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Random walks on Cayley trees as models for relaxation in a hierarchical system
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%e consider a nearest-neighbor random walk on a finite Cayley tree with hopping rates de-
pending on a level index in an arbitrary way, and construct an exact formula for the Laplace
transform of the first passage time from one point to another. This function determines, by the
renewal equation, the propagator and hence all the properties of the solution. Finally, we apply
the formalism to a simple case of thermally activated hopping, and show that the time of return to
the origin has, to a good degree of approximation, a stable distribution.

The concept of a hierarchically organized set of states
seems, in one way or another, to have relevance for a num-
ber of physical systems, ranging from relaxation processes
in glasses' to the equilibrium properties of spin glasses.
Several groups3 s have recently studied different versions
of random walks on this kind of ultrametric space, all ar-
riving at the conclusion that, for thermally activated hop-
ping, at long times the propagator decays algebraically
with a temperature-dependent exponent P(T). There is,
however, no agreement on the form of P(T), suggesting
that a closer look at the mathematics might be desirable.
The second and main motivation for the present work is to
calculate the first-passage time densities from one point to
another —which has never been done previously —and
check whether their Laplace transform is a stretched ex-
ponential, exp( —s'tTl). This dependence characterizes
the so-called stable distributions, 6 which were invoked by
the authors on the basis of heuristic self-similarity argu-
ments, in order to explain the experimental form of the
spin-glass susceptibility. A peak in a(T) [a(T)&P(T))
would explain the observed features of the susceptibility.

Due to their interesting scaling properties, 6 stable dis-
tributions have a wide range of other possible applications
in physics, since they arise naturally in the description of
self-similarity. So far they have been used in the theory
of spin-glass relaxation and in turbulence. A possible
theoretical relevance for the renormalization-group theory
was pointed out by Jona-Lasinio'0 some years ago. More
recently (the late) Montroll and Bendler" noticed that the
spectral density of lifetimes g(A, ,c) associated with the
Kohlraush law by the formula exp [—(t / r)']
f g(X,a)e 'dk, is (almost) a stable distribution. This
establishes a contact between mathematical theories and
the heuristics proposed by Palmer, Stein, Abrahams, and
Anderson' in order to explain glassy relaxation. The
mathematical community has long been puzzled by the
lack of explicit representation of the stable densities, which
are essentially the Fourier transform of the Kohlraush law,
and thus have a direct bearing on the response function in
amorphous structures. This problem has now been solved
by Schneider, ' who expresses them in terms of Fox func-
tions.

In spite of the fact that stable distributions could play a
unifying role in the description of complex systems, their

connecting the Laplace transforms (denoted by a tilde) of
the probability of being at site n at time t, G(n, t

~ no) with
the probability of a first visit at n at time t. In both cases,
no is the starting point, and the n's denote the states of a
generic Markov process. The above relation shows that F
and 6 contain exactly the same information, although F
can be much easier to calculate.

In a Cayley tree, the path from no to n~ necessarily goes
through their unique closest common ancestor. Hence,
due to the Markovian character of the process

F(ni, s i no) =R„,„,(s)R„,„,(s), (2)

where the R's are the same quantity as F except that the
initial and final states have an ancestor-descendant rela-
tionship. Since all the levels between no and n2 must also

use is not yet widespread. Perhaps this is due to the fact
that no "microscopic" model (at the level of a random-
walk description) has ever been shown to give rise to these
distributions. This work is an attempt to change the situa-
tion by displaying such a model and thereby clarifying the
physical picture behind the mathematics.

In order to implement this program, we consider a large
but finite Cayley tree obtained by successive branchings
from an "ancestor" state, and let a random walker hop be-
tween neighboring points at given rates. These, and the
branching ratios, may depend on the level index in an arbi-
trary, even random, fashion. This is a generalization of
(the basic ingredients of) the model by Grossman,
Wegner, and Hoffmann who find the eigenvalues. Our
approach is complementary, since we focus on the Laplace
transform of the propagator which we show has a very
simple and beautiful continued fraction structure. Our
conclusions regarding the form of P(T) generalize the
form previously found by Huberman and Kersberg. 3 The
model differs from that of Refs. 3 and 5 in that each node
of the tree represents a possible state of the system, rather
than just the bottom nodes. This is unimportant for low
temperatures.

Our starting point is the well-known formula'3'4

G(n, s ~np) -[1—F(n,s ~n)1

x[P„„,+(1—8„„,)F(n,s ~no)],

34 3555 1986 The American Physical Society



3556 PAOLO SIBANI 34

be visited, we also have

/ —
1

RI 1(s) = + R„+) „(s), / »/' —
1 (3a)

5, other forms of E/ are also of interest. From now on we
take 6 1 for simplicity. In terms of the reduced variables
a s/k and g=z/k, Eqs. (5) and (6) read

/

Rj j(~)- ff R, j,(s)-, /~/'+1 .

