &y' 'I A VI (e)Gt(e) .&67 2p'l 6)

Thus we see that the velocity formula without vertex corrections does not transform into anything like the acceleration
formula of the previous subsection. First, the gradient of the total Coulomb potential appears in place of the dynamical-
ly screened gradient of the external potential. Second, a large term X(a+a&)A V —A VX(e) which violates the selection
rules has appeared. To verify that these terms indeed break the symmetry we temporarily go back to the simple model
discussed in Sec. II. In this model Eq. (23) simplifies to

&X» 'I bA (e)=—A„p„&X» 'I [X(a+co)—X(e)]A (e) — &7' 'I I (E)G (e) .
CO 27TQ)
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We note that the anti-Hermitian part in X(e+co) is large
at typical photoelectron energies and that it is of opposite
sign as the anti-Hermitian part in X(e). We also note that
the Hermitian part in X(e) is in general positive and large
for localized hole states, whereas the Hermitian part in

X(a+co) is in general negative. Finally there is in Eq. (23)
also a term proportional to the hole lifetime involving
I (e). As discussed in the Introduction, a clear identifica-
tion of a no-loss part of the photoelectron spectrum re-

quires I (e) to be small, and consequently we will neglect
it in the spectral region under discussion.

We now turn to the full velocity formula in Eq. (3) for
the no-loss current. To transform this expression we need
to express the vector-coupling vertex function A„ in terms
of the scalar vertex A, . The vertices A„and A, give,
respectively, the response in the inverse Green's function

to the perturbation 5H in Eq. (13) and 5H' in Eq. (14}.
These perturbations we rewrite here as

5H =A.Pf (t)+H.c. ,

5H'= A.Pg(t)+H. c. ,

and study the response functions

R„(x,x', t")=5G—(x,x')/5f (t")

= —( Ty(x)g'(x') A P(t"))

R, (x,x';t")=56—(x,x')/5g (t")

= —(Tg(x}f (x')A P(t")) .

(Here P is the electron field operator, and x and x'
represent spatial and time coordinates. ) We readily find

„R„(x,x', t")= —( T [A P(t), g(x)]g (x') )5(t —t")—( Tg(x)[ A.P(t'), P (x')] )5(t' t")+R,—(x,x', t") .

We next use the relations [P(t),g(x}]=i Vg(x) and perform a Fourier transformation. This gives

R„(a+co,s}= . [A.VG(e) —6(e+co)A V+R, (e+t0, e)] .1

lN

[In Eq. (24) the Fourier transforms are defined as in Eq. (16), and all quantities are to be interpreted as matrices in one-
electron labels. ] To find the relation between the corresponding vertex functions we note that 56 '= —6(56)6 and
multiply Eq. (24) with 6 '(a+co) from the left and width 6 '(e) from the right to obtain

A„(e+co, E) = . [6 '(e+di)A. V —A VG '(s)+A, (a+co, e}] . (25)

Equation (3) for the no-loss current involves the quantity (Xz
'

~
A„(e+co, s)A & (e), which we now can transform as

(X' 'i A„(e+co, e)A &(e)= . (X' 'i A, (a+co, e)A &(e)— (X' 'i A Vl (e)6 (s)0 (26)

Compared to the corresponding result in Eq. (23) obtained without vertex corrections, we see that now the large
symmetry-breaking terms have disappeared. We also note that Eq. (26) correctly involves the dynamically screened po-
tential e '(t0)A Vic via the scalar vertex A, . However, a small term symmetry-breaking term proportional to the hole
lifetime still remains. By neglecting this last term and by transforming A in a similar way as above, we obtain

(X~
'

~
A„(a+co, e)A &(e)A, (e+co, e)

~ X~ ') = (X' '
( A, (a+co, e)A &(e)A, (e+t0, e)

(
X' ')+0((l'(e)) ),

N
(27)

i.e., our expression in Eq. (3) gives a correct description of
the selection rules and transforms to its acceleration-
formula counterpart to within terms of the order of the
hole lifetime width.

C. Alternative treatment based
on the Bethe-Salpeter equation

The equation-of-motion method used in the previous
subsection to relate the vector-coupling and scalar vertices
is simple, but it gives little hint if and when the important
relation in Eq. (25) holds in approximate schemes. This
relation is in turn the necessary and sufficient condition
for having correct selection rules. We shall now give an
alternative derivation based on the Bethe-Salpeter equa-
tion which allows us to give criteria for the validity of Eq.
Q5).

