
PHYSICAL REVIEW 8 VOLUME 34, NUMBER 6 15 SEPTEMBER 1986

Localization by electric fields in one-dimensional tight-binding systems
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We show that upon including an electric field within the class of one-dimensional single-orbital,

nearest-neighbor, tight-binding models for a general nonperiodic potential, all eigenstates are local-

ized. Irrespective of the details of the potential, the energy eigenstates show factorial localization

and the eigenvalue spectrum is discrete, characterizable as a Stark ladder with nonuniform spacing.
As an example, all eigenstates of the Aubry model become localized by the electric field, whatever

the strength ~ of the incommensurate potential, whereas in the field-free case this occurs only if co

exceeds the Aubry critical value. We also present detailed results for the Koster-Slater single-

impurity model in an electric field. We indicate briefly some necessary conditions for observing

field-enhanced localization.

In recent years several studies' have been concerned
with the influence of constant uniform electric fields on
the localization of electrons in the randomly disordered,
one-dimensional Kronig-Penney model (KP). In the ab-
sence of a field it is generally believed, and there are
rigorous theorems, that the eigenstates of one-
dimensional systems show exponential localization even
for an arbitrarily small degree of disorder. It has been
found' that electric fields destabilize localization to the
extent that for weak fields the randomly disordered KP
model eigenfunctions show instead only weaker, power-
law localization. For large fields the eigenstates are found
to be extended. This model is exceptional, for Bentosela
et al. have shown that if the electron-lattice potential is
sufficiently smooth but otherwise arbitrary there are no
localized states in the presence of an electric field. On the
other hand, it is known that in the case of a single-orbital
tight-binding model (TBM) of an electron in a periodic po-
tential, the effect of an elo:tric field is to localize eigen-
states. ' In particular, the field generates a discrete, uni-
formly spaced eigenvalue spectrum (Stark ladder, SI.)
(Refs. 9 and 10) with all eigenfunctions factorially local-
ized [see Eq. (6)]. In this paper we show" that in an elec-
tric field all eigenstates are localized for any non periodic
electron potential described by a single orbital TBM. In
particular, all eigenstates are factorially localized and the
eigenvalue spectrum is necessarily a SL although with
nonuniform spacing.

To understand the underlying physics of this general re-
sult it is useful to consider the striking special case of the
Aubry model' which is a single orbital TBM of an elec-
tron in an incommensurate potential. In the absence of an
electric field, the incommensurate potential splits the un-
perturbed single band into a complex hierarchy of mini-
bands for potential strengths less than the Aubry critical
value. %'e find that by introducing an electric field all of
these extended states are transformed into factorially lo-
calized states, irrespective of potential strength. At first

sight this may appear surprising. One might expect the
electric field to induce transitions between the minibands
and thereby to further extend the field-free eigenfunc-
tions. In actual fact, the electric field 8' destroys the
field-free bands in a single-orbital system by removing
spatial degeneracies among the lattice sites. The mecha-
nism for generating extended states is the action of the
site-hopping matrix element which couples roughly com-
parable energies of neighboring sites. Introducing an elec-
tric field adds an energy disparity e 8'a to a pair of adja-
cent sites, and thus works towards transforming an ex-
tended state into a localized state and towards enhancing
the localized character of a pre-existing localized state.
Indeed, the zero-field localized states of the Aubry model,
which occur for potential strengths exceeding criticality,
are also transformed by the electric field into factorially
localized states. The key point here is that the electric po-
tential drop across large distances completely dominates
whatever the form of the site energy e,„and therefore
asymptotically an electron in all cases behaves in the same
way, with energy eigenfunctions which turn out to be fac-
torially localized. This underscores the fact that the elec-
tric field cannot be treated as a small perturbation to the
field-free Hamiltonian. The occurrence of power-law lo-
calization in the disordered KP model and the total ab-
sence of localization as shown in Ref. 7, can then be
traced to electron transitions between the field-shifted site
energies for an infinite hierarchy of Wannier basis orbi-
tals. At the end of this article we discuss conditions for
which field-enhanced localization might be observed.