R~+ ~ j(a) = I/[(+ a'+ 1 (Ri j —
~ (a)]

R, „,(a) -k '/[/. -+a+1-(g-k-')R. .,. ,(a)

RI-~ j(a)]

(sa)

(sb)
We therefore only need to consider neighbor levels. It is
not necessary to specify the coordinates of a node within a
level, since it is equivalent to all its siblings.

In the following, we write "distribution" rather than
"Laplace transform of the distribution, " and omit tildes
for the sake of briefness. We also let Pt'(s) and P/'(s) be
the distribution of waiting times at node / joint to hopping
up and down, respectively. They are given by

Pt'(s) kI'/(s+ kl z +kt'),

Pt (s) kt'z/(s+kfz+ki'),
(4a)

(4b)

RI+ / j(s) Pj'(s)/[I —Pj'(s)Rj, j ( (s)] (5a)

where kj' and kt' are the rates for hopping up and down
starting at level /. Obviously, ktI k~ 0, where N is the
highest level in the tree. A possible dependence of z on the
level has been omitted for notational simplicity, and does
not change the formulas in any essential way.

In order to calculate RI+~ ~(s), we note that if the first
jump is upwards, the walk terminates, and otherwise the
level / must be revisited. Therefore,

R i,o(a) -1/(1+a), (9a)

By considering the recursion relation for [Rj+~ I x(a—)],
which is easily obtained from Eq. (8), we obtain after
some algebra,

(gx')'(R ( o
—x) (1 —gx')

Rf+i f( )ax+
1
—gx' —gx (R, ,—x) [1 —(gx')']

When a« I, the weak dependence of x on a can be
neglected, i.e., we put x(a) ( '. We also discard terms
of order g

' and a compared to one, and get

R~ ( ~(a) =k '/[&+a —(/; —k ')R~,~ )(a)] . (9b)

Equation (sa) is a simple functional iteration with fix-
polnt

x (a) [1+(+a [(—1+g+ a) —4g) ' ]/(2(), (10)

with

R(,o&s) -Po(s) .

1»/»N —1,

(5b)

with

Rj+ti g '+(1 —
/; ')hr/(a+ht),

hi g '(1 —
g ').

(12a)

(12b)

—zPP(s)RI, I+ i(s)] (6a)

and, for I

R, (s) P (s)/[z —(z —1)R (s)P (s)] . (6b)

Equations (1)-(3), (5), and (6) give an explicit contin-
ued fraction representation for the propagator in the wid-
est possible class of random walks on finite Cayley trees.
We finally note for later convenience that the probability
of being at the origin, which we take as a zero-level node,
can be obtained by the inverse Laplace transformation
frOHl

Go,o(s) -1/[1 Pg(s)Ro (s)] . —

As an application of the present formalism, we assign
energies Ej b, x/ to the / level nodes, and postulate a
thermally activated process with k/' 1 and ki' k

exp( —d,/T). Note, however, that as emphasized in Ref.

Similarly, starting at level / we can reach one of the z level
/ —

1 siblings at the first move. If not, we have either
jumped down to the "wrong" sibling, or we have jumped
up. In the latter two cases, the starting point must be re-
visited, while otherwise the random walk stops. Hence, for
1»/»N —1 we have

Rj ~,I(s) Pf(s)/[z —(z —1)Rj I ~(s)P/ (s)

The pole structure following from Eq. (8a) is quite dif-
ferent, since Rj 2j ~ has a pole close to each pole of
RI ~ ~ plus a pole close to the singularity of RI ~ j 2(a).
Since now Rz ~ z(a) has one pole, it follows by induction
that, close to a 0, Rj ~ I has N —/+1 poles at o' —

pj's,
where a&p'~ (pj'v I+~ &hI ~. We denote the cor-
responding residues by rj.

These quantities are most simply determined by con-
structing from Eq. (8) the recursion relation for yj
=(1 —Rj ~ j) '. Putting Rj ~ I 2 1, a good approxi-
mation for 0«hi —2, i.e., z, and/or T large, we obtain for
I «N —1,

yi —2,~
—~(a) 1+k yi —~1(a)/[I+ayi —

~ j(a)] (13)

yI —2,l —I ( pj ) k yI —l,l( pj)
Recognizing that rj —1/yi ~ I( —pj), we finally obtain
for 1«j «2V —l+1,

p/
—1 pl k~l

/ —1~k /

J J (14b)

where, by definition, yj —
~ j(a= —pji) 0 for each pji. Ex-

panding to first order around the zeros, we get

pj '-p»+k/yI' i.i( pj)—
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The above derivation does not depend in any essential way
on the temperature being low, but rather on the fact that
RI —] ( —2(cr) is not singular in a small interval close to
each of the —pj~'s, and hence can be approximated by a
constant. If this constant is not unity, Eq. (13) changes
slightly, but the final result is the same.