X6 (64)6 (57)A„(76) (28)

(1, 2, etc., represent space, spin, and time coordinates).
Here

5(12)= —i 5(12)A(1).V, , (29)

I(12;34)=i5[5(13)VH (I)+X( 13)]/56 (42)

is the irreducible scattering function. ( VH ——Vc —iU is the
Hartree potential from the electrons. ) Going over to
Fourier space and a convenient matrix notation me can

The vector-coupling vertex A„ fulfills a Bethe-Salpeter
equation of the form~

A„(12)=b(12)—i f d(4567)I(14;25)
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rewrite Eq. (28}as

A„(co)=b —iI(co)(GG) A„(co)

=
I 1 i—I(co)(GG) +[ i—I(co)(GG)„] + . Ib, .

Here A„(co} is a vector labeled by (x,x', e) and with the

components

{x,x', e
~
A„(co)) = I dt dt'e e A~(xt, x t ),

and I(co) and (66)„are matrices with first and second
labels ( x, x', e ) and (y, y', s' }with the components

I ( x,a+ co, y', e';x', s, y, s'+ co)

2tr5(s e—)6'(xy,e+, co)6(y ,x'e'), ,

respectively. Matrix multiplication involves integration
with respect to energies and spatial coordinates (co is a pa-
rameter}.

%e begin by considering the quantity

{s'
~

(GG)„b, ) = iG(—s'+co)A VG(e) .

Taking A to be constant and using the equation of
motion for the Green's function we obtain

(GG}~b,= (R, +Rb+R, ),1

lN

where

{e'
i R, (co))=A VG(e') —6(e'+co)A V,

{e'
~
Rb(co)) =G(s'+co)[X(e'+co)A V —A VX(s')

—A (VVH )]6(e')

{e'
~
R, (co})=6(e'+co)[ —A (Vto)]6 (s') .

We next make use of the fact that I is the variational
derivative of VH+X with respect to 6 [Eq. (30)]. (The
functional X[6] is defined via the expansion in skeleton
diagrams. } This gives

iI(co)R, (co)=——(66)„'Rb(co) . (32)

We now rearrange the expansion in Eq. (31) as follows:

A, (co)= . g [—iI(co)(66) ]"(—A Vio)
l 6)

l
[icob, + A Vio iI(co)R (co)]-

l 6)

+A.VVC jA, (E+co, e)] .

(33)

This expression is easily seen to be equivalent to Eq. (25)
of the previous subsection.

The derivation above relies on having the vertex func-
tions A„and A, properly defined as variational deriva-
tives of the Green's function. This condition is thus
necessary and sufficient in order to have correct selection
rules and correct relations between the velocity and ac-
celeration formulas.

D. Approximation without local-field effects

ln the foregoing analysis the vector potential A
represented the applied external field rather than the total
screened field A,tt(r). A slight modification of the
method used in Sec. III C gives an approximate accelera-
tion formula for the no-loss current where the spatial
dependence of A,tt and thus the local field effects are
neglected. In the present case we write the Bethe-Salpeter
equation in terms of the effective field,

A„(12)=b(12)—i J d(4567)I(14;25)6(64)G(57}A„(76),

b(12)= i5(12)A—,tt(1).Vi i

and where

I(12;34)=i X(13)/56 (42) (34)

is the screened counterpart to I. An analysis analogous to
that in Sec. III C gives

A„(co)= . g [—iI(co)(GG)„]"(—A,ff'VV )
lN

O

+ [icob, + A,tt. VV, iI(co)R~(co—)]

——I(co) g [ i (66)g(co)]"—
CO 0

X [Rtt(co) —t (66)g(co)R (co)] .

and the first term gives the scalar vertex function A, de-
fined in Eq. (18). We write the final result in our earlier
notation with Green's functions and vertices regarded as
matrices in one-electron labels:

A„(a+co, E)= i —A V+ . [A VX(e)—X(a+co}A.V
1

CO——I(co)g [ ~'( GG)Q( co)]"— (35)

X [Rb(co) i (66)g (co)—R, (co)] .

The third term above vanishes by virtue of Eq. (32). The
second term gives

{e
~

R (co)) —A ff'VG(e ) G(e +co)A ff'V

{e'
i Rti(co)) =G(e'+co)[X(s'+co)A, tt.V

—X(&')A tt V]6(e') (36)

b, —(66)„'Rb(co)+A.Vw,
aiid A ff is now taken to be constant. From Eq. (34) we
find as above
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—iI(co)R~(ru) = —(66)~ 'R&(~),

and thus the third term in Eq. (35) vanishes. The first
term gives the response in 6 ' to an increment A,ff.7'V&
in the rota/ potential ( Vc },and we obtain the second term
as in Sec. III C. The final result is

1
A, (c+~, c)= . [6 '(c+~)A,«V

7N

A «VG '( c) +A, ( c+co, c ) ]

(37)

( x
~
A.(c+~, c)

~

x'
& = f Z'y Ao(xc+~, x'c; y)

X[—A,fr VVc(y)] (38)

involves A,ff-VV~, whereas the exact expression in Eq.
(19) involves c '(co)A. Viu.

