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The notion of a perfect crystal in d-dimensional physical space may be generalized to the “deter-
ministic” quasicrystal generated by a cut by a d-dimensional “physical” plane through a periodic ar-
ray of (D —d)-dimensional hypersurfaces in a D-dimensional space. (The quasicrystal tilings gen-
erated by projection from a D-dimensional lattice are.a special case.) When these surfaces are
smooth, and we impose a noncrystallographic symmetry (e.g., a fivefold axis), then they must inter-
sect, which is unphysical. We explore the topology of the transformations induced on these struc-
tures by transverse displacements of the physical plane, which correspond to the phase degree of
freedom in incommensurate structures. For the projected structures, the atoms undergo a nontrivial
permutation when the physical plane is transported in a small closed loop about a vertex of the D-
dimensional lattice. We see no way to build a deterministic model for the quasicrystals of physical
interest in which the individual atoms move continuously in response to transverse displacements of
the physical plane. Thus the conventional spontaneously broken continuous symmetry arguments
for a hydrodynamic “phason” mode no longer apply. We suggest that real quasicrystals are non-
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deterministic and speculate about possible glassy properties of these materials.

I. INTRODUCTION

The discovery of alloys with electron diffraction pat-
terns with icosahedral' or decagonal’ symmetry led im-
mediately to attempts to model their structure. The spots
are sufficiently sharp to suggest that an ideal sample
would have Bragg (8-function) spots, indicating long-
range order; but ordinary periodic crystalline order is
ruled out by the existence of noncrystallographic fivefold
axes. The apparent paradox was resolved by the exhibi-
tion of mathematical structures, known as Penrose tilings,
which have noncrystallographic symmetries but have 8-
function Fourier transforms.>* These structures are al-
most periodic’ and incommensurate. Another geometrical
model with the same symmetries was given by a sum of
density waves with wave vectors in icosahedrally sym-
metric directions.8~10

Incommensurate structures are well studied,'"!2 but the
only examples known before the discovery of quasicrystals
were ordinary periodic crystals with an incommensurate
modulation superimposed. The atomic structure of such
crystals (in d dimensions) may be conveniently represent-
ed by a cut through a D-dimensional space, where
d, =D —d is the number of independent incommensurate
modulation vectors.'*!* The case d =d, =1 is realized
by the Frenkel-Kontorova!> model, a chain of atoms con-
nected by springs which have a preferred spacing which
competes with an external pinning potential whose mini-
ma have a different, incommensurate spacing.

In this paper we do not consider potentials, but only the
geometric properties which any such structure must satis-
fy. We start from the fact that quasicrystals can also be
represented by a density in a D-dimensional space (see
Appendix A). In particular, the analog of a perfect
(disorder-free) crystal consists of a set of d,-dimensional
hypersurfaces periodic with respect to the D-lattice.!6~2!
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It is tempting to assume that the atomic surfaces are
smooth and nonintersecting. Both properties are realized
by the solutions to the Frenkel-Kontorova model. How-
ever, if the atomic surface possesses a noncrystallographic
symmetry (e.g., a fivefold axis), the smoothness assump-
tion is untenable. We therefore say that a smooth deter-
ministic quasicrystal cannot exist.

We examine these pathologies in more detail through
the transformations induced on the atomic positions by
displacements of the physical plane. More precisely,
resolve all D-dimensional vectors, X, into components x!l,
parallel to the physical plane, and x*, perpendicular to it.
The physical plane is defined by its intercept x5, which
therefore specifies a particular pattern of atoms. Dis-
placements of xj generate the desired transformations.
The physical assumptions mentioned above imply that
atoms should move continuously with x(l), and never get
too close.

The projection construction® 72226 has the unphysical
feature that atoms can jump under displacements of x§,
though there is no ambiguity of keeping track of which
atom goes where. The “pathology” mentioned above now
manifests itself as a nontrivial permutation in the atomic
pattern when x{ is moved around a small closed loop.

These permutations are not an artifact of projection.
Indeed, we show how to smooth out the atomic surface
defined by projection so that atoms move continuously.
The permutations remain, and in addition the atomic sur-
faces branch. That is, atoms are allowed to come arbi-
trarily close and there are only a finite number of discon-
nected atomic surfaces.

The absence of a “deterministic” algorithm for building
a quasicrystal has important implications for the allowed
hydrodynamic modes.®”-%10:16.27:28 [f the orientation of
the physical plane is incommensurate, then all atomic pat-
terns should have the same energy for reasonable poten-
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tials since the frequencies of local arrangements of atoms
are independent of x5 (Ref. 4). One would suppose that
displacements in xg are a symmetry, and indeed the densi-
ty wave models mentioned above provide a concrete reali-
zation of this property. The corresponding Goldstone
modes are called phasons.'"!? Before one can hope to ex-
tend this symmetry to a more realistic energy involving
the atomic positions, one must have the atomic positions
defined so that they vary smoothly with x§ and do not
overlap. The symmetry, acting on configuration space,
must be continuous before one can exploit it dynamically.
We see no way to define atomic positions deterministical-
ly so they vary continuously with xj. While the usual
broken symmetry arguments do not suffice at the atomic
level to guarantee the existence of soft modes, we cannot
preclude their presence in some more coarse grained
model. Should soft modes associated with xj exist in a
density wave description, the underlying atomic displace-
ments will be nondeterministic. That is, there will be no
smooth atomic surface that one can specify within a sin-
gle hypercube, which would define the atomic positions
everywhere. We believe some degree of disorder is un-
avoidably present in these structures and speculate about
its possible form in the Conclusion.

An outline of the paper is as follows. In Sec. II we dis-
cuss in some detail the simple case of D =3,d =1 (3—1).
This example has all the features of the 2— 1 case, includ-
ing phasons, yet permits one to introduce several con-
structs that will be useful later on.

In Sec. III we formally define several of the terms we
have used casually above and then prove that a fivefold
axis contradicts the properties (described in detail in that
section) we assumed for the atomic surface.

Section IV analyzes the 4—2 case since it contains all
the complexity of the higher-dimensional examples of
physical interest but is much easier to visualize. Both the
structure defined by projection and its smoothed version
are explored. In Sec. V both these constructions are car-
ried over to the 5—2 and 6—3 examples of physical in-
terest.

In the Conclusion we comment on earlier discussion of
the phason modes in relation to our findings, on the dis-
tinction between incommensurately modulated crystals
and quasicrystals, and other technical points. The con-
nection between symmetry of the diffraction pattern and
the symmetry of the hyperspace is outlined in Appendix
A. Appendix B proves several counting formulas used in
Sec. V. Appendix C elaborates on the permutation group
induced by small displacements of xj around a vertex in
the 5—2 case.

II. A SIMPLE EXAMPLE

The 3—1 projection is still easily visualized, yet per-
mits one to illustrate several desirable by-products of the
projection technique that are either absent or too trivial in
the 2—1 case. The “physical plane” is just a line that has
irrational direction cosines. We project onto this line the
center of any cube that the line enters.?’ One thereby
marks off on the line a quasiperiodic series of points with
three fundamental frequencies.
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We would like to construct a family of 2D surfaces,
which we call atomic surfaces, such that their intersec-
tions with the physical line form the same set of points as
obtained by projecting the center of each cube the line
enters.

To see if the physical line enters a particular cube, pro-
ject that cube onto the two-dimensional normal plane, per-
pendicular to the physical line. The “shadow” thus
formed is a hexagon whose opposite sides are parallel,*
and each of which is the projection of a specific edge of
the cube. We will call such edges of the cube silhouetting
edges. The physical line is fixed once we specify its inter-
cept with the normal plane, xg. Clearly, the line will enter
the cube only if the cube’s shadow contains xg.

Now, in each cube, passing through its center, we place
a hexagonal piece of 2D plane (which we call a patch)
oriented normal to the physical line and whose projection
into the normal plane coincides with the cube’s shadow.
Manifestly, the physical line intersects this piece of sur-
face only if it enters the cube, and the point of intersection
is obviously the point the cube’s center gets projected into.
Figure 1(a) depicts a similar construction for the 2—1
case, which is simpler to draw.

The set of all patches constructed above form a desired
atomic surface. However, we would like to connect the
patches from various cubes into a family of extended
atomic surfaces. To see how it can be done, consider
moving xj, which corresponds to moving the physical
line. Viewed on the normal plane, it must exit a particu-
lar hexagon through one of its edges and enter another
one right away. Back in three dimensions, the new cube is
adjacent to the old one along the 1-edge whose projection
is the common edge of the two hexagons. When, for ex-
ample, the direction cosines of the physical line are all
positive, the new cube is the result of shifting the old one
by a vector from the set I'={+(1,—1,0),
+(1,0,—1),%(0,1,—1)} in which only two vectors are
linearly independent. These vectors, if drawn from the
cube center, just point toward the edges shared by the two
cubes, which are seen to coincide with the silhouetting
edges. Continuity in the normal space unambiguously de-
fines how the cubes must be linked. The sole possible am-
biguity occurs at the vertices of the hexagons which can
be hit at most once for an irrationally oriented line.

A piece of plane parallel to the physical direction is
then inserted along the common edges of patches that are
to be linked. We term these linking planes steps and they
complete the construction of a family of atomic surfaces
that are equivalent to projection. Figure 1 shows how our
definitions would look in the 2—1 case. Clearly all sur-
faces in the family differ by only a displacement.

We can smooth out this surface to eliminate the steps
without altering its topology or periodicity.!®~!82! Rede-
fine the surface patch associated with each cube to be the
pencil of rays from the cube center to the six silhouetting
edges (Fig. 2). They are precisely the edges shared by con-
tiguous cubes linked together into a single atomic surface.
The steps are no longer necessary and the new surface
passes smoothly from cube to cube (Fig. 3).

It will be necessary, for what follows, to make one addi-
tional modification to our smoothed atomic surface. As
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FIG. 1. Stepped atomic surface and its smoothed out version
for the 2— 1 projection. (a) A physical line intersects a series of
stepped lines in the figure, which defines “atoms” on the physi-
cal line (represented by dots). This particular choice of stepped
lines is equivalent to projecting the center of each cube the phys-
ical line enters. Note the linking “steps,” represented by thinner
lines, that are parallel to the physical line. They are really su-
perfluous for defining projection, but are useful for defining
connectedness of the infinite surfaces. In (b) the steps are
smoothed out and the atoms no longer jump under displace-
ments of the physical line.

\\ \

(b)

FIG. 2. Construction of the smooth atomic surface within a
single cube for the 3——1 projection. The physical line has posi-
tive direction cosines. The pairs of edges in (a) fall on opposite
sides of the hexagon when the entire cube is projected onto the
normal plane. Sketch (b) shows the pieces of the surface assem-
bled.
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FIG. 3. A portion of the extended atomic surface for the
3—1 projection. Note that the cube centers are related by the
modout vectors I'={(1,—1,0),(1,0,—1),(0,1,—1)}. If the
lower left center is at (3,3, ), then the vertex (0,1,1) is shared
by the surface through the next layer of cubes with centers
(+,5:%), (3,5,3), (—%,%,3), etc. Local surgery is suffi-
cient to separate the surfaces, as explained in the text.

just defined, successive surfaces touch at isolated points.
That is, certain vertices are shared by cube edges which
belong to different surfaces. It is clear that by doing a lo-
cal surgery near these vertices, we can maintain a nonzero
minimum spacing between the surfaces while not violat-
ing the condition that they each have a 1:1 projection onto
the normal plane.