After a brief derivation of field-induced factorial locali-
zation and the existence of SI. spectra for the generic
TBM, we present explicit results for the Aubry and
Koster-Slater' single-impurity models. To the best of
our knowledge this is the first investigation of either
model ln an electric field

%'e consider independent electrons in a one-dimensional
potential whereby a periodic background potential is sup-
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plemented with an arbitrary aperiodic term Vz(x). We

restrict our attention to TBM based on a nearest-neighbor

tight-binding approximation where the basis states

~
n)=tI!(x —na), with (n ~n')=5„„, utilize a single

Wannier orbital. In the absence of an electric field, the
site energy is given by s„=s08„=(n

~
Vz(x)

~
n ). In the

Aubry model the quantity 8„=cos(2mnq) represents an
incommensurate modulation potential for irrational q. In
the Koster-Slater model a localized perturbation, corre-
sponding to the introduction of a single impurity, is su-

perimposed upon a periodic potential and 8„=5„0.Alter-
natively, 8„could be taken as a random number as in the
Anderson model. ' Throughout the present work we re-
strict 8„ to be a bounded function of n, and without loss
of generality we suppose that the average of 8„ is zero.
The effect of the electric field is to contribute an addition-
al term to e„, of the form eS'an where a is the lattice
spacing and S' is the magnitude of a uniform electric field
directed along the positive direction of the lattice. The
time-dependent Schrodinger equation can be written in a
convenient dimensionless form as

f.+i+f. i=b.f.
where

(2)

b„=(2/P)(n +$8„—W} (3)

and the energy eigenvalue E is written as E/(eS'a) = W.
As shown elsewhere, ' ' a key quantity for the analysis of
the general recurrence relation (2} is an auxiliary function
defined by 4=bo+K++E . Here K+ are the infinite
continued fractions

E+ —— [b+ i
—(b+ z

——. . . )]
If these converge for a given value of W, Eq. (2) possesses
solutions f„+ and f„which decay to zero' for n tending
to + oo and —oo, respectively, and f i+/fo —— E+ and-
f i/fo —— E. Conversel—y, if (2) possesses solutions
with these properties, Pincherele's theorem' insures that
K+, E, and 4 exist. A localized eigenfunction exists
only if f„and f„coincide, or equivalently the quantity
4=ho+K++K vanishes for the given choice of pa-
rameters of the model, i.e., p, g, 8„,W in the present case.
If a band of extended states exists, K+ fail to converge for
all energies within the band and 4 possesses a branch line
along that segment of the real 8' axis. Testing the con-
vergence of JC+ and calculating their numerical values are
easily performed provided that one is careful to invoke
appropriate procedures preventing the occurrence of nu-
merical instabihties, as discussed in detail in Ref. 16.

To obtain the form of the eigenstates of (2) and (3), for
positive values of n it is convenient to define a quantity

f„+i+f„ i
——(2/P)[(n +g8„)f„iRdf„/—d~], (1)

where (=col(eS'a), p=2V&/(eS'a), r=~&r, V, is the
nearest-neighbor hopping matrix element, and
cori

——(eS'a)/ih is the angular frequency of Bloch oscilla-
tions.

The time-independent version of (1) constitutes a three-
term recurrence relation among the eigenfunction ampli-
tudes

g„=b„f„/f„„which is seen to satisfy the recurrence re-

lation

g„=[1—g„+i/(b„b„~ i)]

The solution of (2} can then be formally writte»s
f.=fog igz g.. /(bib2 b } ~

Now it is easily seen that the denominator of (5) grows as
n! for n ~ ao since 8„ is boundml for all n and possesses
an average value of zero. Furthermore, the recurrence re-
lation (4) possesses two solutions. It is obvious that for all
values of W there exists a physically relevant solution of
(4) which approaches unity for n ~ oo, corresponding to a
damped solution f„-f„ iln of (2), with a correction
term of order I/n2 since b„grows linearly with n Th.e
second solution of (4) is nonphysical since it is easily
shown to grow as n, corresponding to the growing solu-
tion f„-nf„„and thus, is to be discarded. A similar
argument can be made for n ~—oo. It therefore follows
that, for all W, (2} and (3) possess decaying solutions f„+
The quantities X+, K, and 4 therefore exist' and con-
sequently (2) and (3) fail to possess any extended states.
The physical eigenstates are all localized and correspond to
the energies W which are the roots of 4=0. In fact, the
eigenstates show a generic factorial decay in an electric
field since, as we have already remarked, II» ib» n!-
and the quantity II» ig» converges for n~oo since
g„-1+0(1/n ). In summary, in the presence of the
field, the leading asymptotic behavior of the eigenstates is
given by

f„-C(P/2)l I/(
~

n
~

)! as n ++m— (6)

where C is an arbitrary normalization constant. The pres-
ence of the electric field in the denominator of (6) [recall
p=2Vi/(eS'a)] confirms what we stated earlier, that
these results cannot be obtained by treating S' as a pertur-
bation. Note that the details of 8„and the choice of
eigenvalue W do not appear in the leading term of the
asymptotic form of f„. These formal arguments provide
a rigorous framework for the essential physical idea
underlying factorial localization which we have presented
at the outset. In the following we illustrate the above gen-
eral arguments by giving explicit results for the Aubry
and Koster-Slater models in an electric field.