Going through the same steps as in Sec. III C, we now
obtain the following approximate acceleration formula for
the no-loss photocurrent:

= f ~c ir5(cp —c—~)
2 (&~

~
A, (c+co, c)A (c)A, (c+co, c ~g' ')+0((l (c))) .

Thus, neglecting local-field effects amounts in the ac-
celeration formula to replacing c '(co) A Viu by
A.rr VVc.

IV. CONSISTENT APPROXIMATIONS
FOR THE PHOTOEMISSION PROCESS

As shown above, approximations to the no-loss current
obtained by choosing the vertex consistent with the ap-
proximate Green's function used give correct selection
rules and equivalence between the velocity and accelera-
tion formulas. This requirement is fulfilled for so-called
4-derivable approximations. In such an approximation
the self-energy X=X[6] is derivable from a scalar func-
tional 4[6], X(12;6)=54[6)/56 (21). The self-energy
thus defined is furthermore required to be consistent with

6, i.e.,

(40)

where Gu is a suitably defined zero-order Green's func-
tion. The vertices are then taken as the appropriate varia-
tional derivatives, which leads to Bethe-Salpeter equations
with approximate kernels ( I). The simplest approxima-
tions of this kind are the time-dependent Hartree-Pock
and local-density' approximations, which correspond to

4[6]= —,
' f d (12)iG (12)6(21)u ( 12)

and

@[6]=f &(1)c„,( iG(11+)), —

respectively. [Here u(12} is the Coulomb interaction and
c.„, is the exchange-correlation energy density in the
homogeneous electron gas.] However, neither of these ap-
proximations accounts for the important damping effects,
and 4-derivable approximations beyond these simplest ex-
amples are hard to evaluate.

The condition of 4 derivability is actually too strong.
For instance, we can consider the zero-order propagator
60 as a functional of the total effective field, take X as a
functional of Gu, and finally define 6 via the Dyson
equation (40). In this way 6 depends on the external field
only via its dependence on 60. We then take, as before,

I

the vertex functions as the correct viriational derivatives.
This guarantees the validity of Eq. (25) or Eq. (37). To
obtain a consistent approximation to the no-loss photo-
current we must then clearly define the density of occu-
pied states [A & (c)] and the photoelectron orbital via the
same 6 as that used for the vertex part. A sensible ap-
proximation of this sort with damping effects is the time-
dependent version of the "Gu W" approximation, "where

X(12;60)=iGu(12) W(21),

W =u (1 Pu}—
and

P(12)= iG (u1—2)6 (2u1) .

The time-dependent 608' approximation gives correct
selection rules, but its vertex function involves W' to
second order and is thus rather difficult to evaluate in
practice. A simpler approximation is obtained by neglect-
ing the functional dependence of W on Gu, i.e., by taking
W as given. As will be seen shortly we must then take W

as translationally invariant and frequency independent in
order to have the correct relation between A„and A, or
A, [Eq. (25) or (37)]. If the co dependence in W is kept
we obtain an approximation where the selection rule viola-
tions are much reduced compared to the theory in Eq. (1).
I.et us, for simplicity„confine ourselves to the approxima-
tion without local-field effects, and define Gu by the im-
plicit relation

+ —,
'

Vi —Vc(1) Go(12) =5(12) .

The Bethe-Salpeter equation is now replaced by the much
simpler

A„(12)=5(12)+ f 1(4567)[5X(12)/560(54)]

X Go(64)60(57)h(76),

and a corresponding equation for A„where, in the
present case,

5X(13)/560(42) =iW(31)5(14)5(23) .
We explicitly find



34 IMPORTANCE OF VERTEX CORRECTIONS FOR OBTAINING. . . 3805

I

&x~Z„(a+~, a) Ix'&=&xI —iA,rrVIx'&+i f &xI W(a —a')Ix'&&xlG, (a'+~)( —iA„r V}G(a') (x'&,

and using the relation

Go(a, '+co)( —iA, ff'V)G(a')= . [A,rr. VGO(a) —Go(a'+co)A, ir V+GO(a'+co)A, ff VV(GO(a )]
l QP

we then readily verify Eq. (37) when W is translationally invariant and co independent. If the co dependence is kept, Fq.
(37}would not be exactly fulfilled, but the violation could be shown to be small compared to the symmetry-breaking term
A VX(a) —X(a+co}A V inherent in Eq. (1}.