For the 3—1 projection, we evidently can make three
statements.

(a) The shadowing hexagons tile the normal plane.

(b) The 3-cubes may be partitioned into disjoint classes,
each of which projects 1:1 onto the normal plane and
yields a hexagonal tiling.

(c) The classes in (b) may be defined by an equivalence
relation which places two cubes in the same class if and
only if their centers are related by integer linear combina-
tions of (any two) vectors from the set I" above.

To summarize, the physical line hits precisely one cube
in each class and no classes are omitted. Equivalently, the
atomic surfaces are disjoint and each has a 1:1 projection
onto the normal plane. The positions of atoms vary
smoothly with x§ and respect a minimum separation.

III. SYMMETRY CONSIDERATIONS

A. Definitions and general considerations

The considerations in the Introduction and our previous
example allow us to state a series of physical conditions
that any scheme for enumerating the atomic positions in a
perfect quasicrystal should have. In the 3—1 case the
smooth atomic surface derived from projection satisfies
all those conditions. In higher dimensions one or another
of these conditions will be violated by any atomic surface,
so it will facilitate the discussion to state them explicitly.

Condition (0): Determinism. The atomic positions are
defined by intersecting a d- d1mens1onal physical plane,
whose precise location is determined by x3, its point of in-
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tersection with a normal plane, with a D-dimensional sur-
face.

Condition (1): Periodicity. The atomic surface is
periodic in D > d dimensions.

Condition (2): Conservation of atoms. Under changes
in x, atoms are never created or destroyed.

Condition (3): Smoothness. The atomic positions are a
continuous function of xg.

Condition (4): Hard cores. Atoms cannot get closer
than a minimum distance r.

As conditions on the atomic surface, we can colloquial-
ly paraphrase conditions (2)—(4) to read the surface has no
holes or edges; it may be defined locally as a function
x/!=¢(x*); there are no branch points or folds on the sur-
face. The strict projection construction corresponds for
any D and d to an atomic surface which satisfies all con-
ditions but (3). For the examples in the next two sections
we find that the price for smoothing out the surface is a
violation of (4).

A family of surfaces satisfying (0)—(4) has a further
property that is worth defining formally:

A set of atomic surfaces constitutes an abstract labeling
if it consists of smooth disjoint connected surfaces, each
with a 1:1 projection onto the normal plane, and with a
minimum spacing r in the physical direction(s) between
any two members of the family.

Clearly, if a family of surfaces constitutes an abstract
labeling, then each surface yields one and only one atom
(for any x(l,); these atoms will not come closer than the
minimum distance r, and they will move continuously
under displacements in xj. Thus conditions (2)—(4) are
obviously satisfied. It is a rather more important point
that conditions (2)—(4) can only be satisfied if we have a
family of surfaces which constitute an abstract labeling.
Thus, conditions (2)—(4) force a very simple structure on
the way pieces of atomic surfaces (we called them patches
above) from various D cubes join into larger surfaces.

To see that conditions (2)—(4) imply abstract labeling,
note that the atoms move continuously under displace-
ments of xj, and thus each traces out a surface as we
move the physical plane around. Since the two atoms
remain separated, each of them traces out its own surface.
Thus we get a set of disjoint surfaces, one for each atom.
Continuity then implies the 1:1 property for each of these
surfaces.

Enumerating these atomic surfaces labels the atoms.
These labels do not permute when xj is taken around in a
small closed loop. An abstract labeling can be made con-
crete if, for example, we can assign d-tuples of integers to
each atomic surface in the family, such that no d-tuple is
repeated or is missing. In the 3—1 example above, this
could be accomplished by taking three integers specifying
a given cube in three dimensions and adding an integer
linear combination of vectors I in order to reduce them to
a standard form, say, (0,0,n). (Recall from Sec. II that T
was a set of vectors pointing toward those cubes whose
surfaces joined smoothly with a surface inside a given
cube.) We call this operation modding out by I'. The re-
sulting integer n would be a label for that atom ona d =1
line which came by projecting the center of the cube
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whose coordinates were modded out. Note that here the
set ' has exactly d, linearly independent vectors
(d; =3—1=2 in this case). We will see that this is no
longer true in the 4—2, 5—2, and 6— 3, cases, where the
number of independent vectors is D, which is certainly
greater than d;. We could then try to just keep d, out of
D modout vectors. Using them, we would get a unique
label for each atom, with gaps in the set of d-tuples
describing atoms for a given physical plane. Gaps in the
set of labels for atoms is not a problem, but it turns out
that this set depends on x3, i.e., the location of the physi-
cal plane, which certainly is a problem.

To see that these consequences of the modding out pro-
cedure are not peculiar to it, study a general question of
labeling atoms for the projection method. If we could
divide all cubes into classes such that when cubes from
one class are projected into a normal plane, their images
do not overlap and leave no gaps (i.e., they tile a normal
plane), then any given physical plane would hit one and
only one cube from each class. Labeling these classes of
cubes would label atoms, and in such a way that no labels
would be lost or acquired as we vary x5. (Note that we no
longer attempt to label atoms in any special way, like d-
tuples of integers of the modout procedure above. This
was our motivation for the term “abstract labeling” intro-
duced above.)

In the 3—1 and 4—2 cases, d, =2. Projection of a 3-
cube into a two-dimensional plane is a hexagon; that of a
4-cube is an octagon. Hexagons can tile a normal plane,
but octagons will not. In the 5—2 and 6—3 cases,
d, =3, and when projected into three-dimensional (3D)
plane, those cubes yield tiles in the shape of rhombic
icosahedron and triacontahedron, respectively. None of
those shapes will tile a 3D space. We have shown in the
previous paragraph that for atoms to be labelable, we

ought to be able to find a set of D-cubes, such that their
projections tile a normal plane without gaps or overlaps.

We conclude that only the 3— 1 projection will be label-
able. One can show that in general the n—(n —1) and
n—1 cases are labelable.

Thus there is no way to label atoms for 4—2, 5—2,
and 6—3 projections in a way that labels would not ap-
pear or disappear as we move x;. This is one way to
prove a fact—established in subsequent sections by an ex-
plicit construction—that no smoothing out of atomic sur-
faces for those projections would yield an abstract label-
ing, i.e., a set of 1:1 and onto disjoint surfaces.

While the argument is simple in projection cases, we
should explore more general situations. Take, for exam-
ple, a family of surfaces defined by x;,x,,x3 equal an ar-
bitrary triple of integers. Its intersections with the physi-
cal plane would be an ordinary crystal; clearly, with no
icosahedral symmetry. We could try to enforce the
icosahedral symmetry on a family of surfaces by applying
120 elements of the icosahedral group in 6D (see Appen-
dix A for details) to the initial family to generate a set of
surfaces. We would get a family defined by XXy Xiy
equal an arbitrary triple of integers for all possible choices
of iy, i,, and i3, i.e., it is all 3D planes in a 6D space ob-
tained by piecing together all the 3D faces of all the unit
cubes in six-dimensional space. It is obvious that there
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are many intersections among different surfaces in this
case. Also note that this example has nothing to do with
the smoothed out version of the conventional projection
method.*!

The example above is just a particular case of a general
theorem we will prove in the remainder of this section
that conditions (1)—(4) plus noncrystallographic symme-
try imply intersections of surfaces, which is incompatible
with condition (4). The result is not confined to projec-
tionlike cases.*

To prove this central result, we explore first the conse-
quences of translational symmetry and then add the con-
dition of noncrystallographic symmetry to it.

B. Consequences of translational symmetry

We are generally interested in studying the possibility
that patches of atomic surfaces from various cubes con-
nect into a family of surfaces that constitutes an abstract
labeling. We show here that if that happens, translational
symmetry considerably restricts the resulting class of sur-
faces. In the process we will uncover some more widely
applicable notions. The more general cases will be men-
tioned after the lemma that follows.

There is only a finite number of patches in each cube,
since otherwise atoms would sit on top of each other.
Translational symmetry implies that each cube contains
identical set of patches. We can now state the following
lemma.

Lemma. If the family of atomic surfaces constitutes an
abstract labeling, then (a) each surface of the family has a
lattice structure, i.e., possesses a discrete translation sym-
metry group, T,. (b) This lattice is a d, -dimensional sub-
group of ZP, the lattice of the full D-dimensional space.
(c) As a result, every surface in the family remains within
a fixed distance of a rational d, -dimensional plane.

Remarks. (i) Notice that in general different members
of the family may have different lattices. This does not
mean that there is complete arbitrariness. In fact, under
certain rather general conditions, which are realized in the
cases of interest to us, there are severe restrictions on the
extent to which T, may differ from one member to
another. These are partly explored later in this section.
(ii) Notice that (c) of the lemma is much more restrictive
than the 1:1 and onto conditions implied by abstract label-
ing alone. The new restriction is a major consequence of
the added condition of translational invariance.

Proof. Each cube contains in general several types of
patches. Consider all patches of a given type that lie on
one atomic surface. Clearly, one patch of a given type
shifts into another patch of the same type under transla-
tion by a vector that connects the centers of their respec-
tive cubes.

Since we assume the surfaces constitute an abstract la-
beling, they are infinite in extent. Then each surface con-
tains an infinite number of patches. As there is only a fi-
nite number of patch types, there are two patches of the
same type within one surface. By translational symmetry,
the way the surface looks from the first patch is identical
to the way it looks from the second. If the vector that
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shifts the first patch into the second is then applied to any
other patch within that surface, even of a different type,
we move it into another patch of its own type.

Thus we get one-dimensional “strings” of patches in the
surface. Stated another way, we have shown that our sur-
face has a one-dimensional discrete translation invariance.
This is not its entire translation group, however. The
complete translation group is d,-dimensional. Indeed,
since the surface projects 1:1 and onto the d, -dimensional
normal plane, it cannot consist of a finite number of
“one-dimensional strings” (unless d, =1). Again, the
number of string types is finite since the number of patch
types is. Then there is a vector, linearly independent of
the previous one, that shifts a whole string into an identi-
cal one. Using translational invariance as before, we get
that this vector is also part of the translation group of the
surface. Continuing this argument, we see that the
translation group of the surface is precisely d,-
dimensional.

A continuous d,-dimensional surface with a d,-
dimensional translation group (lattice) has to stay within a
finite distance from the d, -dimensional plane spanned by
the vectors in that group. Observe also that by construc-
tion the vectors in this group are integer-component vec-
tors in a D-dimensional space. Thus the plane that ap-
proximates our surface is a rational plane in the D-
dimensional space. Q.E.D.

