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Dynamic localization of a charged particle moving under the influence of an electric field
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The motion of a charged particle on a discrete lattice under the action of an electric field is stud-

ied with the help of explicit calculations of probability propagators and mean-square displacements.
Exact results are presented for arbitrary time dependence of the electric field on a one-dimensional
lattice. Existing results for the limiting cases of zero frequency and zero field are recovered. A new

phenomenon involving the dynamic localization of the moving particle is shown to result in the case
of a sinusoidally varying field: The particle is generally delocalized except for the cases when the ra-

tio of the field magnitude and the field frequency is a root of the ordinary Bessel function of order
O. For these special cases it is found to be localized. This localization could be used, in principle,
for inducing anisotropy in the transport properties of an ordinarily isotropic material.

I. INTRODUCTION

This paper addresses the motion of a charged particle
on a lattice in the presence of an electric field. The
analysis is based on exact calculations on discrete lattices.
The results are novel and include the onset of a dynamic
localization of the moving particle whenever the ratio of
the magnitude and the frequency of the electric field has
certain values. While the methods we discuss and the re-
sults we obtain are apphcable in essence to lattices of arbi-
trary dimensionality, in order to be specific, we begin our
considerations with a one-dimensional lattice. We thus
consider the motion of a charged particle on a linear chain
of sites m ( —oo ~m ~+ ao ) under the combined action
of a time-dependent electric field in the direction of the
lattice and of nearest-neighbor intersite overlap integrals
V. The Hamiltonian for the system is
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In this expression,
~
m ) represents a Wannier state local-

ized on lattice site m, a is the lattice constant, E is the
external electric field, and e is the charge on the particle.
The nearest-neighbor transfer-matrix element V (overlap
integral} has been assumed to be real, and the off-diagonal
elements of the position operator x in the Wannier basis
have been neglected, i.e., me have assumed that
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By expressing the particle state
~
g(t) ) as a linear com-

bination of Wannier states
~
m ),

where 8' is constant and f(t) contains the time depen-
dence of the electric field, one obtains from (1.1) the fol-
lowing evolution equation for the amplitudes C~(t):

i dC Idt= tf'mf(t)—C +V(C +i+C i) . (1.4)

We put irt= 1 throughout this paper.
Our analysis in this paper is based on the exact solution

of (1.4) for arbitrary time dependence of f(t) and on the
examination therefrom of two observables: the probabili-
ty propagator P (t) and the mean-square displacement
&m ). By the probability propagator i}'t (t) is meant the
probability that the particle is at site m at time t, given
that it was at site 0 initially. By &m ) is meant

m f (t). When the time dependence of the field is
sinusoidal with frequency to, the self propagator bio(t) gen-
erally decays in time, indicating that an initially localized
particle becomes delocalized. Correspondingly, the
mean-square displacement & rn ) increases without bound.
However, for certain critical values of the ratio I'/co,
go(t) does not decay, & m ) is bounded, and an initially lo-
calized particle therefore remains localized. This is the
central result of this paper.

The rest of this paper is set out as follows. In Sec. II,
we present our solution of (1.4) for g~(t) and &m ) for
arbitrary time dependence of the electric field and show
the onset of dynamic localization in the case of a
sinusoidal field. The details of the calculation leading to
our solution are presented in the Appendix. Sections III
and IV contain, respectively, extensions of our theory to
non-nearest-neighbor interactions and to higher dimen-
sions, and concluding remarks.

II. FINAL RESULTS AND DISCUSSION

In solving Eq. (1.4), we first perform a discrete Fourier
transform over the site label m by multiplying (1.3} by
exp( ikm) and —summing over all m:

where C (t) are the time-dependent amplitudes
&rn

~
i(t(t)), and by rewriting the quantity eEa as 8'f(t},

( k(t) ye —ikm( (t)

The form of Eq. (1.4) in k space is then

(2.1)
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ac" . , ac'
+(2ivcosk)C =$'f(t)

k
(2.2)

The partial differential equation (2.2) can be reduced to a
first-order ordinary differential equation by using the
method of characteristics. ' The details of this reduction
and of the subsequent solution are in the Appendix. The
resulting expression for the probability propagator P is

g (&)=J (2V[U (&)+u (&)] ), (2.3)

where the quantities u and U are given by

u(t)= f cos[S'il(t')]dr',

u(t)= f sin[$'rl(t')]dr',

rl(t)= f f(r')dt'.

