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Change from diverging to finite susceptibility below T, of the Heisenberg ferromagnet EuS
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Approaching the coexistence line, magnetization data recorded with a superconducting quantum
interference device reveal the nonlinear decay of the scaled field H conjectured by early series-
expansion and renormalization-group theories. The associated divergence of the longitudinal fer-
romagnetic susceptibility, XLCCH, appearing in a scaling representation of existing data,
changes to XL-(T, —T) " very close to the coexistence curve. This crossover is associated with a
linear, nonscaling behavior of 0, which explains y'=y, reported previously also for EuO.

I. INTRODUCTION

Despite the long-standing debate on the field depen-
dence of the magnetization near the coexistence curve of
Heisenberg ferromagnets, the present situation is contro-
versial. Classical spin-wave calculations predicted a
square-root dependence of AM-=M(T, H) —M(T,O) on
internal field H. ' Close to T„renormalization-group
(RG) work by Brezin and others2 provided strong argu-
ments that due to the divergent transverse susceptibilities
(massless Goldstone modes) similar nonlinear behavior,
/5M CC H'/t' with p =—,', should occur.

Experimental evidence for the most outstanding conse-
quence of the theory, i.e., the divergence of the longitudi-
nal susceptibility at all temperatures below T„XL(T,H)
cLH'/t' ', is still lacking. In early work on EuO (Ref. 5)
a finite susceptibility, ZL(T, O)o:(T, —T) " with y'=y

1.3, was derived from magnetization data employing an
extended version of the kink-point method. More recently,
XL(T,H) has been evaluated from the slope of magnetiza-
tion isotherms of EuS at finite fields. The scaling repre-
sentation of this susceptibility showed a trend of
Zq(T, —T)" to flatten at small scaled fields, which ap-
peared to sustain the result for EuO. An independent
search for anomalous longitudinal fluctuations at small q
and H below T, of Pd+10 at. % Fe (Ref. 7) by using po-
larized neutrons was unsuccessful, too. The present work
investigates the magnetic equation of state of EuS below
T, with the aim to resolve the existing fundamental differ-
ence between experiment and theory.

II. EXPERIMENTAL RESULTS

The magnetization of a single-crystalline sphere has
been measured by a home-made variable-temperature
magnetometer using superconducting quantum interfer-
ence device detection (SHE-330). A double-walled
chamber of Araldit F separated the sample from the He
bath, vrhile thermal contact to the carbon-glass thermome-
ter was provided by a 99.999%-pure Cu holder. In order
to minimize the background signal from Fe impurities, the
Cu ~as subjected to 10 mbar of oxygen at 800'C for
30 h. M(T,H«, ) scans were performed from 5.5 to 90 K
in external magnetic fields between 0.1 and 6.1 kOe,
frozen by a superconducting cylinder. The absolute values
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FIG. 1. Scaling representation of magnetization data mea-
sured on an EuS sphere as a function of temperature at the quot-
ed external magnetic fields: (a) below and (b) above T, 16.56
K. Standard normalizations of M and of the internal field
H—=H, „~

—WM to Mo 15.4 kOe and H, kT, /p 35.4 kOe
have been used: m =M/Mo, b —=H/H„and t =T/ T, —1.
Model curves are explained in the text.

were determined at T» T, and T &( T, by using
M X(T)H«, and M H,„JN, respectively, where N
is the demagnetization coefficient.

Our main results in the vicinity of the critical point, 10
KIT&23 K, are shown in Fig. 1 in terms of the scaled
field y= h/rn—s and the scaled temperature x=—t/rn'/~.
The Curie temperature and y P(b —1) 1.35(1) were
obtained by a careful analysis of the low-field (H,„, 0.1

kOe) susceptibility in agreement with a previous ac mea-
surement at H«& 0.9 The exponent of the spontaneous
magnetization, m, 8(—t)t', P 0.350(5), was deter-
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mined from the "best" scaling of the data (Fig. I). This
number is consistent with P 0.36(1) evaluated by Als-
Nielsen, Dietrich, and Passe[i' from neutron scattering .
Close to the coexistence curve, a violation of scaling ap-
pears, which will be discussed in Sec. IV.