Remark 1. The examples in Secs. IV and V generate
surfaces which do not satisfy conditions (2)—(4) so that
the lemma as stated does not apply. Still, in those sec-
tions we will have surfaces obtained from the periodic set
of patches within D-cubes. However, the resulting
surface(s) will not constitute an abstract labeling. If we go
through the proof above, we can see that we may still as-
sert the existence of a translation group within individual
connected components of the surface. Its dimensionality
may even be greater than d,. In the case of surfaces cor-
responding to the smoothed out 5—2 or 6—3 projection
method, the lattices are five- and six-dimensional, respec-
tively. That is, the patches from various cubes will be
seen to connect into one or several surfaces, each, in fact,
penetrating every cubic unit cell of the higher-dimensional
space.

Remark 2. If d, >D/2 as in the 4—2, 5—2, and
6—3 cases, and if we have an abstract labeling, we can
make a stronger statement about the surfaces that consti-
tute the labeling than the lemma does. Namely, all the
approximating rational planes for different surfaces have
to be parallel.

Indeed, if they are not, we can see that due to the condi-
tions on their dimensionality, the two nonparallel approxi-
mating planes have to intersect. Since the surfaces they
approximate stay within a finite distance from their
respective planes, those surfaces also have to intersect,
which contradicts our assumption that they are part of an
abstract labeling.

Remark 3. Since we have a finite number of patches
within each cube, there is a finite number of surface types,
all surfaces of one type being obtainable from each other
by translation. A group of surfaces of identical type is
then labelable by elements of a quotient group Z2/T|,
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which is in general a direct product of Z¢ and a finite cy-
clic group. Since there is only a finite number of surface
types, the atoms are labelable by a set of d-tuples plus a
discrete index with a finite number of values.

Remark 4. In the smoothed out version of the projec-
tion method we only have on patch in a cube. If the re-
sulting surfaces were an abstract labeling, there would be
only one kind of surface, and we would be able to label
atoms by d-tuples of integers without gaps or repetitions.
This shows that our definition of “modding out” pro-
cedure in Sec. II was not arbitrary. It also means that the
simple tiling argument above, which showed the impossi-
bility of enumerating the atoms in a sensible way, does
indeed imply that the resulting surface has to be patholog-
ical.

Remark 5. The fact that the approximating rational
planes are parallel for d, >D/2 implies a restriction,
mentioned before the proof of the lemma, on the varia-
tions of T, from surface to surface. When d, >D /2, the
translation group T, of each surface has to be contained
in the group of those vectors of the full D-space that are
parallel to the set of approximating rational planes.

One may ask whether the lattices of all those surfaces,
even those of different types, are not only subgroups of
the above-mentioned group, but actually coincide with it.
The quotient group Z2/T, of Remark 3 would then be
simply Z% We could then label our atoms by d-tuples,
without any discrete index.

Unfortunately, it is not true, except in the trivial cases
of d =1. We have constructed a counterexample, that we
do not reproduce here, for other choices of d. One can
have a periodic surface, approximated by a rational plane,
whose translation group is more “sparse” than the set of
vectors of the full D-lattice parallel to this rational plane.

Now that we have a much better idea how the surfaces
constituting an abstract labeling look, it is time to see why
the abstract labeling is incompatible with noncrystallo-
graphic symmetry.

C. Consequences of noncrystallographic symmetry

We have so far only assumed that when we translate all
our atomic surfaces in D dimensions by a cubic lattice
period, patches from one cube map to patches in another
one, and, as a consequence, we have an identical set of
patches in each cell. We now study the case when the
symmetry group is not merely a translation group, but is a
larger (D-dimensional) space group— in general contain-
ing rotations and reflections—which leaves the set of
patches in D-space invariant (see Appendix A).

If our patches join into surfaces, then each surface goes
into another one (or itself) under the action by the ele-
ments of this space group. The only space groups that are
of interest to us are those that leave the direction of the
physical plane invariant. Otherwise, the diffraction pat-
tern and other physical properties of the real d-
dimensional space would not be invariant.

We thus add a new condition to conditions (1)—(4)
above.

Condition (5): Symmetry. The family of surfaces is in-
variant under the elements of a D-dimensional space
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group. The elements of this group also preserve the orien-
tations of the physical plane.

We will discover in this section that conditions (1)—(4)
are incompatible with condition (5) for many groups of
interest to us: namely, groups with a noncrystallographic
symmetry. This means they include rotations which are
not allowed in any d-dimensional lattice. In particular,
fivefold rotation axes are noncrystallographic in d =3 and
so conditions (1)—(4) are incompatible with icosahedral
symmetry. Before making more general statements, let us
work out this case.

We have seen that the directions of the physical and
normal planes should be preserved by the space group.
We know?? that the only two three-dimensional planes,
whose directions are preserved by the six-dimensional
space group with icosahedral point group, have irrational
orientations.

Now, if our (d, = 3)-dimensional surfaces constitute an
abstract labeling, i.e., satisfy conditions (1)—(4), we know
from the previous section that each of them has a discrete
lattice, T'|, associated with it. As a result, each atomic
surface stays within a finite distance of a rational plane
spanned by this lattice. When we apply a space-group-
symmetry operation, each surface goes into another one
(possibly itself); the approximating plane of the first sur-
face goes to that of the second. But, as we showed in the
previous section, all the approximating planes have the
same orientation. This means that the corresponding ra-
tional subspace must be invariant under the rotational
part of the space group (which is known as the point
group). But our point group leaves only irrational 3D
planes invariant.

We have thus proven Theorem 1.

Theorem 1. Conditions (1)—(4) are incompatible with
icosahedral symmetry.

More generally, if we have an abstract labeling and any
space group, then the point group of that space group
must leave invariant the rational subspace which approxi-
mates the atomic surfaces. The intersection of this sub-
space and the D-dimensional lattice, is a d-dimensional
sublattice. Since the point-group operations map lattice
vectors to lattice vectors and leave the subspace invariant,
they must in fact leave the sublattice invariant. Further-
more, one can form a quotient of Z” by the sublattice and
this will be a d-dimensional lattice which is also invariant
under point-group operations.

Theorem 1 then generalizes to Theorem 2.

Theorem 2. A noncrystallographic D-dimensional
space group is incompatible with the physical conditions
(1)—(4) of Sec. IITA.

This follows from the preceding argument, which
showed that conditions (1)—(4) imply the space group
operations preserve a d-dimensional®® sublattice, which
contradicts the definition of noncrystallographic. This is
a major result of this paper whose implications are further
explored in the Discussion.
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IV. 4—2 PROJECTION

In this section we will explore the simplest example in
which the stepped surface defined by projection cannot be
smoothed into a family of surfaces with the properties re-
quired for an abstract labeling. The symmetry condition
(5) will play no role in this section. We first discuss, in
complete analogy to the 3—1 case, how to deform the
patch of the stepped surface associated with each cube to
eliminate the discontinuities. The algorithm immediately
generalizes to higher dimensions. We will continue to
refer to this family of surfaces, which are actually all con-
nected through branch points, as “atomic” surfaces even
though they do not satisfy all the conditions (1)—(4). In
fact, the contents of this section will spell out and hope-
fully make intuitively obvious why all projections with
both d and d, greater than 1 do not give rise to physically
reasonable families of atomic surfaces.

In the first subsection we see that the smoothed atomic
surface, as defined, is branched, necessarily allowing
atoms to get arbitrarily close whenever the physical plane
has irrational slope. Merely cutting out the branch points
is no solution, since atoms would then appear or disappear
when the physical plane passed through the voids. In the
next subsection we show that the branch points resemble
the Riemann surface for the cubic root in that merely
moving the intercept of the physical plane, xg, around a
small loop results in a nontrivial permutation of three
atoms.>* Three consecutive loops yield the identity per-
mutation. Under the projection method, atoms in the vi-
cinity of these vertices behave in precisely the same way.

The third pathology of our smoothed atomic surface,
which is intimately related to the first two, is discussed in
the last subsection. Namely, there is really only one con-
nected surface. One can move onto different sheets at the
branch points and flow continuously from one cube to any
other. As a corollary we show that any atom can be
moved by successive permutations into any other atomic
site by passing x§ around a closed loop in the perpendicu-
lar plane. This is the most direct means we have for
demonstrating that there is no invariant labeling induced
by the smoothed surfaces resulting from the projection
method.

A. Definition of atomic surface and branching at vertices

Many of our constructions here are similar to those of
the 3—1 case. We define a normal plane whose dimen-
sion is d; =D —d =2. The physical planes are labeled by
x5. We now consider projecting a 4-cube onto the normal
plane by dropping a physical 2-plane from each of its
points. The resulting figure will clearly be a polygon
whose edges correspond to certain 1-edges of the 4-cube.
Observe that if both the normal and the physical 2-planes
pass through a common vertex of the 4-cube, only one
will enter the cube itself. Since the meaning of “normal”
and “physical” can be interchanged, there are eight of the
sixteen 4-cube vertices with the property that a physical
plane passing through that vertex does not enter the cube.
Therefore, the cube’s projection is an octagon (exceptional
orientations of the physical plane are ignored henceforth),
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with opposite sides parallel.*® The edges of the 4-cube
that project onto the perimeter of the octagon will be
termed silhouetting, just as we did in Sec. II for the 3—1
case.

Clearly, any point x§ within the octagon defines a phys-
ical plane which enters the corresponding 4-cube. If one
adopts the rule of projecting onto the physical plane the
center of every 4-cube it enters, then one implicitly defines
a surface which consists of the same octagonal piece of
the normal plane through the center of each cube, with
steps, as in the 3—1 discussion, which lie above the pro-
jection of the silhouetting edges. How the patches of
atomic surfaces from various cubes are to be connected is
again fixed by demanding continuity in the projection. A
given l-edge is silhouetting with respect to precisely two
of the eight cubes which share it. It is the patches in
these two cubes which get connected. We show how to
smooth out this stepped surface, and then return to the
projection construction when we examine the permutation
of atoms induced by displacements of the physical plane
about a 4-vertex.

To construct the smoothed atomic surface within a sin-
gle cube, identify those 1-edges of the 4-cube that yield
the perimeter of the octagon. They clearly link the ver-
tices that define the octagon and therefore form a closed
connected set of silhouetting 1-edges on the cube. Draw
one-dimensional segments that connect the cube center to
each point on these 1-edges. The result is a smooth two-
dimensional surface patch that projects 1:1 onto the octa-
gon. More pictorially put, we have lifted the projection
back into the 4-cube and suspended it on a closed ring of
1-edges.

These patches of the atomic surface now smoothly ex-
tend from cube to cube, eliminating the steps inherent in
the projection method yet preserving the topology. The
surface patch associated with each cube is now strictly
contained in the cube and terminates on the silhouetting
edges. Patches from two different cubes join precisely
along the silhouetting edges. Since the atomic surface is
periodic, we will occasionally use the adjective “extended”
to emphasize its repetition through the lattice in analogy
with the extended zone scheme in the theory of band
structure. It is apparent that the atomic positions that are
defined by projection onto the physical plane are in 1:1
correspondence with those defined by this new atomic
surface. Since both descriptions are periodic, there is an
obvious upper bound on the displacements of atoms re-
quired to bring the two atomic patterns into coincidence.