V. RELATION TO OPTICAL ABSORPTION

Our analysis so far has shown the importance of mutually consistent approximations for self-energies and the corre-
sponding vertex functions in the description of the photoemission process. The situation is, of course, rather similar for
the case of optical absorption. It follows from Refs. 2 and 3 that consistent approximations are needed in order to fulfill
the condition of particle conservation and thus the f-sum rule. We now explicitly show that consistent approximations
are equally important in order to have the optical selection rules obeyed in the velocity formula for photoabsorption by
inhomogeneous systems.

The velocity formula for photoabsorption can be written

00

I(co)=—f daRe Tr[ i A—VG(a+co)A„(a+co, a)G(a)] . (41)

In order to bring out the selection rules, we transform this expression to its acceleration-formula counterpart. Using Eq.
(25) we obtain I (co) =I i (co) +Iz(co), where

ce

Ii(co)= —f da —Re Tr[( i A V—) G(a) —( i A V)G—(a+co)( i A —V)],

00 1
Iz(co)= —f daRe . Tr[ i A VG—(a+co)A (a+co, a)G(a)] .

00 lN
(42)

By using the cyclic property of the trace we see that Ii ——0. Since A, involves A.Vw, we have already verified that any
approximation which satisfies Eq. (25) also gives correct selection rules. To obtain the final acceleration formula we
rewrite the trace in Eq. (42) in the matrix notation used earlier and use the Bethe-Salpeter equation to obtain [6, is a vec-
tor with components —A.Vio (1)5(12)]

Tr[ —i A VG (a+co)A, (a+co, a)G (a)]—=b(GG)„A, (co)=6 g [—i (GG)g(co)]"(GG)„A,=A, ( co)(GG)„b,,—

=—Tr[A, (a, a+co)G(a+co)( —A Vio)G(a)) .

We then apply Eq. (25) once more to obtain

00I (co)=
2 f da Re Tr[A~(a, a+co)G (a+co)( —A.Vio)G (e)] . (43)

Thus we see that the acceleration and velocity formulas are equivalent in approximations where the vertices are varia-
tlonal derivatives of the Green s function. In pa~icular, they are equivalent in the time-dep ndent Hartree Fock ~d
local-density approximations.

By leaving out the vertex part we evidently obtain symmetry-breaking terms involving X(a+co)A-V —A VX(a) in a
similar way as was found in the case of photoemission. Thus, the vertex part A„ is indeed needed in the velocity formula
of photoabsorption, as soon as self-energy effects are included, in order to have the selection rules obeyed.

In a similar way as in Sec. III D, we can also obtain an approximate acceleration formula without local-field effects.
The derivation is obvious, so we just state the result:

00

I(co)=
z f daRe Tr[A, {a,a+co}G(a+co}(—A VVc)G(a)] .

'7M)
{44)
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&
FIG. 1. Simple approximation to optical absorption without

local-field effects.

In the simplified time-dependent G&W scheme discussed
at the end of the previous section, we obtain the approxi-
mation illustrated in Fig. 1.

VI. CONCLUDING REMARKS

We have in this work shown that the current practice to
compute photoelectron spectra of real materials involves

quite severe inconsistencies, and we have shown how the
problems may be resolved on an a priori level. Our
analysis has been based on an expression for the no-loss
photocurrent given in I involving only the Green's func-
tion and its first-order response to the external optical
field.

%e have also discussed various approximate schemes

and given criteria for having a consistent description and
correct selection rules. %e have made connections be-
tween the commonly used acceleration formula for photo-
emission and mell-defined approximations which leave out
the local-field effects, and obtained a simple first-order
approximation based on a time-dependent Go 8' approach.

The concept of a no-loss current requires the hole life-
time width to be small in the spectral region under discus-
sion. The energy losses then enter only as virtual process-
es which modify the distribution of unscattered electrons.
In spectral regions where the hole lifetime width is large,
on the other hand, real energy losses are also both possible
and important. In that case we cannot see any obvious
way to identify a no-loss part, neither theoretically nor ex-
perimentally. Instead one must then analyze the photo-
current as a whole. The approach in I allows for such a
description, but, in that case, true second-order responses
also enter.
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