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Electromagnetic response of an array of particles: Normal-mode theory
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A normal-mode theory for the electromagnetic excitations in an array of polarizable particles is

presented. The response of the system to an external field is completely described by these modes,
which are uncoupled and react independently. They are characterized by purely geometry-

dependent strengths and depolarization factors. The two-sphere case is discussed in detail, and it is

shown that, at small separations, excitations of pole character higher than dipole are the leading

terms in the absorption spectrum.

I. INTRODUCTION

The optical properties of systems composed by small
metallic particles have been the subject of continuous at-
tention in the last ten years. ' From a theoretical point
of view, an explanation of the anomalous far-infrared ab-

sorption is lacking, since experiments show much greater
values than the predictions of classical theories.
Several models have been proposed to solve this problem.
Some of them are models for the intrinsic response of a
small particle and consider in detail the quantization of
the electronic levels due to the finite and small size of a
particle. " ' More recent models consider the contribu-
tion of the different cluster types present in experimental
samples. ' " This problem also has motivated the
development of new approaches for the electromagnetic
wave propagation in heterogeneous mediums, including
multipolar effects induced by the excitation field

In the far-infrared limit, an electrostatic approach to
the problem of small particles in an electric field is suffi-
cient; in such limit the wavelength of the external field is
much greater than the particle diameter and typical dis-
tances between particles. This greatly simphfies a theory
of the optical absorption in such systems. In this limit,
Fuchs obtained the single-particle susceptibility in terms
of the particle surface normal modes, each appearing as
an independent contribution to a sum. Cast in this form
the theory enables a simple estimation of each normal
mode contribution to the optical absorption. '

In a work by Claro, 's the collective surface resonant
modes induced by the Coulomb interaction in an X-
particle system are considered. This theory includes in an
effective manner all the interactions between particles and
can be taken as a starting point to obtain optical proper-
ties in systems with interacting particles. In Sec. II of the
present work we reformulate the above theory in terms of
normal mode depolarization factors and strengths. In this
way we get an expansion for the absorption coefficient in
terms of collective normal modes; in this sense we make
an extension of the single-particle theory of Fuchs to an
array of arbitrary geometry and number of particles. The
surface collective modes are obtained considering the cou-
phng between particles and with the external field using a
spherical harmonics expansion of the potential and charge

densities. As an illustration we apply in Sec. III the for-
malism to the simple case of two spheres. Numerical re-
sults are obtained for the collective normal inodes of this
system. The main finding is that although at large
separations the dipole resonance dominates, as the parti-
cles approach each other higher pole resonances gain
strength and eventually overcome the excitation of dipolar
character.

II. N-PARTICLE FORMALISM

We consider an array of X uncharged, polarizable,
spherical particles composed of a homogeneous isotropic
material of dielectric constant e= 1+4srg, where 7 is the
material susceptibility. %e study the response to an ap-
plied electric field associated with an electromagnetic
wave of wavelength much greater than the dimensions of
our particles and their separation. The particles are as-
sumed to be sufficiently small so that we may ignore the
magnetic excitations.

The applied electric field and the electric charge distri-
bution of other particles induces in the ith particle a
charge distribution of multipolar moments qt; given by

21 +1
QIm~

=—
4m

at;Vt (i),

where Vt (i ) is the coefficient of order ( l, trt) in the ex-
pansion of the local potential about the center of the ith
particle, and at; defines the corresponding polarizability
of the particle. For a sphere of radius a;, the multipolar
polarizabilities are

et+ i

1(a+ 1)+1
This expression can be written in terms of the material
susceptibility and the depolarization factors nt of an iso-
lated sphere,

where nt =1/(21+1). If 1=1 in the above relations, we
recognize the dipolar depolarization factor of the sphere:
n l

———,', and the value e*=—2 corresponding to the dipo-
lar resonance of an isolated sphere.
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The electric potential at the position of the ith particle
is given by the sum of the applied external field V'"' and
the contribution due to the other particles,

Vi~(i)= Vj'~(i)+ g Vi~(i), (4)
j (+i)

where Vi (i) is the field from the jth particle. writing
this potential in terms of the qi J moments of the j-

particle charge distribution and combining expressions (4},
(3), and (1) one obtains'

qi; = —la; (X +4m ni )
21+1 —1 O —1

x &("'(i)+ g ( 1—)' Ai~f 'qi m J
l', m', j

0 if i =j,
fl I IAl m g

~
y(m —m )(g y )]+

i+i+ IR,j

' 1/2
(4ir }'(1+1'+m —m')!(1+1'—m +m }'

(21 + 1)(21'+1)(21+21'+ 1)(l +m )!(1—m)!(1'+m')!(1' —m ')'

Equation (5) is a system of hnear equations that couples
the excited multipoles in the particles composing our sam-

ple. It is convenient to rewrite it in the more compact
OA11

C& =g U"„(U ')"„Gq-

satisfy the sum rules

(14)