This extended atomic surface has branch points at each
4-vertex, to whose consideration we now turn. Project the
eight 1-edges emanating from a given vertex onto a nor-
mal plane. The vicinity of the projection of that vertex is
then broken up into eight sectors (Fig. 4). Various 4-cubes
share these edges and each contains a piece of atomic sur-
face which projects onto an octagon.

Using continuity to work away from the case when the
physical plane is oriented in such a way that each octagon
is symmetrical, one observes that each octagon spans three
sectors (Fig. 4). While x; is inside a particular octagon,
the physical plane stays within the corresponding cube
and intersects a patch of atomic surface within that cube.
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FIG. 4. Projection of the eight unstable cubes at a vertex onto
octagons in the normal plane for the 4—2 case. The physical
plane projects to a point in one of eight sectors and intersects
three octagons; hence three cubes. Under one circuit from sec-
tor 1, the octagons (1-2-3),(7-8-1),(8-1-2) (labeled by three sectors
each of them covers) permute into (7-8-1),(8-1-2),(1-2-3), respec-
tively.

It only leaves a particular cube when it leaves its corre-
sponding octagon. Suppose we initially have xg in sector
1, as in Fig. 4. Sector 1 in Fig. 4 is covered by octagons
(7-8-1), (8-1-2), and (1-2-3), (denoted by three sectors each
of them covers). Therefore the physical plane intersects
patches of atomic surface inside the three corresponding
cubes. Let us see what happens to the point of intersec-
tion inside the cube corresponding to octagon (1-2-3) as
we move the physical plane in a way prescribed by the
loop in Fig. 4. We leave octagon (1-2-3) only when we
cross the boundary between sectors 3 and 4, upon which
we enter octagon (4-5-6). As we continue, we enter octa-
gon (7-8-1), which we do not leave as we stop in sector 1.
Thus making one loop in x§ continuously moves a point
of intersection with the physical plane (i.e., an atom) from
one cube into one in another cube. Three complete cycles
moving through all eight octagons are required to make a
closed loop in the extended atomic surface. Contrast this
picture with the 3—1 projection where a closed loop in
the atomic surface projected 1:1 onto the normal plane.

Recall that to actually make the atomic surfaces in the
3—1 case disjoint, it was necessary to pull them apart at
certain vertices where three edges from each of the two
surfaces met. In higher dimensions, such as 4—2, these
intersections cannot be removed. As we have just seen,
the branch structure permits one to pass from sheet to
sheet without even hitting a singular vertex.

B. Permutations near a vertex

To make contact with the projection construction, re-
call that the physical plane passing through a vertex
enters the interior of eight 4-cubes, henceforth called
stable and misses eight others, the unstable ones. Under
small displacements of the physical plane, it will still
enter the eight stable cubes and in addition enter three of
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(a) (b)

FIG. 5. The dual grid showing the intersection of the coordi-
nate 3-planes with the physical 2-plane, for the 4—2 projection.
Each open region corresponds to a definite cube that will get
projected onto the plane. Crossing a line changes the corre-
sponding index of the cube by 1. In (a) the physical plane hits
a vertex of the 4-lattice. For generic displacements, the lines ap-
pear as in (b). There are eight stable cubes represented by the

open sectors and three unstable ones corresponding to the
bounded regions.

the unstable ones. This latter observation is made plain
by considering the dual grid.*>-3%3¢

Intersect the physical plane (defined by x'=x3) with
each of the coordinate 3-planes obeying x;=integer to
form four families of equally spaced parallel lines. Each
open region defined by these lines represents a 4-cube that
the physical plane enters and hence represents one atom in
the quasicrystal. When the physical plane is displaced
along one of the coordinate axes, only one family of paral-
lel lines moves in the physical plane. Thus we can have
arbitrary relative translations of these families of lines as
a result of moving the physical plane.

Now, when the physical plane hits a vertex, four lines
intersect in a point (Fig. 5). Under small but arbitrary
displacements, the diagram generically breaks into three
bounded regions and eight open sectors. The latter corre-
spond to the stable cubes since they persist under rear-
rangements of the lines, while the former correspond to
three of the eight possible unstable cubes. Which three
depends on the arrangement of lines. All this merely re-
states Fig. 4 since the octagons there are just projections
of the unstable cubes. Relative coordinates of any cubes
represented in the dual grid picture can be calculated by
adding *1 to the appropriate coordinate where the line is
crossed.

The permutations induced among the three atoms that
come from the unstable cubes are most conveniently visu-
alized in our earlier picture of the eight overlapping octa-
gons arrayed around a common vertex. (The central ver-
tex lies in the interior of the octagons for the stable cubes.
For small excursions of the physical plane, x§ remains in
their interior, and it is therefore unnecessary to draw
them.) A given sector is covered by precisely three octa-
gons which by definition are the images of those 4-cubes
the physical plane with intercept xj enters. Moving xj
around a small closed loop on the normal plane induces a
cyclic permutation on the three octagons that cover the
base point of the loop.3*

C. Nonexistence of invariant labeling

The last property to establish is that the extended atom-
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ic surface drawn from one 4-cube enters a finite fraction
of all the 4-cubes on the lattice. Call y; the difference be-
tween the centers of the two adjacent cubes whose sur-
faces join smoothly through a silhouetting 1-edge. There
are precisely eight silhouetting edges in a cube, which cor-
respond to the eight sides of the octagon. They result in
eight y;, and those come in plus-minus pairs. The com-
ponents of the 4-vectors y; are clearly +1 or 0. It suffices
to show that one can choose four ¥; such that their deter-
minant is nonzero, since then their integer combinations
will span a finite fraction of the lattice. Note that in the
3—1 case we had only two, and not three linearly in-
dependent ;.

To prove the above assertion about the determinant,
note that we could have defined y; as the vectors connect-
ing the midpoints of the opposite silhouetting edges in the
cube. Under projection y; have to become vectors con-
necting the midpoints of the opposite sides of the octagon.
To find out what the components of the y; were in the
four-dimensional space, note that the sides of the octagon
coincide with the projections of the four unit vectors. As-
sign a particular direction to each of the four pairs of
sides in the octagon, which gives us four vectors. We
easily find which integer linear combinations of these four
vectors give the vectors connecting the midpoints of the
pairs of opposite sides in the octagon. It turns out that
the determinant is equal to 1.

As a corollary, note that any two atoms on the physical
plane correspond to 4-cubes related by an integer com-
bination of y;. Then there exists a closed loop in the nor-
mal plane such that the first atom is permuted into the lo-
cation of the second. The demonstration is immediate.
Since the two cubes are related by an integer combination
of y;, and individual y; just show which two cubes have
their surfaces connected, we can find a sequence of cubes
whose surfaces join in one connected surface that links
those inside the two cubes in question. Connect the two
atoms by a path of this extended atomic surface and pro-
ject onto the normal plane. The initial and final points in
the normal plane are identical since the two atoms are on
the same physical plane. When x§ moves around the indi-
cated loop on the normal plane, the desired permutation
occurs.

The existence of nontrivial permutations when xg
traverses a closed path precludes the existence of an
abstract labeling as previously defined. Clearly, the
smooth atomic surface also violates condition (4). We
also see more clearly the content of the tiling argument on
the normal plane in Sec. III. Too large a D generates a
zonogon®® “tile” which is too complicated to tile d,-
space, so that there are more than d, independent v;.

V. THE 5—2 AND 6—3 PROJECTIONS

The 5—2 and 6—3 projections are physically interest-
ing since for special choices of the orientation of the phys-
ical plane they yield the “decagonal” and icosahedral sym-
metries observed experimentally.'? At several stages we
will be more quantitative than in the previous section and
use these special directions. In the 5—2 case we follow de
Bruijn® and define the physical plane by

xl=rity+rt,,
(¢%,t5)=(cos[2m(i —1)/5], sin[2m(i —1)/5]) .

Since our primary interest is to explore the topological
properties of atomic surfaces in the simplest setting possi-
ble, we first deviate from de Bruijn in allowing the physi-
cal plane to sit anywhere within the 5-cube rather than
imposing the one linear constraint that leads to Penrose’s
tiling. At the end of this section we outline changes
necessary to treat the Penrose case, which is of primary
interest for the decagonal phase.? The presentation is
more formal than in the previous section, since otherwise
the results, which are simple to state, would get lost in the
demonstrations. The two cases are initially considered in
parallel.

A. Atomic surfaces and their extension

We will follow our earlier procedure of projecting
the D-cube (D =5,6) onto the normal d,-plane
(d) =5—2=6—3=3) and lifting the resulting figure back
into the D-cube. The atomic surface so defined will again
be a smoothed version of the stepped surface which is
equivalent to the projection of the cube center.

We first describe an explicit algorithm for computing
which two-dimensional faces of the 5-cube will form the
boundary of the 5-cube’s projection into a normal plane.

The 5-cube projects to a convex three-dimensional
body, whose faces correspond to certain 2-faces of the 5-
cube. By analogy with the 3—1 and the 4—2 cases, we
call them silhouetting 2-faces.

Observe that a 2-face will become a part of the boun-
dary of the 5-cube projection into a normal plane if and
only if the projecting physical plane will not enter the in-
terior of the 5-cube when it is drawn through a point on
that 2-face. Otherwise that point has to project into the
interior of the 5-cube’s image. We next give an algorithm
for identifying all the 2-faces of a cube such that a physi-
cal plane drawn through any point on one of these 2-faces
will not enter the cube.

The normal plane is defined by three vectors that span
it, n;, i =1,2,3. Pick any two of the five coordinates, say
1,2. Then there is a unique line in the normal space
whose five-dimensional tangent 1 satisfies /;=1,=0. Let
o;=sgn(l;). There are (3)=10 choices of the two coordi-
nates that we can make zero in this way. We then get ten
vectors which have two coordinates equal to zero and
three coordinates equal to +1. If drawn from a 5-cube
center, these vectors and their inverses will point toward
twenty 2-faces (out of 80) of the S-cube. Our claim is that
these are precisely the silhouetting 2-faces.

To see why a physical plane drawn through a 2-face de-
fined, say, by the vector ¥ =(0,0,03,04,05), does not enter
the cube, observe that to enter the cube through such a
face the physical plane has to contain a line with a
tangent vector whose signs are (+, +,03,04,05), where the
first two entries are arbitrary. Notice, however, that
(0,0,03 04,05) were chosen to be the signs of a vector in
the normal plane, and (+,+,03,04,05) to be the signs of
the vector in the physical plane. It is easy to see that the
scalar product of two such vectors is positive, so they can-
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not be perpendicular. Thus the physical plane cannot
enter the cube through such a 2-face, and we have verified
our assertion.

In the 6— 3 case we still look for 2-faces as the dimen-
sion of the normal space is still d, =3. We can select two
of the six components in ($)=15 ways, and thus the above
procedure yields 15X 2=130 silhouetting 2-faces.

We have therefore:

Lemma 1. The unit 5 (6) -cube projects onto a 20 (30)
-faced solid, a polyhedron with 22 (32) vertices.