(2.4)

(2.5)

(t)=J ((4V/$')sin($'r/2)),

'& =8( V/S')

(2.10)

(2.11)

The propagator expression (2.10) has been briefiy men-
tioned earlier in the literature on Stark ladders. The ar-
gument of the Bessel functions in (2.10) is itself an oscilla-
tory function of time, the oscillation frequency being pro-
portional to the magnitude of the electric field. The prop-
agators therefore are oscillatory in time and an initially
localized particle remains localized, i.e., does not escape to
infinity. It returns to the initial site repeatedly. Equation
(2.11) shows this localization explicitly: The mean-square
displacement does not grow without bound but oscillates
sinusoidally. The argument of the Bessel functions in
(2.10) may be written as the product of 2 Vt with a factor
(sinz)/z, where z =S't/2. If we take the limit S'~0, i.e.,
consider particle motion in the absence of an electric field,
z vanishes, the multiplicative factor tends to 1, and we re-
cover results known and used widely in the field of exci-
ton dynamics in molecular crystals:

=J (2Vt), (2.12)

(m') =2V't'. (2.13)

In this case an initially localized particle does escape to
infinity, as is clear both from the decay of the self-

The mean-square displacement corresponding to (2.3) is
obtained immediately with the help of the identity

g J (z)mz=z /2.

(m ) =2V [u (t)+U (t)] .

The principal results (2.3)—(2.7) are valid for any time
dependence of the electric field. Of special interest is the
case of the sinusoidal field, i.e., f ( t) =cosait For. this
case u and U are given by

cof

u(t)=(1/co) f drcos[(S'Ice)sinr], (2.8)

u(t) =(1/ro) f dr sin[($'/co)sinr] . (2.9)

Before examining the peculiar behavior of (2.3) and
(2.7) with (2.8) and (2.9), it is instructive to recover known
results for the case of no field and that of a time-
independent (dc) field, respectively. By taking the limit
co~0 in (2.8) and (2.9), we obtain

A„(t)=u(t) tJO(—$'/a))
cot

=(1/e0) f drcos[($'/ro)sinr] —tJp($ /e0), (2, 14)
fest

A„(t)=v(t) —0=(1/co) f dr sin[($'/co)sinr], (2.15)

and rewrite the propagator and mean-square displacement
expressions (2.3)—(2.7) as

(t) =J~(2Vt[JO($'Ico)+fi(t)JO($'Ia))+ f2(t)]'~ ),
(2.16)

(m ) =2V t [Jo($'Ice)+fi(t)JO($'/co)+fi(t)], (2.17)

f, (t) =2(A„/t), f2(r) =(A„'+A„')Ir'. (2.18)

The functions fi(t) and fz(t) contain the bounded func-
tions A„and A, and therefore decay at large times. The
expressions for the propagators and the mean-square dis-
placement are thus dominated by the first term at large
tinles, llllless Jo( $ /co) equals 0. The resulting simplified
forms of (2.16),(2.17) for large times are

P (t)=J (2V' t), t»2m/co,

( m ) =2( V' r ), t » 2ir/co .

(2.19)

(2.20)

Equations (2.19),(2.20) should be compared to (2.12),(2.13)
which describe the case of no electric field and consequent
delocalization. The only difference between that case and
the case of the sinusoidal field represented by (2.19),(2.20)
is that in the latter, an effective intersite matrix element
V' appears in place of V. The relation between V' and
Vis

V' = VJO($'/co) . (2.21)

The sinusoidal electric field thus has the effect of reduc-
ing the effective velocity or the rate of delocalization of
the initially localized particle.

Equation (2.21) shows that the effective intersite in-
teraction vanishes entirely whenever the ratio S'/ru is a
root of Jo. The remarkable result is that, then, the propa-

propagator Jo(2vt) and from the fact that the mean-
square displacement increases without bound.