We have obtained the exact solution of (1) for the
Koster-Slater system (8„=5„0)subject to the initial con-
dition f„(0)=5„0,corresponding to the injection of the
electron at the impurity site. Details of the method of
solution will be presented else~here. ' %e remark here
that (1) is transformed to an equivalent set of equations of
the form

f„(~)=f„' '(~) i g f 1w' f0(r —r')f„' '(~'), —

where the quantity f,' '(~), given by

f„' '(~)=( —1)"exp( —in'/2)J„(2Psin(~/2)},

is the site probability amplitude in the absence of the im-

purity but in the presence of the field and satisfies the
same initial condition as does the full solution f„,and J„
is the Bessel function of the first kind. Note that (7) is an
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integral equation of the Volterra convolution form for

fo(r) and can therefore be solved using Laplace transform
methods. Once fo is determined, (7) and (8) provide an

expression for f„ for all other sites. The general solution
of (7) and (8) can be written in the standard Fourier series

representation of an almost-periodic function,

f„(&)= g r„ iexp( i—IV&v ) . (9)

We have obtained analytic expressions for the expansion
coefficients r„i but these will be presented elsewhere. '

The infinite set of real quantities 8'i are the roots of the
eigenvalue equation 4=0 which in the present problem is
equivalent to

sin(n W) =irgJii (P)J g (P) (10)

where (=co/(2Vi). At first glance (11) describes a local-
ized electron, by virtue of the exponential decay with n.
However, note carefully that if we retain only the first
term of (11) we obtain

&( m ) = Q I f„(00 )
I

=g(1+/ )

which is manifestly less than unity, despite the initial con-
dition f„(0)=5„o. This seeming discrepancy is easily
resolved since one can show' that the remaining probabil-
ity, 1 P(ao ), is associated—with diffusive hopping of the
electron to infinity. We have found that with the intro-
duction of the electric field,

I f„(r) I
for all values of w is

a very rapidly decreasing function of n with a very rich

Recall that I Ei= 8'ificoaI are the energy eigenvalues of
the system. The roots of (10) are distributed such tlla't

there is one and only one root in every unit interval along
the entire real W axis. Moreover, for given values of (
and P the roots W~ very rapidly approach integer values
as

I
I

I
is increased. In short, the eigenvalue spectrum

consists of discrete energy levels extending over the entire
real number system ( —ao, ao) having an a1most-uniform
spacing eS'a. This is a generalization of the equally
spaced Stark ladder (SL) scheme proposed by Wannier '
for periodic crystals in an electric field. The deviation
from a uniformly spaced SL in the present case is of
course due to the impurity which destroys perfect transla-
tional periodicity. Setting (=0 (no impurity), the roots of
(10) are the set of all integers and one recovers the original
Wannier SL. We mention without further elaboration
that as a manifestation of the SL spectrum, for st~kg
electric fields resonant hopping between the impurity and
distant sites is possible when the field is tuned to a se-
quence of ultranarrow, almost-uniformly spaced intervals.
This will be discussed in a forthcoming publication. '

Introduction of the electric field has a dramatic effect
upon the solution of the full time-dependent problem de-
fined by (1). With 8' set equal to zero the probability of
finding the electron at a given site n in the long-time limit
has the asymptotic form'

If.(r)
I
'-0'(0'+1) 'I:0+(0'+1)'"]-'~"'

+0(t '~
) as taboo,

time dependence. At all times the electron is wholly con-
fined within a finite interval straddling the impurity
site. ' That is, the electric field completely precludes dif-
fusive hopping; this is the hallmark of localization. '

To study the effects of the electric field in the Aubry
model we substitute 8„=cos(2n.nq) in (2). As in the
Koster-Slater model, the effect of the electric field in the
Aubry model is to create a SL of energy eigenvalues with
nonuniform spacing. In Table I we list a selection of suc-
cessive energy eigenvalues for two different sets of param-
eters defined as the roots of 4=0. In Fig. 1 we display a
semilog plot of the values of