The assertion about the number of vertices will become
more obvious later. It is just the number of vertices of the
5 (6)-cube such that the physical plane drawn through
such a vertex does not enter the cube. As for the 2-faces
above, only these faces of the hypercube will project onto
the boundary of its image in the normal plane.

The proof above is rather technical, but is easily con-
verted into a computationally convenient algorithm for
enumerating the silhouetting 2-faces. Vectors’’ that de-
fine the silhouetting 2-faces for the 5—2 and the 6—3
cases are given in Table L.

For the special decagonal (icosahedral) symmetries the
polyhedron becomes a rhombic icosahedron (triacontahed-
ron). A sketch of the latter object is found, say, in Refs.
20, 24, and 26, whereas a picture of the former appears
below (Fig. 9).

One could use a more geometric approach to calculat-
ing the vectors of Table I. These vectors are the same as
those connecting the centers of opposite silhouetting 2-
faces in the D-cube. Upon projection into 3D space, they
become vectors connecting the centers of the opposite
faces on the cube’s image (zonohedron®’). The edges of
this polyhedron are just projections of the unit vectors of
the D-space. Just like we did for the octagon in the 4—2
case (see Sec. IV), we can find which integer linear com-
binations of the sides give the vectors connecting the 2-

faces.
We now start constructing the smoothed out atomic
surface,

Construction. The patch of the atomic surface is the
union of all line segments which connect the cube center
with all points on the silhouetting 2-faces.

As before we can show the patch is smooth and has a
1:1 projection into the normal plane. Just as in the 3—1
and 4—2 cases above, this patch is part of a smoothed
out version of the stepped surface needed to define the
projection method. As before, it is as though we took the
(now three-dimensional) “shadow” of the cube in the nor-
mal plane and suspended it on the silhouetting 2-faces of
that cube.

We next consider how the atomic surface extends
beyond a single cube. Our patches by construction ter-
minate only on the silhouetting 2-faces. Thus the patches
in the two adjacent cubes can be connected smoothly only
across a common silhouetting 2-face. It is crucial that
there is only one other cube for which that 2-face is also
silhouetting. Then given a silhouetting 2-face in a cube,
we unambiguously extend a surface through that 2-face
into one of the adjacent cubes.

To prove this fact, recall that we enumerated silhouet-
ting 2-faces above by vectors y; which pointed toward the
centers of those faces from the center of the cube (Table
D). Properly normalized (by a factor of 3), those vectors
would terminate exactly at the centers of those 2-faces. If
the 2-face is silhouetting with respect to two cubes that
share it, there are two vectors in Table I, say, ¥, and y,,
such that 57, and 17, extend from the centers of the two
cubes toward the center of that 2-face. Then +(y,—7,) is
a vector connecting the two cube centers. Since all our ¥;
have two entries zero, the rest being +1 (Table D), if y, is
not parallel to y,, we are going to get % as one of the en-

TABLE 1. The first half of the table shows the vectors which, together with their inverses, point to-
ward the 20 silhouetting 2-faces in the 5—2 case. The second half shows vectors defining 30 silhouet-
ting 2-faces of the 6—3 case. Vectors 1, 2, 7, 8, and 10 of the 5—2 column give a determinant equal to
1; this is one of many possible choices. Vectors 1, 2, 3, 4, 6, and 7 of the 6— 3 case give a determinant
equal to 2. In both cases these are the lowest nonzero values of determinants.

Vectors for 5—2

Vectors for 6—3

1 0 0 1 -1 1
2 0 1 0 1 1
3 0 1 1 0 1
4 0 1 —1 1 0
5 1 0 0 1 -1
6 1 0 1 0 1
7 1 0 1 1 0
8 —1 1 0 0 1
9 1 1 0 1 0
10 1 —1 1 0 0

1 0 0 1 -1 1 -1
2 0 1 0 —1 1 -1
3 0 1 —1 0 1 —1
4 0 1 -1 1 0 -1
5 0 -1 1 -1 1 0
6 1 0 0 -1 1 -1
7 -1 0 1 0 1 1
8 -1 0 1 1 0 1
9 1 0 —1 1 -1 0
10 1 -1 0 0 -1 1
11 —1 1 0 1 0 1
12 -1 1 0 1 1 0
13 1 1 —1 0 0 -1
14 -1 1 1 0 1 0
15 1 -1 1 -1 0 0
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tries in the vector above, which is impossible if it connects
two cube centers. Thus, ¥, and y, are parallel and shift
one of the two cubes into another.

We thus not only verify the assertion above, but also get
a practical calculational rule that patches in the two adja-
cent cubes join smoothly whenever the two cubes are re-
lated by a shift with a vector from Table I.

We have established the first part of Lemma 2.

Lemma 2. The 10 (16) difference vectors between op-
posite silhouetting 2-faces give all the shifts which extend
the atomic surface. The extended atomic surface from a
given D-cube enters every cube for D =5 and every other
cube for D =6.

The second statement in Lemma 2 follows in the 5—2
case by showing that there are 5 vectors in Table I whose
determinant is +1. They therefore constitute a set of
basis vectors for the lattice equivalent to the original ones.
For the 6—3 case the analogous calculation yields a
determinant of +2. It is simple to show for any orienta-
tion of the physical plane that the determinant, if
nonzero, is no less than 2. Define the parity of a cube to
be the parity of the product of its six-integer labels. When
one passes through a 2-face, the parity is unchanged for
D =6 implying that the even and odd cubes do not mix.

We can repeat the argument at the end of Sec. IV and
emply Lemma 2 to prove, for the 5—2 case, Theorem 1.

Theorem 1. Given any two atomic positions on the
physical plane, there exists a closed loop in the normal
plane such that when the physical plane is moved around
it, the atom in the first position moves to the second loca-
tion.

This also holds for the 6—3 case with the only differ-
ence that we only connect two atoms that come from the
cubes of the same parity.

One may conjecture that all (even) permutations of an
infinite quasicrystal are generated by loops in x!. This is
much stronger than Theorem 1 above, where we do not
control what other atoms do when the one in question is
moved.

B. Atomic surface structure near a vertex

Following our earlier discussion, we first enumerate the
cubes the physical plane enters in the vicinity of a vertex.
We then project some of the D-cubes that share a given
vertex onto the normal plane and examine how they per-
mute under small displacements of the physical plane.
The permutations are identical whether we place the
atoms by strict projection or intersection with the
smoothed atomic surface.

We define a stable cube at a vertex to be one which the
physical plane always enters if it is close enough to the
vertex. The permutations will act on the remaining unsta-
ble cubes. To determine the number of unstable cubes the
physical plane enters at a time, we again construct the
dual grid.

For 5—2, intersect the physical 2-plane with the five
families of 4-planes, x; =integer, to generate five sets of
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FIG. 6. The dual grid for the 5—2 case; showing in (a) the
intersection of the coordinate 4-planes with the physical plane
through a vertex. In (b) the physical plane was displaced to gen-
erate the six unstable and ten stable cubes.

(o)

parallel lines. When the physical plane hits a vertex, five
lines meet in a point forming ten sectors. When the phys-
ical plane is displaced, six more regions are formed (Fig.
6). Each region in the figure corresponds to a definite
cube since each index changes by +1 when we cross the
corresponding line. The ten unbounded sectors corre-
spond to the stable cubes. Thus there are 32 —10=22 un-
stable cubes at the vertex. The six bounded regions in the
figure show that the physical plane generally enters six
out of the total of 22 unstable cubes at the vertex.

For 6—3, we need a formula from Appendix B for the
number of regions six 2-planes divide the physical 3-plane
into. We therefore have Lemma 3.

Lemma 3. In the vicinity of a vertex for the 5—2
(6—3) projection, the physical plane enters 10 (32) stable
cubes and generally 6 (10) unstable ones drawn from the
remaining 22 (32). The number of possible unstable
cubes equals the number of vertices of the rhombic
icosahedron (triacontahedron).

The latter statement follows from the following con-
siderations. Draw the physical plane through a vertex of
a cube. If the plane does not enter that cube, then this
vertex must be on the boundary of the cube’s image in the
normal plane. The number of vertices for which the plane
will enter the cube can be found by considering 2° cubes
sharing a common vertex. If we draw a physical plane
through the vertex, the number of cubes it enters is the
same as the number of vertices in a single cube through
which the plane does enter.

1. 52 case

For the 5—2 case it is simple and informative to visu-
alize the tilings that are generated near a vertex. That is,
we want the dual to the dual grid we employed above, or
just the projection of the cube centers onto the physical
plane. The ten stable cubes form the perimeter of a de-
cagon with six additional vertices in the interior which
permute about (Fig. 7). In the dual picture, the elementa-
ry rearrangement is one line passing through the intersec-
tion of two others (Fig. 8). Provided that the excursion of
x5 in the normal direction is sufficiently small, the outer
boundary of the decagon is left unchanged. Each step of
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FIG. 7. Permutations of vertices within a decagon of the
two-dimensional Penrose tiling. (a),(b),(c) Show two-step
transformations of decagon through jumps (old configuration
indicated by dashed lines). (d) Result of ten iterations of the
two-step transformation. The vertices (labeled 1,2,3) have per-
muted. The other three interior vertices also permute cyclically.

the transformation is a repacking of a hexagon with a
jump of one vertex within it (recall Fig. 8). All possible
decagons (see Fig. 11 below) can be reached by such
jumps: each sequential pair in Fig. 11 is related by one
jump.

Now, in Fig. 7 we can go from (a) to (b) to (c) by single
jumps. But Fig. 7(c) is the same type as (a), except it is
rotated by an angle of 108°; also, in (c) atom 1 is in the
place corresponding to atom 2 in (a), etc. If we repeat this
two-step process ten times, we will return to the original
orientation but the atoms will have permuted cyclically, as
in (d).

The permutations induced among the unstable cubes by
displacements of the physical plane could thus be
enumerated by a close examination of the possible tilings
of a decagon.’® We prefer, however, to project all the un-
stable cubes at a vertex onto the normal 3-plane, count the
number of three-dimensional sectors into which they
divide the space, and finally display the generators of the
permutations by examining how selected atoms permute
as x§ moves through the sectors. Just to display the sec-
tors, the projection may be reduced to considering the in-
tersection of the surface of a sphere about the vertex with

FIG. 8. The dual grid and its associated tiling obtained by
projecting the 5-cubes that the physical 2-plane enters near a
vertex. The dashed tiles show the effect of moving one line
through the intersection of the two others in the dual picture.
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the image of the D-cube. In the 4—2 case, this would
correspond to marking off eight sectors on a circle and as-
sociating each successive group of three with an octagon.
We first work the 5—2 case to completion.

The 20 faces of the rhombic icosahedron (RI) define ten
2-planes in the normal 3-plane. The 22 unstable 5-cubes
project into the 3-plane as 22 RI sharing a vertex. Their
faces at that vertex piece together to become ten great cir-
cles when intersected with a small sphere around the com-
mon vertex. All ten circles are necessary to represent the
22 unstable cubes. As before, the central vertex projects
into the interior of the RI for all the stable cubes, which
are not involved in the permutations. From the formula
in Appendix B, there are at most 2[(3)+(})+(3)]1=92 re-
gions cut out by these circles and hence at most 92 out of
(#) sets of six 5-cubes represented on any physical plane.
The actual number is somewhat less since symmetries
force more than two great circles to meet in a point.