We now examine the case of the general sinusoidal elec-
tric field and the phenomenon of dynamic localization
that it entails. The absence of delocalization in the limit
co~0 discussed above corresponds to the fact that, for
that case, u (i) and U (t) have the oscillatory forms
[sin($'t)]IS' and [1 co—st$'t)]IS', respectively. When no
field is present, i.e., in the limit S'~0, u(t) and U(t)
equal t and 0, respectively. For this case, the increase of
u (t) without bound leads to delocalization. When neither
limit is taken, it is helpful to observe the following impor-
tant properties of the functions u (t) and U(t). Equations
(2.8) and (2.9) show that, whenever cot equals an integral
number n of the period 2ir, u (t) equals [Jo($'/e0)]t and
U(t) vanishes. Furthermore, for general t, the respective
differences between u and U and their above special values
for ait=2mn are both bounded oscillatory functions of
time with period 2m/co. Their magnitude cannot exceed
n./co. We denote these respective differences by A„(t)and
A„(t):
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gators oscillate (do not decay) and the mean-square dis-
placement remains bounded:

g (t)=J'(2V[A„'(t)+A„(t)']'~'), (2.22)

( m') =2V'[A„'(t)+A„'(t)]. (2.23)

The moving particle is thus effectively localized by the ac-
tion of the time-dependent electric field. This is the
phenomenon of dynamic localization.

Localization under the action of a time in-dependent
electric field, as described in (2.10), is perhaps a more
familiar effect. It is represented in Fig. 1, where the self-
propagator go(t) is plotted as a function of time for
several values of N'/V. As the lowest curve in Fig. 1

shows, the self-propagator decays in the absence of the
electric field and the particle escapes [see (2.12)]. But, as
the other curves in Fig. 1 show, recurrences are seen for
all nonzero values of I'/V and the particle does not es-
cape. The frequency of the recurrences increases with in-
creasing I'/V.

Expected consequences of time depe-ndent electric fields
involving no localization can be seen in Fig. 2, where the
self-propagator is plotted as a function of time for several
values of ei/8'. The lowest curve in Fig. 2 corresponds to
the dc field and therefore shows full recurrences as in the
upper curves of Fig. 1. However, as the frequency of the
field increases from 0, the recurrences are incomplete, the
successive peaks in the self-propagator decrease in magni-
tude, and the particle escapes.

The new result that emerges from our analysis, viz. , the
phenomenon of dynamic localization, is shown in Figs.

3(a) and 3(b). The self-propagator is plotted in Fig. 3(a)
for several values of 8'/co, one of them being 2.405, the
first root of Jo. The corresponding plots of the mean-

square displacement are in Fig. 3(b). The behavior depict-
ed in Fig. 2, i.e., decay of go, equivalently, escape of the
particle, occurs in all the curves of Fig. 3(a), except the
one for which 8'/co=2. 405. In this special case, re-
currences of the self-propagator show that the particle re-

turns repeatedly to the initially occupied site. This
dynamic localization is also evident from Fig. 3(b) where
the mean-square displacement is seen to be bounded' only
for the special value of 8'/co. Figures 3(a) and 3(b) also
show that the phenomenon of dynamic localization disap-
pears for values of 5'/c0 which are larger than 2.405 as
well as smaller than 2.405. The effect returns when 8'/co

equals higher roots of Jo.

III. EXTENSIONS OF THE THEORY

A. Long-range intersite interactions

The extension of our results to a system with long-
range intersite interactions is straightforward. If the term
V(C +i+C i) in (1.4) is replaced by the general ex-
pression g„V „C„indicating intersite interactions of
arbitrary range, the band energy has the form
2+„V„cosnkrather than 2 Vcosk. Repeating the calcula-
tions detailed in the Appendix for this case then leads to
the generalization of the expression (2.7) for the mean-
square displacement to

8/v
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FIG. 1. The self-propagator go{t), i.e., the probabihty of the initially occupied site, plotted as s function of the dimensionless time
Vt for different values of the ratio 8' /V for a dc electric field. The lowest curve shows the decay of $0{t)when 8'/V=0. The inter-
mediate values of 8'/V cause recurrences of the probability, signifying repeated return of the particle to the initially occupied site.
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FIG. 2. The self-propagator |(to(t},plotted as a function of Vt for different values of the ratio co/8' for an ac field. The ratio g'/V
equals 2 in all cases. Probabibty recurrences are seen but are incomplete, i.e., the probability of returning to the initially occupied site
never reaches unity for nonzero times, for all except the lowest curve, which is the case of the dc field.