X(~ '5»+RPq~ =G~ g(P G

wh~~~ q„=a;q„with p, representing the triplet of indices
( l, m, i), 5» is a product of three Kronecker deltas, and

R„"=4mni5»+( —1)'la; +'aj'A„" . (9)

written in matrix form, Eq. (7) becomes

(X 'I+R)Q=G, (10)

where Q and G are column vectors whose elements are

q& and G~, respectively, R is a matrix of elements R„"
and I is the identity matrix with elements 5». Note the
important feature that R depends only on the geometry of
the array. Assuming U is a matrix that diagonalizes 8,
multiplying Eq. (10) on the left by U ' we obtain the re-
lation:

(X-'I+A')Q'=G',

(n„)=gC„"n„

I+1
= n& + g ( —1)' a A"„G„,

4mgp
(16)

%e have thus succeeded in expressing the multipolar mo-
ments as a sum over the S-particle-system normal modes,
with each normal mode characterized by a depolarization
factor n„and a set of amplitudes c„". The minima of the
denominators in Eq. (13) determine the values of e corre-
sponding to the normal mode resonances. In the absence
of damping the resonances are poles of Eq. (13) and occur
at the sequence of values e„'=1—1/n„. Our Eq. (13) is
an extension to all multipolar couplings of the dipolar
theory of Fuchs. ' Its equivalence with the multipolar
theory of Ref. 18 is proven in the Appendix.

The sum rule (15) suggests that for G„&0one may de-
fine weight facto~ Cyy /Gp ——C pP' that add up to 1. The
weighted average depolarization factor

R'=U 'R U, Q'=U-'Q-, G'=U-'G. (12)

CP

X-'+4~n (13)

where the depolarization factors n„are defmed through
(R )p =4irn~5»', and the ail1plitudes

Because R' is diagonal, we can solve irnmecbately Eq.
(11). The solution is

does not depend on the fields when only one component is
nonzero. For instance, in a uniform external field an 1 = 1

field is present only and (16) reduces to
r

( n i~; ) =— 1+a; (1—35 o)Nfl

P1(cos8;; )
X I tla'(1 —5- )

One may easily verify then the additional sum rule
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&n, ;&=1 (18)

valid for an arbitrary configuration.

III. CASE OF A PAIR

d that includes multipolarThe simplest case we can stu y
onds to two equal spheres in a uni ormcouplings corresponds to two eq

This roblem has been treat in

Th
n usln bisp erica coo

byb Claro ' in aa multipolar expansion. e p
all ualitative features of symmetric c ar-known to exhibit al qua i a iv

d because of its low dimensiona i y one
d nu h oderate computational ef-d numerical results witLj. a m eragood nu

fort. In the case of disor er syd ed systems the structure in
ear but certain features such asthe spectrum will disappear u ce

roximity broadening effect discussed in e .
in. We shall thus apply our results to ay

pair as ethe simplest representative system o

=(—1) qi~ i,I+h,
Im2

Withor OA modes and b, =0 for OI modes. it
es

' ' '
do ex licitly the sum overthese simplifications one can do exp ici y

the i' index in Eq. (7), obtaining

g(& '&a+~i)qi=Gi
I'

where

(20)

(7')

plex arrays
If we consider two equa sp

=D on theh at the origin and the other at the point z = on e
en

' " . (6) satisfythen the coefficients A„ in Eq.z axis, en

(19)
p' I'mi'A„=Hi; 5

a hat su resses couplings in the ma symmetry condition that supp
s. (7) with dif-ex and rmits to study separately Eqs. wi i-

modes (OA modes) from optically inactive m
modes), we can use the relation

R i =4mn(5@+( —1) Ia Ai
0 Q I +I'+ ) 1'm 2

T

4m
, [(2I+1)(21'+l)J'" D'+'+'

' 1/2

=+1.los(I +1)(I'+1)

if m=0,

Eq (7') the m index and the paarticle index are
andim licit, with the identification qi ——qi~ i=6 . In a uni orm

=0+1 1

luded in the above expres-
th limit) only the m =,
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FIG. 2. Dipolar and quadrupolar mode strengths for two spheres excited by a field along the line joining their centers, in the 2 po-

lar approximations: (a) L =2, (b) L =10, (c) L =40.
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FIG. 3. Same as Fig. 1 with a field perpendicular to the line joining the sphere centers. (a) The approximation of order L = 1o and
L =40 coincide with the curve shown. (b) The approximation of order L =40 gives the same results as that with L =10.
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FIG. 4. Sane as Fig. 3, with a field perpendicular to the line joining the sphere centers. Here the approximation of order I.=40
gives the same results as that with L = 10.

given computation is a decreasing function of the normal-
ized distance 0 between spheres. In our computations
we have used up to L = 160.

Figure 1 contains the dipolar (a) and quadrupolar (b)
depolarization factors n i and n j as a function of cr, in the
2-, 2' -, and 2 -polar approximations. We note that
these factors have the expected limit behavior for large cr,
their value approaching the first two terms in the se-
quence ni ——I/(21+1) (where 1=1,2, 3, . . . ) of depolari-
zation factors for an isolated sphere. In decreasing o, n)
decreases faster for larger L. This indicates that a value
of o close to 1 requires a large value of L to obtain a valid
result. Convergence of n)~ is faster, however, the smaller
the value of l.