Looking at the RI, one can identify five groups of eight
faces each, which are just closed bands of rhombi attached
side by side (Fig. 9). Each face is included in the two
separate bands defined by its edges. When we collect to-
gether the 22 RI, which share a vertex, the faces from dif-
ferent RI, but in a common group, will piece together into
four planes, all containing a common line. The line be-
comes two points on the surface of the sphere, and we lose
a total of 2XX3=6 regions (Fig. 10). There are five such
groups of faces for a loss of 30 regions. By direct
enumeration we see there are only 92 —30=62 distinct til-
ings of a decagon (Fig. 11). Therefore, we have shown for
the 5—2 case, Lemma 4.

Lemma 4. There are 62 different arrangements of 6 out
of 22 unstable cubes at a vertex each of which corresponds
to a tiling of a decagon by rhombi. All possible tilings of
a decagon may be obtained by projection.

Note that it was not necessary to use the pentagonal
symmetry to prove Lemma 4. An affine transformation
changes directions, yet leaves parallel lines parallel, which
is all that is actually needed to prove Lemma 4. The
grouping of faces we exploited, follows from the fact that
there are only five directions a 1-edge in the 5-cube can
point in. Parallel edges remain parallel under any projec-

FIG. 9. A rhombic icosahedron with 20 faces and 22 vertices.
There are eight bands which tie together the parallel edges. One
of them is shown here.
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(a) (b)

FIG. 10. Each group of eight faces on a rhombic icosahedron
falls onto four planes passing through a common line when the
22 unstable 5-cubes are projected onto the normal 3-plane.
Three regions disappear from the generic picture on the left.

tion. The common edges in the five bands of rhombi
above are five such classes of parallel edges.

To enumerate the permutations, we have to mark off
what we call spherical polygons formed by the intersec-
tions of single RI with the sphere’s surface. They are con-
vex and can have 3, 4, or 5 sides each of which is an arc
of a great circle. Any point on the sphere’s surface will be
in six spherical polygons. Now draw a loop on the sphere,
record the six RI covering the base of the loop, and follow
along the curve until reaching the boundary of the RI in
question. Record the new RI and continue along the loop
until it closes and the RI finally returns to one of the six
present at the base point. There is a complete analogy to
the 4—2 case except that there are several centers which
induce nontrivial permutations.

All vertices of the spherical polygons occur at the
points where four great circles meet. This is because all
rays from the center to a vertex are parallel to the edges
from one of the groups of faces mentioned above. Loops
that encircle the intersections of two great circles do not
generate any permutations of the cubes. By explicit calcu-

(a) (b) (c)
(d) (e) (f)

FIG. 11. All tilings of a decagon up to symmetry. Diagram
(b) has no particular symmetry and generates 20 tilings under
rotations and reflections. Diagrams (a), (c)—(e) have an axis of
symmetry and generate 10 tilings each. Figure (b) has a fivefold
axis, so it contributes only 2 more for a total of 62.

lation, each fourfold point, when encircled, induces a 3-
cycle permutation on three of the six cubes which exist in
any one of the regions on the sphere. Each of the 10 four-
fold points will induce the same cycle on 3 out of 22 pos-
sible unstable cubes. To construct the entire group, we
connect a fixed base point to the vicinity of each of the 10
fourfold points, perform the permutation, and then loop
back to the base. In this way all even permutations in S
(permutations of 6 objects) are generated.

Theorem 2. Any even permutation of the six untable
cubes at a vertex in the 5—2 problem can be generated by
moving the physical plane around a small closed loop in
the normal plane.

The details of the calculation may be found in Appen-
dix C.

2. 6—3 case

This projection proceeds analogously to the previous
case except that there is more degeneracy when the
triacontahedra intersect the sphere. The triacontahedron
has 30 faces, opposite ones parallel, which reassemble to
15 great circles when we project the 32 unstable 6-cubes
that share a vertex. The total number of possible regions
on the sphere is 2[(3")+(}*)+(}*)]1=212. In the case of
icosahedral symmetry, the triacontahedron has six five-
fold axes, with a band of ten faces about each, where each
band results in a total of five different great circles inter-
secting at one point, which occurs twice at the two oppo-
site points on the sphere, resulting in a loss of 2X6=12
regions (Fig. 12). The six bands thus eliminate 6 X 12=72
regions from the 212 present for generic planes. There are
also ten threefold axis which each eliminate one region for
each of the two antipodal points in which they intersect
the sphere, thus further reducing the number of regions
by 20. With all these symmetries, there remain
212—72—20=120 distinct regions on the sphere, each
corresponding to a distinct tiling of a triacontahedron
with rhombohedra. The 32 stable cubes correspond to the
vertices of the triacontahedron. The ten unstable ones be-
come the vertices of the rhombohedral tiles that fall inside
the triacontahedron.*® These tilings produce a representa-
tion of the 120 element icosahedral group. None of the
tilings have any symmetry, and the group generates them

(a) (b)

FIG. 12. Five great circles, formed from the faces of the 32
projected unstable cubes have a point in common. Six regions
are eliminated from the sphere in each hemisphere, and it hap-
pens for each of the six fivefold axes.
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all from any one.*

We have therefore shown Lemma 5.

Lemma 5. There are 120 distinct arrangements, each
involving 10 out of the 32 unstable cubes at a vertex, that
generate different tilings under projection.

The permutation group on the ten inner vertices can
again be constructed by tracing the spherical polygons
that a closed loop moves through on a sphere. Only the
six points where five circles intersect are of interest since
the vertices of the spherical polygons can only fall there.
By explicit computation we establish Theorem 3.

Theorem 3. Of the ten unstable 6-cubes represented on
any one physical plane, three have odd parity and seven
have even parity. Moving the physical plane in a small
loop around the vertex generates all even permutations of
the even and odd unstable cubes at that vertex. This
group of permutations is just all even permutations of
S3887.

C. The case of constrained and “proper” Penrose tilings

In the case of the two-dimensional Penrose tiling with
fivefold symmetry, the physical plane is actually com-
mensurate in one dimension since one of the vectors nor-
mal to it is ts=(1,1,1,1,1). Consequently, in this case
one would not expect a shift in the ts direction to be a
symmetry of the system; in the projection construction,
for instance, one finds tiling with different kinds of local
order which would have different total energies under a
generic Hamiltonian,!%.2427:28.41.42

Therefore, in this subsection we consider the case where
we retain the condition that the sum of the five phases be
a constant, i.e.,

tsx=C =const . (2)

This permits only a constrained subset of the transfor-
mations considered previously in this section. The normal
plane is now (d; =2)-dimensional, however, this case
turns out to be more complicated than the 4—2 case con-
sidered in Sec. IV. Still, the permutation properties may
be derived in pretty much the same way as in the uncon-
strained 5—2 case. We summarize the results, without
repeating the derivations.

Instead of the five-dimensional lattice we now have to
consider the slice by the 4-plane. There are now generi-
cally five different kinds of “shadow” each of which is a
pentagon or an irregular (fivefold symmetric) de-
cagon.*!"*? These are generated by equally spaced layers
slicing through the RI normal to its vertical fivefold axis.
They start at a height determined by C and are equally
spaced along the axis by an amount equal to the separa-
tion from one set of RI vertices to the next.

The original Penrose tiling>—which we shall call the
“proper” Penrose tiling—corresponds to the case
C =integer, a singular choice of the physical plane which
cuts an infinite number of vertices of the 5-cubes. In the
proper tiling construction there are only four layers which
slice through the vertices as illustrated in Fig. 18(a) of

Ref. 20 or Fig. 7 of Ref. 41; there is a symmetry about the
midplane so that there are only two kinds of shadow, both
pentagons [see Figs. 8 and 9 of Ref. 5; Figs. 18(b) and
18(c) of Ref. 20; Fig. 9 of Ref. 41, or Ref. 42].

The outstanding property of the constrained case is that
there are two types of atomic surfaces, which are not
equivalent by an symmetry operation. For example, in
the “proper” projection construction, a pentagon which is
one of the inner two slices of the RI connects along its
edges to pentagons from the other inner slice, forming the
first type; the second type is formed of pentagons from
the adjacent slices, which are patched to each other simi-
larly. [Note that now we just have ten (overlapping) pen-
tagons around each vertex projected on the normal plane,
due to the singular choice of C.] In the general “improp-
er” case, all the pentagons become irregular decagons ex-
cept for those of one of the type 2 slices, and for those of
the fifth (and outermost) slice which connect to the de-
cagons from the opposite layer of the type 1.

In the grid language, we can no longer independently
move any of the five grids but must always move at least
two so as to continue to satisfy (2). We can work out the
permutation structure wholly within d, =2 dimensions,
reasoning as in the 4—2 case (Sec. IV).

In physical space the cubes around a vertex still gen-
erate decagons, but now only certain kinds can appear. In
the proper Penrose tiling, only those of Fig. 11(a) and
11(f) are allowed. There are nontrivial permutations only
in Fig. 11(a). Three of the interior vertices (atoms) belong
to each class. Under a small displacement of x§ two of
the atoms (one from each class) jump simultaneously.
This gives repacking like that in Fig. 7(a)—7(c) without
any need for the intermediate state 7(b). The jumps occur
simultaneously because of the special singular choice of
the physical plane.

The conclusion is that the permutation group of a de-
cagon is isomorphic to the permutation group on three
atoms, S;. Not only is the class conserved, but if we
specify the permutation of the class (i) atoms, this forces a
corresponding permutation of the class (ii) atoms. We
still suspect that the global permutation group consists of
all even permutations which preserve the classes, but
proving this would be even more problematical than in the
unconstrained 5—2 case because of the correlations be-
tween permutations of the class (i) and class (ii) atoms.

VI. DISCUSSION

We have shown that the imposition of a noncrystallo-
graphic symmetry (e.g., a fivefold axis) eliminates the pos-
sibility that any atomic surface exists satisfying conditions
(1)—(4) of Sec. III. In addition, the smooth atomic sur-
face derived from projection does not satisfy (1)—(4). It
may thus seem that we have merely set up an unreason-
able criterion and then demolished it. However, the 3—1
case does obey (1)—(4), and the Kolmogorov-Arnold-
Moser*® theorem allows one to prove in many cases with
d =1 that the atomic surfaces are analytic.