( m ) =2 g (n V„)2[u„(t)+U„(t)], (3.1) B. Higher dimensions

where u„(t)and U„(t)are obtained by replacing 8' by n 8'
in (2.8) and (2.9), respectively. Upon substituting the ex-
plicit forms of u„(t)and U„(t),we get

( mi) =2 g (n V„) r I Jo(n 8'/co)
n

+2Aua[Jo(n 5'/co)]/t

As an extension of the dynamic localization
phenomenon to higher dimensions, we consider the
motion of a charged particle under the same assumptions
as in (1.1) but on a three-dimensional (simple-cubic) lattice
rather than on a hnear chain. The intersite interactions
are assumed to be nearest neighbor and orthogonal so that
the motion along each axis is independent of motion along
the other two. The probability propagator g can

then be written as the product of three one-dimensional
propagators: '

(3.2) (&)=l( (&)y (&)y (&) . (3.3)

where A„„(t}and A»(t), the obvious generalizations of
A„(t}and A„(t),are also bounded oscillatory functions.

Since the roots of Jo are not spaced equidistantly on the
real line, Jo(n g'/co) cannot simultaneously vanish for all
n. In other words, dynamic localization in the strictest
sense cannot occur in a system vnth variable range in-
teraction matrix elements. Nevertheless, since V&, the
nearest-neighbor interaction, is usually dominant in most
systems, a significant reduction in the particle mobihty
will occur when 8'/co is a root of Jo. A reduction will
again occur (but to a less significant extent} when 2$'/co
1s a root of Jo, and again wheil 38 /cd is a loot, aild so 011. f( 1)8', =ea„E(t}.r, (3.4}

Here, m„,m~, and m, label sites in the x, y, and z direc-
tions, respectively.

Because of the separation of the motion along the three
axes inherent in (3.3), the generalization of the one-
dimensional results is immediate: The form of each of the

, where r =x, y, or z, is given by the analysis of the

one-dimensional case. %hat enters into the relevant ex-
pressions as the magnitude of the electric field is, howev-
er, the projection of the field along the axis (r) under con-
sideration. In other words, 8' in (2.3) is replaced by the
appropriate 8'„where
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FIG. 3. (a) Dynamic localization exhibited through a plot of the self-propagator $0(t) for different values of the ratio 8'/co. The
ratio 8'/V equals 2. The field is constant in the lowest curve and time dependent in all the others. %'ith one exception, all the curves
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shows the phenomenon of dynamic localization. (b) Dynamic localization exhibited through a plot of the mean-square displacement
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r being a unit vector along the r axis and a, the lattice
constant along that axis. The generalization of (2.21)
valid for the three-dimensional case is simply that the ef-

fective matrix element along each axis, Vefr, is given by
(2.19), but with 8' replaced by 8', :

V„' =V„JO(8'„/co). (3.5)

%e will consider three special cases to illustrate the new

features that the phenomenon of dynamic localization ex-

hibits in higher dimensions: (i) If the field is parallel to
the x axis, and 8'/co is a root of Jo, ij'j and f will de

cay in time but g~ will not. An initially localized parti-

cle will thus become delocalized in the y-z plane, but
remain localized along the x axis. (ii) If the field is in the
x-y plane and at an angle of 4S' to each of the x and y
axes, and a, =a for all r, then 8'„=8'»=S'/2', and
whenever (8'/2'/ )/co is a root of Jo, f will decay in

time but lt and f will not. The particle will be delo-

calized along the z axis, but will remain bounded in the
x-y plane. (iii) If the field has equal projections along all
three axes, and a, =a for all r, then
8'„=8'»=8',=8'/3'», and the particle will undergo
dynamic localization in all three directions whenever
(8'/3'» ru) is a root of Jo.

Consider now, for the sake of simplicity, a two-
dimensional crystal; i.e., assume V, to be zero. The parti-
cle motion is confined to the x-y plane. In the absence of
the electric field, the average speed of the particle along a
direction making an angle 8 with the x axis is given by
2'»z( V, a, cosz8+ V» a»sinze)'» . In the presence of the ac
field, (3.1) shows that the effective average speed s(8) is
given by

s (0)=2[V„a„Jo(8'„/co)cos8+ V»a»Jo(8'»/co)sin 8] .