III. SCALING BEHAVIOR

A. Equation of state

Above T„ the scaling function y (x) can be well
parametrized using Griffith's" expansion around the criti-
cal isochore (x ~):

y (x) ~C~x"+C2x" s+Cix" ~+. . . ,

as illustrated in Fig. 1(b). The coefficients Ci 2.3(1),
C2 2.0(2), and Ci 1.0(3) are close to the correspond-
ing values 2.5(1), 2.5(2), and 0.96(24) reported by Huang
and Ho'2 for the related ferromagnet EuO. Moreover,
they do not differ very much from a RG calculation to
O(s=—4 —d) for the dipolar HeisenberII ferromagnet
predicting Ci 2.0, C2 2.1, and Cs 0.9.

For the other extreme region, the same theory argued
that h/ms vanishes nonlinearly in terms of the distance of
x t/m'~s from the coexistence line xo-=r/m, '~s 8

(2)

with p & 1 (Refs. 2-4). In fact, our numerical evaluation
of the explicit expressions for yo(x) published to O(e) for
the pure2 and the dipolar4 Heisenberg ferromagnets
proved Eq. (2) to be valid from x =0 down to the experi-
mentally inaccessible value of xo+x=10 . We found
the exponent p 1.13 for both the pure and the dipolar
case.

To adjust our scaled data to the proposed power law, we
used 8 1.15 as critical amplitude for the spontaneous

magnetization, which follows from the neutron results' if
the exponent is fixed to our value, P 0.35. In fact, Fig.
l(a) demonstrates that Eq. (2) with p 1.5(1) nicely de-
scribes all experimental data below T, within their uncer-
tainty, ~ith the exception of the nonscaling region near the
coexistence curve. We note, that the characteristic ex-
ponent is closer to the value predicted for the Gaussian
model p I+a/2, than to those obtained above for the
pure and dipolar Heisenberg ferromagnets. Due to the
first order approximation in e of the underlying RG re-
sults, the differences should not be taken too seriously.
Moreover, Fig. 1(a) shows that numerical values from
high-temperature series expansions for the fcc Heisenberg
model with 5 ~, available for lx

~

& 0.1258 '~~, '4 are
also fairly close to the data. A more direct impression of
the good quality of the fit to the power law, is provided by
Fig. 2 in which the measured isofield magnetizations are
compared to the calculated values. In the scaling region
(10 KSTST, ), the rms of the relative deviation is smaller
than 0.005 and stays below the overall experimental accu-
racy of about 0.008.

m
ZL(t (O,h)

~ /( + )
(3)

Figure 3 clearly shows, that within the experimental un-

8. Longitudinal susceptibility

The previously published resultss are reproduced on the
scaling plot of Fig. 3 showing somewhat larger errors in
the ferromagnetic region due to the high magnetizations
involved. From the excellent agreement between the
paramagnetic susceptibilities and the full curve, obtained
by differentiating the corresponding equation of state, Eq.
(I), we infer that XL=—(bm/bh), was correctly evaluated
from the magnetization isotherms of Ref. 8.

For the ferromagnetic susceptibilities we expect accord-
ing to the power-law equation of state [Eq. (2)],
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FIG. 2. Ex~rimenta1 M/0, „, ratios (random 1% sample of
all data) compared to calculations (full curves) based on the
power law, Eq. (2). Inset exemplifies the general shape very
close to the coexistence line: nonlinear scaling folio~ed by linear
[dotted line, calculated from Eq. (6)] and rounding behavior.