To amplify this last remark, consider, for instance, the
Frenkel-Kontorova model'®!! mentioned in the Introduc-
tion:
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H :—;- 2( Fny1—"n ——p)2+k > cos(2mr,) , (3) conditions (0) and (1) are violated; that is, there is an ele-
n n ment of intrinsic randomness.?®*>#8=5! This in turn sug-

where r, are the atomic positions and p is irrational. It
expresses the competition between an external potential of
period 1 and interatomic springs which prefer an incom-
mensurate spacing p. Then for most irrational p and A
not too large one can show that the ground state is
represented by

ra=pn+X(pn+¢o) , )

where X is an analytic function with period 1, and ¢, is a
free phase. With suitable restrictions on A and p to make
the atomic surface 1:1 with the normal line, Eq. (4) just
represents a line with slope p intersecting a periodic fami-
ly of atomic surfaces labeled by n on a two-dimensional
lattice. The intercept of the physical line with the normal
line is parametrized by ¢,. (This variable is proportional
to the xj used above.) The phason degree of freedom in
this model just reflects the ability to both assign ¢, arbi-
trarily, and adjust it continuously. The phason is also a
hydrodynamic mode because the energy is independent of
¢ and individual atoms move along well-defined atomic
surfaces. These two properties are coupled in this model,
since when A is increased, there comes a point where the
atomic surface develops steps and the ground-state energy
could depend on ¢, It was anticipated”'*?"? that a
similar phenomenon could arise in models of quasicrystals
and pin the phasons.

The actual problem seems to us more prosaic. A
description of atomic surfaces by conditions (1)—(4)
breaks down for purely topological reasons. Thus we see
no way to retain both the postulate that x5 uniquely deter-
mines the atomic positions by fixing the physical plane,
and the freedom to adjust xg continuously while main-
taining condition 4.

This should be contrasted with Ginzburg-Landau
theories of quasicrystals®~!® which adopt an order param-
eter that in the icosahedral case is a periodic function of
six phases. The incommensurability of the six icosahedral
wave vectors guarantees that any reasonable functional of
the density will leave the origin of each phase free. While
every atomic arrangement appears as a smooth density to
X rays, not every density can be written as a smooth form
factor centered about a set of atomic sites with reasonable
separations. Hence the broken continuous symmetry in
the density wave theories is not present in more realistic
models involving the actual atoms. (These objections need
not apply to an icosahedral state within the blue phase of
a cholesteric liquid crystal.*)

Two whole sections (IV and V) were devoted to examin-
ing features (which proved to be unphysical) of the
smoothed atomic surface resulting from projection, since
we feel that this mode of description may retain some
relevance to real systems. For example, the real atomic
structures seem to be closely related to the tilings.*>—*’

How do the real quasicrystals evade the consequences
of Theorem 2 of Sec. IIIC? One possibility is to abandon
the continuity assumption and an atomic surface descrip-
tion altogether. Another alternative, which appears to
have more interesting physical consequences, is to suppose

gests the possibility of interesting glassy properties.

Randomness might entail replacement of the atomic
surfaces by a smooth probability density in D-space (see
Appendix A); however, it can also be realized if there are
still atomic surfaces, but with the sites partially occupied
in a random fashion, analogous to a lattice gas model. A
continuous function could be defined on the surface
measuring the probability of an atom; this would not fully
describe the model, since there must be correlations be-
tween occupancies of nearby sites in order to satisfy the
hard-core condition.

An example of this is the random tiling model suggest-
ed by Elser.?**? In such a case the atomic surfaces con-
tinue to be straight normal planes attached to the center
of each hypercube, but now, instead of terminating, the
patches extend to infinity in the normal space with decay-
ing probability weight. In this case the surfaces would be
nonintersecting, but dense.

For another model with randomness, let us assume we
have atoms with hard-core interactions in an external
(one-body) icosahedral incommensurate potential defined
by six phases (one might imagine it as resulting from a
charge-density-wave with a large coherence length®?). As
we add atoms to the system, they will occupy local mini-
ma of the potential. Note that a locus of local minima de-
fines a 3-surface in six-dimensional space.”® In this case
the surfaces have intersections at branch points.

Near a branch point there will be multiple valleys of the
potential, separated by small barriers, and close to each
other in physical space so that only one of the valleys may
be occupied by an atom. Consequently, these branch
points produce double- (or multiple-) well systems of the
free energy function in configuration space. Such systems
are well known in glasses. They are associated with meta-
stable states, giving rise to slow structural relaxations,”
through thermal activation over the barriers. They can
also be quantum tunneling systems, giving rise to an
anomalous low-temperature specific heat.>*

The above is purely speculation on our part. The gen-
eral theorem in Sec. III and our entire subsequent discus-
sion has supposed that quasicrystals are “deterministic.”
In particular, the contents of one cell in the hypercubic
lattice plus x5 should specify the entire quasicrystal. To
specify the state of a random system clearly requires more
information.

It should be emphasized that the theorem and the dis-
cussion in Sec. III has an important bearing on the dis-
tinction between a quasicrystal and an incommensurately
modulated crystal. The Frenkel-Kontorova model and
the 3— 1 example we considered in Sec. II are the exam-
ples of the latter. The generic example is any periodic
solid to which we apply a modulation depending on one
or more incommensurate vectors. A concrete labeling
clearly exists since every atom retains the label it had in
the crystal. The first step in our theorem was to show
that each type of patch formed a lattice T} and a d,-
dimensional plane commensurate with the original D-
lattice.

We can label these rational planes, and therefore the
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atomic surfaces, by forming the quotient Z?/T,. This is
just a generalization of the process of modding out by all
integer multiples of the basis vectors I' in Sec. II, and has
precisely the same consequences.

It is then very natural to define quasicrystals to be in-
commensurate systems with §-function spectra and a non-
crystallographic symmetry which forbids a labeling.”> In-
commensurately modulated crystals admit a labeling.

The existence of (unspecified) pathologies of the
smoothed projection surface has also been noted by Bak in
a recent letter.!® However, he suggests that alternative
atomic surfaces (not derived from projection) exist that
would satisfy conditions equivalent to our (0)—(5) of Sec.
III, and therefore proposes deterministic atomic surfaces
on the basis of six-dimensional icosahedral crystallogra-
phy. What we have shown is that such surfaces do not
exist, and therefore the deterministic description is inade-
quate.

Note added. Spal [Phys. Rev. Lett. 56, 1823 (1986)]
discussed a structure that is topologically equivalent to
the example discussed at the end of Sec. III A of our pa-
per. Note that in order to make his structure a “Delaunay
system” [i.e.,, satisfy our Condition (4)], he violates
smoothness [our Condition (3)]. He also conjectures a
theorem similar to our Theorem 1 of Sec. III C.
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APPENDIX A: D-DIMENSIONAL
CRYSTALLOGRAPHY

The purpose of this appendix is to motivate the condi-
tions (mentioned in Sec. I and specified in Sec. III) which
we demand of our quasicrystal structure; therefore, we do
not assume them here. The translational and rotational
symmetry, conditions (1) and (5), are inferred from experi-
mental observations. As an example of a six-dimensional
space group we describe P532/m. The notion of a deter-
ministic quasicrystal [condition (0)] is an idealization
which is exactly analogous to the “ideal crystal” tradition-
ally assumed in solid-state physics.

A. Translational periodicity

Experimentally,?® one observes diffraction spots at

wave vectors of the following form:

D
Q= >, n;(2w/a)y; , (A1)
i=1
where the label [n] is a vector [n,, . .. ,np] of D integers
and u; are D basis vectors (independent over integers); in
the experimental icosahedral patterns we have six vectors
that point toward the vertices of an icosahedron. Each
wave vector qp,) has a scattering amplitude Fi,).>® Thus,
the physical scattering density in real space must be

pphys(r) = 2 F[n]eXP(iQ[n]‘l')
[n]
=p(x(r)) , (A2)

where r is the 3-space coordinate and x is a six-
dimensional vector with components given by

x;(r)=u;'r/2mw (A3)
and

p(x)=7 exp(2min-x/a) . (A4)
[n]

We can consider (A3) as a parametrization of a d-plane
(the “physical plane”) cutting through D-space at a spe-
cial, incommensurate orientation, and (A4) as a periodic
density in a D-dimensional cubic lattice with lattice con-
stant a. We can extract d D-dimensional tangent vectors
t; spanning the physical plane by writing the u as a D Xd
matrix and reading down the columns. Since (A3)
represents an incommensurate orientation, it eventually
samples every bit of the unit cell; thus no part of the den-
sity p(x) is superfluous. The same kind of argument can
be made for any structure with an incommensurate dif-
fraction pattern.’’—%

The systematic presences and absences of spots in the
icosahedral diffraction pattern (the observed pattern is the
so-called “vertex pattern”® ¢! indicate that the six-
dimensional lattice is the simple cubic, rather than other
possibilities such as the six-dimensional fcc, bec,
etc.”10:61-63 We have thus determined the translational
part of the space group (the “Bravais lattice”) for the
icosahedral quasicrystals.

B. Space group and point group

Crystallographic space groups include not only the
translations (which identify the Bravais lattice) but also
operations which include rotations. The set of all rota-
tions which (possibly composed with some translation, as
in a glide or screw operation) leave the structure invariant
is called the “point group.” These rotations must preserve
the Bravais lattice; in terms of its basis vectors, the point
group must consist of matrices of integers with deter-
minant +1. Furthermore, for our structures, defined by
lower-dimensional cuts, the higher-dimensional point
group must take the physical and normal subspaces into
themselves without any mixing.2%%61:62

Incommensurately modulated crystals provide a rela-
tively trivial example of the above.!3 In this case, the D-
dimensional Bravais lattice is a direct sum of an ordinary
d-dimensional lattice and a d,-dimensional lattice. The
action of the D-dimensional point group on the physical
plane is just that of the d-dimensional point group of the
unmodulated crystal. The possible space groups have
been classified.’” %

In general, the point group must be a symmetry of the
“holohedral group”® which contains all symmetry opera-
tions preserving the D-dimensional Bravais lattice. Also,
if the point group were contained in the homohedral
group of some less symmetric Bravais lattice, there is no
symmetry reason to prevent the (quasi)crystal from dis-
torting to the less symmetric lattice. Consequently, the
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observed symmetry of spot positions indicates a certain
minimum point group symmetry; for the icosahedral
quasicrystal case, an icosahedral point group.
Convergent-beam electron diffraction confirms that the
point group of quasicrystalline Al-Mn [Ref. 65(a)] and
Al-Li-Cu-Mg [Ref. 65(b)] is the 120-element icosahedral
group including mirror planes, known as “532/m.”

C. The space group P532/m

There are several six-dimensional space groups with the
simple cubic Bravais lattice and the icosahedral point
group 532/m. The icosahedral space groups may be clas-
sified®*%6 as in the 3D case. The strict-projection struc-
ture corresponds to one of these, called “P532/m” (ex-
tending the standard Hermann-Mauguin notation for
space groups®). This is also the space group of the struc-
ture produced by placing atoms on local maxima of densi-
ty waves®’ (in physical space); thus it is reasonable to as-
sume that P532/m is the correct symmetry group of the
icosahedral crystals.

In P532/m, the icosahedral operations are represented
by matrices of ones and zeroes. The fivefold rotation
leaving projections of the axis e, into normal and physical

space, et and e}, invariant is*’

00O0O00O
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These operations suffice to generate the group. They all
act at a point. Both [0,0,0,0,0,0] and [—;—,—}, ey —;—] type
points posses this symmetry, but they are not equivalent.
(For example, in the projection structure discussed in Sec.
V the latter points are the ones projected, while the former
ones are associated with the jumps and other pathologies.)
This space group has an inversion center.