I f„ I
for two of these ener-

gies. For the choice of parameters so =0.6V„
el'a =2Vi, and q =0.7/(2m ) which corresponds to P= 1,
(=0.3, the existence of factorially localized eigenstates is
in striking contrast to the results in the field-free case for
eo ——0.6Vi. In the latter case all physically admissible
eigenstates of the Aubry model are extended. Likewise, if
eo ——2.4Vi, e S'a =2 V, , corresponding to P= 1, (= 1.2,
the site probability has decreased to less than 10 'o of its
peak value within six sites of the peak. By contrast in the
field-free case there exist localized eigenstates when

eo ——2.4Vi, but these decay to zero at a far slower rate.
For example, for this case we find an eigenstate for the
energy E/(2Vi)=0. 71416994387, but the site probabili-
ties decrease to below 10 ' of the peak value after only
approximately 100 sites. Note also that in the field-free
case it has been shown (see Ref. 15, footnote 12) that
physically admissible eigenstates can occur in the Aubry
model only for energies in the range

I
E

I
&eQ+2V]

whereas the effect of the electric field is to create an infi-
nite Stark ladder of allowed energies.

To test the effectiveness of the numerical algorithm
developed by one of us' for constructing localized eigen-
states of the general TBM of the form (2), we have com-
pared the numerical results for f„with the asymptotic an-
alytic expression (6). In particular we have utilized the
numerical algorithm to calculate the quantity

(a)

—5.244 365 212 42
—4.253 675 907 53
—3.138408 593 72
—1.953 233 407 12
—0.791 771 254 50

0.265 480 325 71
1.196279 235 83
2.042 653 578 10
2.872 239 638 76
3.753 924 410 11
4.747 722 755 98
5.865 556 049 43

(b}

—5.855 956 144 48
—5.039042 053 21
—3.579 471 095 94
—1.803 906 544 58
—0.132 678 001 31

1.038 476 184 61
1.594 323 184 59
2.111345 79049
2.652 886 004 43
3.132 31181980
3.965 368 01692
5.437 054 993 61

TABLE I. Selection of successive energy eigenvalues (in units

of e8'a) belonging to the Stark ladder generated by an electric
field in the Aubry model for q =0.7/(2ii), aiid P=1.0, corre-

sponding to eg'a =2Vi. (a) /=0. 3, i.e., F0=0.6V~,' (h) /=1. 2,
i.e., ~=2.4V&.
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FIG. 1. Site probabilities for two eigenfunctions of the Aubry
model in the presence of an electric field. Points labeled 0 and

correspond to P= 1.0, Q =0.7, /=0. 3,
E=0.26548032571(esca), and P=1.0, Q =0.7, /=1.2,
E =3.132 3118198(e 8'u), respectively.

c„=—ln(
( f„()/ln(n!)

for values of n up to 2X10 . According to (6) this quan-
tity is asymptotically given by

c„—1 —ln(P/2) /ln(n /e) +0 (1/n) .

For all of the energies listed in Table I, the computed

values of c„agree to high precision with this asymptotic
analytic form. This provides ample confirmation of the
effectiveness of the numerical algorithm

Finally, we believe that the enhancement of localization
by an electric field can occur in certain systems even if
one drops the restriction of TBM based on a single Wan-
nier orbital. An exact representation of the Hamiltonian
can always be given in terms of an infinite set of Wannier
basis orbitals, labeled by an index 1 =1,2, 3, . . . . For any
given lattice site n there corresponds an infinite hierarchy
of site energies of the form s„t+ne8'a. Now consider
some segment S of the lattice which includes N lattice
sites. Suppose that in the absence of the field there is a
minimal separation energy EG(l) between the site energies
associated with orbital l and those for any other orbital
for the sites in S. A factorially localized (approximate)
eigenstate based on orbital l can occur in segment S as
long as the energy difference ¹8'ais small compared to
EG(l). Using (6) it is easily seen that for this requirement
to be met it is necessary for Vi to be very small compared
to EG. Rare-gas solids and various ionic crystals are
some examples of systems where this condition could be
met. By contrast, for potentials of the type considered in
Ref. 7 as well as for the disordered KP model one has
Vi & EG. That is, for the latter systems the condition for
the approximate validity of a single orbital TBM cannot
be met and, as to be expected, the electric field destabilizes
localization.
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