(3.6)

In Figs. 4—6 we exhibit explicitly the anisotropic ef-
fects which arise as a consequence of dynamic localization
by presenting polar plots of the ratio of s to its value s
in the absence of the field, as a function of 8'/ro. We also
take V„a„=V»a»=Va.The value of s in a particular
direction is displayed as the height of the surface above
the origin, and by a polar plot is meant that the quantities
plotted along the s„and s» axes are scose and s sine,
respectively. The electric field is directed at 45' to the two
axes in Fig. 4, along the y axis in Figs. 5(a) and S(b), and
at 20' to the y axis in Fig. 6.

Figure 4 shows that, when (8'/2'~ ui) approaches a root
of Jo, the surface shrinks until it becomes a point at the
origin, indicating complete absence of motion. In Fig.
5(a) we see surface dimples forming along the s„axisas
8'/co approaches a root of Jo. When 8'/co equals the
root, the dimples extend to the s„—sz origin. They can be
seen more clearly in Fig. 5(b), which presents a view from
beneath the surface. Figure 6 shows that, as the field
magnitude is increased, surface dimples first form along
the s» axis when 8'»/co is a root of Jo, and then along the
s„axiswhen 8'„/co is a root of Jo.

IV. CONCLUDING REMARKS

The primary result of this paper is the onset of dynamic
localization of a charged particle moving on a discrete lat-
tice under the action of a time-dependent electric field.
Our starting point is (1.4), the exact expressions we obtain
for the probability of the initially occupiixI site and for

FIG. 4. Anisotropic effects in the motion of the particle arising from dynamic localization induced by a sinusoidal electric field in
a two-dimensional crystal [see (3.6)]. Each intersection of the plotted surface with a constant 8'/co plane constitutes a polar plot of
the effective average speed s(8), normalized to its value s (8) in the absence of the electric field. The electric field is directed at 45
to the x and the y axes.
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the mean-square displacement are (2.3)—(2.9), and our
central result is (2.16)—(2.18). Specifically, we have
shown that, if the ratio of the electric field energy of the
particle, viz. , 8'=eEa to fico, where co is the frequency of
the electric field, equals a root of the ordinary Bessel
function of order 0, the particle will return repeatedly to
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FIG. 5. (a) Anisotropic effects arising from dynamic localiza-
tion as in Fig. 4. The electric field is directed along the y axis.
The points at which dynamic loca4zation occurs manifest them-
selves as dimples in the surface. (b) The s surface in {a) viewed
from a point beneath the surface. The dimples caused by
dynamic localization along the y axis are displayed dearly from
this perspective as downward pointing spikes.

the initially occupied site in a one-dimensional crystal

with nearest-neighbor intersite interactions V. We have

also shown that the particle will thus be confined to a re-

gion of size smaller than (2n.)(V/Ace) times the lattice
Equations (2.22) and (2.23) constitute the ex-

plicit statement of this dynamic localization and Figs. 3(a)
and 3(b) clarify the effect.

An alternate expressio~ of the localization effect is pro-
vided by (2.21) which gives the effective intersite matrix
element for the motion of the particle under the action of
the sinusoidal electric field and shows that it vanishes
when (eEa/%co) is a root of Jo. We have extended the
theory to treat interactions which are not necessarily
nearest-neighbor (Sec. III A) and to treat dimensions
higher than 1 (Sec. IIIB). Anisotropies induced in the
motion of the particle in a two- or three-dimensional crys-
tal are clear from (3.5) and Figs. 4—6. It appears, there-
fore, that motion in a completely isotropic crystal could
be made highly directional simply by the action of a
time-dependent field.

The assumptions underlying our treatment include the
neglect of the off-diagonal elements of the position opera-
tor in the site-localized (Wannier) basis as stated in (1.2),
the absence of spatial variations in the electric field, and
the neglect of phonon or defect scattering. The first of
these is equivalent to the neglect of multiple bands and is
justified for electric field magnitudes which are not large
enough to cause interband transitions. The second as-
sumption will lose its validity when the characteristic
length for the spatial variation of the field is of the order
of a lattice constant. Such a situation would arise only for
very-high-frequency fields such as in the x-ray range. The
third assumption has been made only for simplicity in the
present paper. The effect of scattering and the explicit
calculation of velocity autocorrelations and thence of the
conductivity will form the content of a future publication.