D. Perfect crystals and quasicrystals

We have not yet specified the nature of the density p(x)
[and hence p,py(r)]. We may imagine each atom as being
a point scatterer. (For the physical diffraction pattern, we
just convolve these with the density profiles of the real
atoms’ electron clouds.)

In ordinary d-dimensional crystals, a perfect crystal
means one in which the position (and chemical identity)
of each atom is determined, if we have fixed the location
of one unit cell. Then ppy(r) is just a sum of & functions
in a periodic array, each with a weight of one atom.
However, we may also have disordered crystals, e.g., with
random vacancies or displacements. In this case, the
Bragg part of the scattering is the Fourier transform of an
averaged density which is still periodic may be construct-
ed by folding all unit cells back into one representative
one which is repeated. There might still be & functions
with fractional weights, or these might be smeared into a
continuous density.

What is the natural generalization of “perfect crystals”
for quasicrystals? We require that the physical density
consist of & functions with unit weight. It follows that
the D-dimensional density locally has the form

p(x)=8(x"—¢(x!)) ,

where ¢ is a d-vector function of a d,-vector argument,
(d, =D —d). Globally this defines a set of d-dimensional
hypersurfaces which are repeated periodically in D-
dimensional space; this is that we call a deterministic
quasicrystal.

An example of this is the “Kolmogorov-Arnold-Moser
(KAM) surface” of the Frenkel-Kontorova model: Eq. (4)
in Sec. VI is equivalent to (A8) by the implicit function
theorem. A more general case in which (A8) has been is
for incommensurately modulated crystals, e.g., the case
d =d| =2 for incommensurate adsorbed monolayers on a
triangular substrate.'!

(A8)

APPENDIX B: PARTITIONS OF D-SPACE
BY HYPERPLANES

Suppose we have n (d —1)-dimensional hyperplanes in
a d-dimensional space. We assume that the choice of hy-
perplanes is generic. They break up the space into bound-
ed and unbounded regions. Let B? and U be the num-
bers of bounded and unbounded regions, respectively. The
purpose of this appendix is to derive general formulas for
UZ and BY. Formulas (B3) and (B8) contain our results.

To do so, we set up recurrence relations. Suppose we
know U, 9 and B?. Add one more (d — 1)-dimensional hy-
perplane. It will intersect each of the other hyperplanes
along a (d —2)- dimensional plane. We thus cut out n
(d —2)- planes in the new — 1)-hyperplane, which break
up into B ~!and U?~ bounded and unbounded regions,
respectively. Each of the (d —1)-dimensional pieces in
the new hyperplane breaks up one of the regions in the
original space into two. In particular, each of the bound-
ed (d —1)-dimensional regions means a creation of a new
d-dimensional bounded region, and each unbounded piece
of the new hyperplane means a new unbounded d-
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dimensional region. So,
vl =U2+U?"", B =Bf+BZ'. (B1)

To solve these equations we need initial conditions. We
know that at least (d + 1) hyperplanes are needed in a d-
dimensional space to bound a region. Thus,

B?=0, n<d, BI,  =1. (B2)
It is easy to see that
Bl=0, n<d,
(B3)
n—1 (n—14d)
d n +d)!
— =‘-“——‘——, d
Bi=1 a din—11’ "7~

solve both the initial condition (B2) and the recurrence re-
lations for B,’,i due to the known relations among the bino-
mial coefficients:

d
d

n+1
d

n
d

n

J1 =1. (B4)

=, |+

’

To complete the proof that (B3) is the correct solution,
we check it for all n at some particular value of d. If
d =1, we have n points on a line which lead to (n —1)
bounded reglons From (B3), B¢='=(n —1), as needed.

Deriving U¢ is not so stralghtforward due to a different
initial condition, which is

Ul=2", n<d. (BS)
In fact, an expression for U is most easily found using
vé=Uf-'42B¢7". (B6)

This relation can be obtained from the following
geometric considerations. Unbounded regions cannot be
created or destroyed when we displace one of the hyper-
planes a finite distance without changing its orientation in
space. So, we can shift all » hyperplanes untll they all
pass through one point, and there are still U? unbounded
sectors.

Draw a (d —1)-dimensional sphere centered at that
point. Each hyperplane intersects this sphere along a
(d —2)-dimensional great circle.” The number of
[(d — 1)-dimensional] regions into whlch these n great cir-
cles divide the sphere is exactly UZ. We can choose these
great circles in such a way that their intersections lie in
two restricted areas surrounding the two poles [see Fig.
10(a), which illustrates d =3, n =4 case]. Now, in the
neighborhood of each pole the sphere looks flat, and is
broken up by parts of these great circles, which look like
straight lines in this small area, into “bounded” and “un-
bounded” regions [Fig. 5(b)].

The identical bounded regions appear on the other side
of the sphere. What looks like unbounded regions locally
are just regions which are not localized at one of the poles,
but rather extend all the way across the sphere from one
pole to another. Since locally at the poles it looks like a
(d —1)-dimensional space [Fig. 5(b)] broken up by =
(d —2)-dimensional lines, we have thus the total number
of regions on the sphere given by

vl-'42B¢-1. (B7)

This, however, was shown to be equal to U,‘,’. Hence we
get (B4).

Iterating (B4) several times we get
Ul=2B¢ '+B¢ 2+ --- +B)+1)

n—1
1

n—1
+ d—2 + -+

For n =d, we get U,‘,1=d=2" by a known identity, which
satisfies the required boundary condition. It is also easy
to check dlrectly that (B8) satisfies the recursion relation
(B1) for UZ.

To show (B8) is a unique solution, we check, just like
for BY, that we get correct results for d =1. N points on
a line create only two unbounded regions. So, we expect
U,f =2 for n > 1. Indeed, (B8) gives,

Ul=2x[1]=2, n>1. (B9)

n—1

=21 l4_1

+1 (B8)

APPENDIX C: DETAILS OF COMPUTING
PERMUTATIONS AT A VERTEX

In this appendix we explicitly show how to construct
the group of permutations of “atoms” induced by small
movements of the physical plane around a single vertex in
the case of the 5—2 projection. Recall from the text that
the unstable 5-cubes at a vertex project onto 22 rhombic
icosahedra (RI). Those of their faces which contain a
common vertex may be reassembled into ten planes which
divide up a sphere around that point into 62 regions. The
top view of that sphere is shown in Fig. 13.

We now have to learn to identify intersections of a
single RI with that sphere. (We called this a spherical
polygon.) To within different orientations all possible
kinds of spherical polygons obtained that way are depict-
ed in Figs. 14(a)—14(c).

As explained in Sec. V, various loops on the surface of
that sphere depict various motions of the physical plane
normal to itself. Nontrivial permutations arise when a
loop encircles one or more of the points where four great
circles meet. Consider a loop that encircles exactly one of
them (Fig. 15). The region marked with X on Fig. 15 is

FIG. 13. Intersections of 22 rhombic icosahedra (RI) sharing
a vertex with a small sphere around the vertex creates ten great
circles which are shown here. These RI are projections of the 22
“unstable” cubes into normal plane.
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covered by exactly six spherical polygons. One of them,
number 1, is shown in Fig. 14(a); the rest, numbers 2—6,
are shown in Fig. 15, where the numbered arrows identify
the boundaries and point toward the interior of various
polygons. It is clear from Fig. 15 that polygons 4—6 cov-
er the X -marked region as well as the loop drawn around
the vertex; thus the atoms projected from the correspond-
ing 5-cubes do not permute. On the contrary, the loop
crosses the boundaries of polygons 1—3, so their atoms

(a)

////I);;’{/,!Z{l);"»’ 2\
IR

FIG. 14. On the three figure here we show (up to orientation)
all possible “spherical polygons,” objects formed by intersection
of a single rhombic icosahedron with a sphere. Arrows, as well
as the shading, indicate the interior of the spherical

polygon.

FIG. 15. Here we show the six spherical polygons that cover
the X-mark regions. Polygon 1 is as in Fig. 14(a). Numbered
arrows point toward the interior of polygons 2—6 (compare with
Fig. 14). Dashed and dash-dotted lines also help in identifying
the boundaries of various polygons. Polygons 1—3 will permute
under the action of the indicated loop (see also Fig. 16).

FIG. 16. Permutations induced by a small loop around a ver-
tex. As we move around the loop we may go through a number
of intermediate spherical polygons, which are denoted by letters
a—e.

ST

FIG. 17. Six polygons covering the central region as shown.
They permute under the action of various loops. The generators
are obtained by moving from the center to one of the x-marked
regions, looping around the corresponding vertex, and then go-
ing back to the starting point.
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may undergo a permutation. In Fig. 16 we show only
those polygons that can be reached by a loop on a multi-
sheeted polygonal covering of the sphere which starts
from one of the polygons 1—3 and remains in the vicinity
of X. Clearly, only these polygons are needed to ascertain
the permutation induced by closed loop on (1—3). The
remainder of the arrangement is now very similar to the
4— 2 case, described in Sec. IV.

When we move along the loop from X, we first reach
the common boundary of polygons 1 and a. As we keep
moving along the loop, we eventually reach a common
boundary of a and b; and finally we return from b to 2,
where we stop. This path is denoted as 1 —-a—b—2, so
an atom in cube 1 moves continuously into an atom in
cube 2. Similarly, we have paths 2-—->c—3 and
3—>d—e—1. All in all we have 1—2, 23, 31,
which means our loop induces a 3-cycle (123), which is an
element of the group of permutations of six objects S.

There are altogether ten such vertices on the sphere
(five are visible in our figures). Each of them corresponds
to a 3-cycle. We are interested, however, in the group of
permutations due those loops that all start and end in one
single region. It is easist to use the central “pentagonal”
regions as a base for all our loops (Fig. 17). We then get
all the group generators by connecting it to any of the
“peripheral” X-marked regions by a path as shown in

Fig. 17.

The six polygons covering the central region are shown
in Fig. 17. To get from the central to a peripheral X-
marked region, our path only crosses the boundary of
spherical polygon 4, and enters polygon 4. Then, a loop
around the vertex induces a permutation on (1,2,3), as
shown above. On the return path 4’ returns to 4, which
commutes with the permutation (123) and thereby cancels
4—4'. Thus the permutations is induced only among 1,
2, and 3, which are just those of the six spherical polygons
that meet at the fourfold vertex the small loop was drawn
about.

We can check that the triples of polygons that meet at
the other four vertices on the depicted half of the sphere
are (146), (135), (126), and (145). Together with (123),
they define the 3-cycles that are the generators of the
group.

To get the other five vertices we would have to draw an
open path to the other side of the sphere. While it is not
very hard, we do not need to do it. Each of those extra
permutations would also be a 3-cycle. However, all 3-
cycles are even permutations, and we can show that the
five 3-cycles we have already obtained generate all even
permutations of six objects. Showing it is entirely trivial,
and we do not reproduce the manipulations.
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