FIG. 3. Scaling representation of the paramagnetic (open) and
ferromagnetic (closed symbols) susceptibilities (from Ref. 6).
Full lines correspond to calculations based on the equations of
state displayed in Fig. 1, I 0 labels the limiting behavior due to
crossover to linear behavior [Eq. (7)l.
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certainty, the data are well described by Eq. (3). Of par-
ticular interest is the vicinity of the coexistence line,
x —xo, where the second term in the denominator of
Eq. (3) dominates the first one, so that XL, reduces to

pxo m'
X,(«O,h-o)-

+r/p ~&
—

&/p
(4)

P
Because of the finite magnetization m m„Xt, is expect-
ed to diverge proportional to h'tt' '. To see whether this
prediction is borne out by our scaled data we put Xt. into
the scaling form

IV. LINEAR REGION

From the scaling plot in Fig. 1(a), one notices that in

the vicinity of the coexistence curve (dashed lines) the iso-
field (H,„( const) magnetization curves can be approxi-
mately described by an empirical equation of state that is
linear in x (=—xo):

' 1/P

yi(x,H,„,) -C(x(i+x)+
Hext

(6)

with C 0.8(2). H, 0.60(5) kOe may be considered as
an effective anisotropy field causing the deviations from
the Heisenberg scaling function, Eq. (2), to be discussed
below.

As the most important consequence of the linear term in

y(x) one expects from Eq. (5) a crossover to a finite sus-
ceptibility at the coexistence curve, Xt, a:( t) ", —with
y' y. More precisely, Eq. (6) yields for x —xo,

XL(t & O, h -0)-I.( —t) (7)

Taking H,„, NM, (T) near the phase boundary, the am-
plitude turns out to depend on temperature, I, I 0/
(1 —t./t), with r, =—pa" -"'t'/C, while t.—=b'p(H. /
NMO) ' ~/C is affected by H, .

Actually we found such "apparent" critical behavior us-

ing the thermodynamic relation,

aM aM

H (i ~T H NM

(Xo Mo/Ho due to the normalization). As is illustrated
by the inset to Fig. 2 there are weil-defined slopes of the
measuring curves (8M/8T)H, , in the small linear region.
At ( t) )0.01, the resulting s—usceptibility can be de-
scribed by the power law XL, 0.33(5)(—t) ' show-
ing some tendency to flatten closer to T,. This is fully con-
sistent with the predictions of Eq. (7) yielding for the am-
plitude 10 0.38(9) and for the anisotropy parameter

X, (t &O,h-o)-1. ( —t)-~
gP+)'

with I (8' p t' /A)' t'p/p. Obviously, XL( —t)" ex-
hibits the same divergence in terms of the scaled field as
does XL(h). In fact, the ferromagnetic susceptibilities, cal-
culated from Eq. (3) for EuS, display this power law below
h/(t (~+"=0.1. The trend of the data to this behavior
(Fig. 3) is to our knowledge the first indication for the
divergence of XL, .

t, 0.0046. Moreover, as seen in Fig. 3 this behavior
seems to limit the increase of the scaled susceptibilities.

By the same procedure, Hag and Johansson determined
XL(t,O) parallel to the easy [ill] axis of EuO and ob-
tained similar behavior: the power-law equation (7) with
y'=1.3(1) and I, 0.3(1) and the trend to flatten below

~
t

~
0.01. Taking y' y, they interpreted their results

within the linear model by Schofield' in terms of uniform
Heisenberg, scaling. In addition to the theoretical proviso
against the applicability of the Schofield model for non-
Ising systems, 2 the present experimental findings on the
related ferromagnet EuS suggest that one check whether
the finite zero-field susceptibility of EuO below T, also
ean be traced to a crossover to linear behavior y-(xo+x)
near the coexistence line. It should perhaps be pointed
out, that according to Eq. (7a), the presence of the
(scaling-violating) anisotropy field H, is not a necessary
condition for the occurrence of the power-law equation
(7).

Another consequence of our findings near the phase
boundary is associated with the so-called kink-point
method, widely used to determine the spontaneous mag-
netization at the kink-point temperature Tk by extrapola-
tion of experimental M(T,H,„, const) curves to
H,„JN M, (Tk) (see, e.g., Ref. 16). Obviously, this
method relies on the existence of a constant finite slope
(8M/8T)H, close to Tk, which for an ideal Heisenberg
ferromagnet with XL, -H '+' ~ is not available, as follows,
e.g., from the thermodynamic relation, Eq. (8). There-
fore, if the kink-point analysis has identified a truly linear
region, i.e. (8M/8T)H, const, on some Heisenberg fer-
romagnet, this may indicate a crossover to linear behavior
of y(x) and to a finite susceptibility at H 0. We should
stress, that in this case the extrapolation is leading to an
apparent kink-point Tk & Tk and, therefore, to erroneous
values for M, (T). For EuS, this is illustrated by the inset
to Fig. 2.