An estimate of the field inagnitudes and frequencies re-
quired to observe the effect of dynamic localization that
we have predicted may be carried out as follows. To
avoid the effect being smeared out by collisions, it is ex-
pected that the condition co~ & 1 should be satisfied, r be-
ing the scattering time. On the other hand, since the first
root of Jo is 2.405, eEa must be more than twice fico for
dynamic localization to occur. Thus, if the scattering
time ~ is of the order of 10 ' s, the electric field magni-
tudes required for dynamic localization to occur are in ex-
cess of 10 V/m, and indeed of the order of 109 V/m for a
lattice constant of 1A. These field magnitudes are larger
than typical threshold values for breakdown. We believe
this to be the reason the effect has not been observed so
far. However, if highly pure crystals are studied at suffi-
ciently low temperatures to cause r to be of the order of a
picosecond or larger, it is conceivable that the effect will
be observed for electric fields of the order of 10 V/m.
Furthermore, there is increased interest in recent times in
investigations, both theoretical and experimental, which
involve extremely strong electric fields, indeed of the or-
der of 10 or 10 V/m. It is also conceivable that the ef-
fects we have predicted will be refiected in spin resonance
measurements involving not only electrons but even
muons' in the presence of strong electric fields.
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FIG. 6. Anisotropic effects arising from dynamic localization. The electric field is directed at 20 to the y axis. The projections of
the field along the two axes being different, dynamic localization does not occur simultaneously along the two axes: It is seen three
times along the y axis and only once along the x axis. The result is a highly anisotropic s surface.

ACKNOWLEDGMENTS

We thank Dr. Charles Hart for helpful conversations
and the National Science Foundation for partial support
under Grant No. DMR-85-0638.

APPENDIX

The procedure for obtaining the solution (2.3) to Eq.
(2.2) is detailed in this appendix. The method of charac-
teristics' allows one to rewrite (2.2) as

dC(s, ~) = —Zi Vcos[v —8'rl(s }]C(s,r),

with the transformation s =t and ~=k+ fds' f(&')
—=k+rl(s). The integration of (Al) with constant ~ re-

sults in

C(s,r) =C(s =O, r)exp Zi V f ds' —cos[r 8'rl(s')—]

(A2)

C (t)=C"+ "'"exp Zi V f dt'—cos[k+8'rl(t)

(A4)

—cos(k) k(t}]( .

The use of the identities

exp[ ZiVcos(k—) k(t)]=pe '" ~ e'""J„(ZVk(t)),

8'rI(r') j— , (A3)

where by C ++"'" is meant the quantity obtained by sub-
stituting k by k+ 8'g(t) in the initial (i.e., at r =0} C .
Introducing quantities k(t) and W(t) through

k(t)= f dt'cos[g'(r)(t) —q(t'))],

P (r)= f dt'sin[8'(r)(t) —g(t'))],

Eq. (A3} may be rewritten as

Ck(t) =C"+ "'"exp
I Zi V[sin(k) W(t)

On transforming back to the original variables, (A2} yields
the explicit solution of (2.2): exp[ZiVsin(k)1 (t)]=pe'""J„(ZVW(r)),

(A7}
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which express the terms involving 2((t) and 1"(t) in
terms of ordinary Bessel functions J, J„,etc., and an in-
verse discrete Fourier transformation, yield directly the
following expression for C (t):

C (t)=g+C (0)eirs'pit)e in—el2J (2V@(t))

(Al 1)

Finally, the probability propagator g (t), which is merely

Cm I

z, is given from (A10) as

(A12)

It is possible to further simplify (A12) by noticing that
& (t)+ 4 (t) is exactly equal to u (t)+u (t), where

Using Graf's addition theorem for Bessel functions, " (A9)
can be simplified to

g C (0)eirs'v(t)( g)m r—
u(t)= I sin[8'rl(t')]dt', (A13)

XJ, ~(2V[~ (t)+ k (t)]' ), (A10) Equation (A12) is then reduced to (2.3).
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