The dipolar strengths C I' corresponding to the depolar-
ization factors n) are shown in Fig. 2. Figure 2(a) is for
L =2, an approximation in which the dipolar mode dom-
inates at all values of o. Figs. 2(b) and 2(c) show the
strengths of the first two modes in the approximations
L =10 and 40, respectively. There we see that for near-
touching spheres (cr= 1) the dipolar mode ceases to be the
mode of largest strength. For L =10, the mode of
greatest strength is the quadrupolar, while for L =40 the
octupolar mode is stronger. This means that particles
that are very close will absorb predominantly by excita-
tion of modes of pole order higher than the dipole.

In order to study spheres at o. very close to I, we have
increased I. to the value 160 obtaining converged results
for a =1.001. For an axial external field (m =0) we get

TABLE I. Converged strengths and depolarization factors in
the approximation L =160and o.=1.001.

only two fully converged strengths and depolarization fac-
tors while for a transverse field (m =1) all significant
strengths are converged. We show these numerical results
in Table I where the relative importance of the dipolar
mode is evident; while it is clearly the predominant mode
for a transverse field, it is not for an axial field because at
least the quadrupolar mode has a larger strength than the
dipolar one. The numerical results for a field perpendicu-
lar to the line joining the particle centers are shown in
Fig. 3 (depolarization factors) and Fig. 4 (strengths). The
results with L =10 and 40 are the same which indicates a
fast convergence even at very small o. Figures 5(a), 5(b),
and 5(c) are plots of the strength versus depolarization
factor corresponding to diverse situations. Comparison of
the axial and transverse cases shows that while in the
former the strength is broadly distributed among the first
few multipolar excitations, in the latter the strength is
concentrated in the dipolar mode. In all cases the sum
rules (17') are obeyed since they remain exact indepen-
dently of the value of L.

IV. CONCLUSIONS

We have developed a forinalism for the problem of N
spherical particles in an external electric field that
separates the response of the system in independent terms
each corresponding to an individual normal mode. This
decomposition is advantageous in discussing absorption
by clusters since the strength with which each mode con-
tributes to the spectrum is a function of geometry only
and therefore universal for a given array. Thus, for an ar-
ray of metallic spheres, for instance, if the depolarization
factors and strengths are known, the mode I'm' partici-
pates in the absorption through a term of the form

AC
4~ (0 ni~ ) +I' 0—

0.0274
0.0406

0.0319
0.0725

0.8674
0.0403

0.357
0.419

where a Drude model dielectric function has been as-
sumed, with A=co/co& and I =1/co~~ Note that all.
terms behave as co at very low frequencies in agreement
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FIG. 5. Mode strengths as a function of depolarization factors for two equal spheres excited by a field along the line joining their
centers (a),(b) and perpendicular to this line (c}. Data shown in (a) and (c) are fully converged but in (1) only the strengths correspond-
ing to the two smallest depolarization factors are fu11y converged.

with experiments, since depolarization factors are nonzero
for finite separation of the particles. In addition, we have
found that in the two-particle cluster the lowest pole-
order excitations such as the dipole and even quadrupole,
may become weaker than higher multipolar excitations, a
result that stresses the fact that the dipole approximation
is poor for very close particles.

It is worthwhile to emphasize that this work confirms
earlier results on the limitations of the dipolar approxima-
tion. According to those, the dipolar approximation fails
when the particles are closer than about three-particle ra-
dii froin each other. Beyond this separation, multipolar
excitations amount to an effect of less than 1% in the
relevant quantities. As we show here, this result de-
pends purely on geometry and not on the dielectric prop-
erties of the particles.

Jq
1 gy,

where

and

4n.nI a; +

with

p
det(8 —I )

cof(8~~ —1)

8IJ,
'

( 1)/'+] 2l + 1 ~P'
P P P

(A 1)

(A2)

(A3)

(A4}
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APPENDIX

The formal equivalence between our expression (13) and
Eq. (11) of Ref. 18 that exhibits an alternate decomposj-
tion of tile coupllngs betweeil particles Iilay be easily prov-
en. This last equation can be written in the form

Because det(8 —AJ ) is a polinomial in A, , it can be written
in the form

det(8 —Al)=(A, —A&)(A, —Az) . . (A, —A, , ), (A5}

[det(8 —AI )]
s=]. s

where t A, i, A,2, . . . , A., I is the set of eigenvalues of matrix
8 [i.e., the solutions to the algebraic equation
det(8 —M)=0]. By making a partial fraction expansion
we obtain
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~„=—J„cof(B"„—1) .

(A7) With the identifications

Finally, introducing Eqs. (A3), (A5), and (A7) in Eq. (Al)
me obtain

S

s=I
(AS)

Eq. (AS) is just Eq. (13).

(Al 1)
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