This inset also shows that for H,„JM —N&0.002, i.e.,
around Tk extremely close to the coexistence curve, a new
nonlinear region appears. Since these data do not obey a
uniform power law in H and, moreover, the inverse zero-
field susceptibility (8H,„JBM—N ) starts to fall off from
t "at just about the same value, 0.002 (corresponding to
t =0.003), we tentatively associate this behavior with
"rounding" effects. It seems that it is a general feature of
real Heisenberg and Ising ferromagnets (see, for example,
Ref. 16) related to random anisotropies, like deviations
from ellipsoidal sample shape, grain boundaries, disloca-
tions, and other imperfections. However, detailed infor-
mation on the effect near the coexistence curve is not
known to us. Thus, we cannot exclude that linear (Ising-
like) behavior also arises from these local anisotropy fields
which, as soon as 0 decreases to their size, first freeze the
transverse (Goldstone) modes, M/H, before in the round-
ing region, the remaining divergence of the longitudinal
susceptibility, 8M/'dH is affected.

On the other hand, attempts to explain the linearity of
y(x) and the associated finite susceptibilities of EuS (and
also EuO) should also consider the small single-ion aniso-
tropy, e~ =0.03kgT„ following, for example, from Ref.
17. Together with magnetostriction and exchange stric-
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tion (unknown for EuS), a~ may give rise to rhom-

bohedrally (i.e., parallel to the easy (111)directions) dis-
torted crystallographic domains, the uniaxial anisotropy
fields of which prevent the transverse modes from diver-
gence as soon as they become larger than the internal field
H.

Very recently, Chudnovsky, Saslow, and Scrota' pre-
dicted a linear behavior of the low-field and low-

temperature (T«T, ) magnetization M XH for Heisen-
berg ferromagnets with randoin and coherent anisotropies
as well. Following their suggestion to extend the results to
the critical region, we find for the susceptibility
Z-M, "-( —1) +. Identifying this exponent with our
result 7 1.29(5), we obtain A, = l. By the definition,

p(@+1)/2 —2, 's this corresponds to a (p 2)-fold
axis of the anisotropy which cannot arise from the
(coherent) magnetostriction considered above.

V. SUMMARY

The scaling analysis of the magnetic equation of state
confirms the critical exponents P 0.35 and y 1.35 ob-
tained from previous neutron work'o and paramagnetic
susceptibility measurements. Below T„ the internal mag-
netic field disappears nonlinearly, as a function of the dis-
tance from the coexistence curve, i.e., H~(M' ~ —M,' ~)i'

in fair agreement with numerical results of high-temper-
ature series' and renormalization-group expansions.

An indication for the divergence of the ferromagnetic sus-
ceptibility, LI.-H' I' ', implied by the nonlinear equation
of state has been detected by a scaling analysis of existing
data. Close to the phase boundary, a crossover of uniden-
tified origin to linear, non-Heisenberg behavior is ob-
served, which prevents ZL from further divergence. The
apparent zero-field susceptibility Xz-(T, —T) ", with

y y'also reported for EuO (Ref. 5) could be explained by
an empirical, linear equation of state. %e have shown that
both nonlinear and linear behavior make an accurate ap-
plication of the conventional kink-point method impossi-
ble.

Further systematic work, combining local methods
(NMR, Mossbauer, perturbed angular correlation), neu-
tron-scattering and bulk magnetization measurements on
well-defined samples seems to be necessary to establish the
magnetic behavior, in particular the divergence of ZL, and
its saturation near the phase boundary of Heisenberg fer-
romagnets,
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