The last singularity of Rt zt ~
is found by using the

full expression (12a) for Rt —l t z and is given by

I —
1 l —

1

pIv t+2~-rlv t+z -~"t -2 ~ (is)

where the precise value of the proportionality constant
does not affect the exponent of the decay. Equation (15)
holds also for l W —1, where it describes the only pole of
R~ ~ ~(o). From Eqs. (14) and (15) we find the follow-

ingforl 1: r' k2+ Jz + J andpcck+ ~zJ J
(1 + corrections). The corrections are unimportant be-
cause they decay faster and moreover, are 0(k ), i.e.,
small at low T. The final result is

where

a (lnz +2/T)/(lnz + 1/T), (16)

and the result has been obtained by transforming the sum
into an integral. The decay law for Goo is found by using
Eq. (7), with Po(cr) —1, and the fact that 1 —Ro, l(o)
~o' ' for small o. In the time domain we get
Gp 0(t) t ~ with

P 2 —a T lnz/(T lnz+1) . (i7)

This has the same form as found in Ref. 3. The very-low-
temperature behavior corresponds to the decay law derived

by Ogielski and Stein who, however, considered a model
which is different and much simpler in structure than the
present one. Which model is relevant to what, is open to
question. Equation (17) has the same structure as Eq.
(6.7) of Grossmann et al. In applying their expression to
thermally activated hopping, these authors choose a nega-
tive coefficient to the temperature, thereby introducing a
pole which we do not find.

In order to check the formulas, we have calculated
Rp l(o') exactly, according to Eqs. (8) and (9), through 30
orders of magnitude of o, and plotted in Fig. 1 ln( —lnR)
vs lno for different T values. As expected the result is, for
o ( 1, a straight line with slope a(T) —1, if one disregards
a superimposed oscillation of small amplitude. In practice
we have calculated a(T) from the average slope over the
first 11 decades, and the results coincide very well (within
2/o) with Eq. (16) and therefore with Eq. (17) in the
whole range of temperatures of interest [for T (0.1, nu-
merical problems render Eqs. (8) and (9) inaccurate].
More information can be gained from Fig. 1, i.e., that the
short cr (long-time) asymptotic regime extends up to o- I

and that in this whole region the distribution is well ap-
proximated by a stretched exponential, as anticipated.
There is also a second regime, for o & 1, with the same
functional dependence but another exponent. It describes
times shorter than the inverse attempt frequency of the
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FIG. 1. The graphs show 1n( —in[Ra~(o)]} vs ln(a) for dif-
ferent temperatures as indicated above. The branching ratio of
the tree is z 4, and o s exp(l/T), where s is the Laplace
transform variable. The distance between two points is a decade.
The function was calculated analytically according to Eqs. (8)
and (9). Note that the graphs have zero curvature except in a
small region close to o 1. The number of levels used was

100.
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random walker, for T ~ 1. It may be physically relevant if
decay effects are present due to a process which is in-

dependent of the spatial motion of the walker. The La-
place transform variable is then shifted by an amount pro-
portional to the inverse lifetime, '5 and the "large o" region
can be entered even at not-too-low temperatures.

The present formalism can be given a physical content
along the lines proposed by Palmer et al. ' of a hierarchy of
degrees of freedom. Quite generally, if only the most
favorable route between any two points in the phase space
of a system is considered, the connection graph of the
dynamics has no loops, i.e., is a Cayley tree. This low-

temperature approximation is, of course, not sufficient to
specify the details of the model. However, one might
loosely identify the waiting time for crossing the tree,
which has the same qualitative features as Fig. 1, with the
waiting time for some event to happen which requires the
successful completion of many subtasks, each involving
more elementary degrees of freedom. The example we
have in mind is given in Ref. 7, where the flipping of a
"cluster" is described by a stable distribution of waiting
times, with an exponent a(T) having a peak at the glass
transition temperature. The idea that stable distributions
should come into play seems justified. Recalling that
cr exp(1/T)s, we see that for fixed s (or frequency), the
main effect of a change in temperature is a change of o. If
the time scales are such that this would imply a shift from
one regime to the other of Fig. 1, one might obtain a peak
in the observed a.
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